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ABSTRACT

Anomaly detection involves the recognition of patterns out-
side of what is considered normal, given a certain set of input
data. This presents a unique set of challenges for machine
learning, particularly if we assume a semi-supervised sce-
nario in which anomalous patterns are unavailable at training
time meaning algorithms must rely on non-anomalous data
alone. Anomaly detection in time series adds an additional
level of complexity given the contextual nature of anomalies.
For time series modelling, autoregressive deep learning archi-
tectures such as WaveNet have proven to be powerful gener-
ative models, specifically in the field of speech synthesis. In
this paper, we propose to extend the use of this type of ar-
chitecture to anomaly detection in raw audio. In experiments
using multiple audio datasets we compare the performance of
this approach to a baseline autoencoder model and show su-
perior performance in almost all cases.

Index Terms— anomaly detection, deep learning, raw au-
dio, WaveNet

1. INTRODUCTION

The use of semi-supervised algorithms in anomaly detection
is motivated by the scarcity of anomalous events as they
are either very rare or completely unseen. When detecting
anomalies in time series, the task is further complicated by
the temporal structure of the data [2]. In this case, the task
tends to fall under the categorization of collective anomaly
detection, where single data points tend not to hold much con-
text or information, rather it is a collection of data points that
display a novel or anomalous pattern [1]. This is especially
the case when time series are collected using high sampling
rates, for instance in audio which is typically sampled at
several thousand samples per second.

Recent deep learning approaches to anomaly detection in
this type of time series have typically used recurrent predic-
tive models [16] [19] and autoencoders [22] [14] [18]. Al-
though recurrent neural networks (RNN) such as Long Short
Term Memory networks (LSTM) [8] are a natural choice for
sequential data, an inherent drawback of these models is the
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difficulty to parallelize backpropagation though time, which
can slow training, especially over very long sequences. This
drawback has given rise to convolutional autoregressive ar-
chitectures [24]. These models are highly parallelizable in
the training phase, meaning that larger receptive fields can
be utilised and computation made more tractable due to ef-
fective resource utilization. In this paper we adapt WaveNet
[24], a robust convolutional autoregressive model originally
created for raw audio generation, for anomaly detection in
audio. In experiments using multiple datasets we find that we
obtain significant performance gains over deep convolutional
autoencoders.

The remainder of this paper proceeds as follows: Sec-
tion 2 surveys recent related work on the use of deep neu-
ral networks for anomaly detection; Section 3 describes the
WaveNet architecture and how it has been re-purposed for
anomaly detection; Section 4 describes the setup of an exper-
iment in which we compare the performance of the WaveNet
anomaly detector to a baseline autoencoder approach across
15 datasets; Section 5 discusses the results of this experiment;
and, finally, Section 6 summarises the paper and suggests di-
rections for future work.

2. RELATED WORK

Autoencoders have been extensively utilised in anomaly de-
tection and, more broadly, in novelty detection. In [16] a
comprehensive evaluation was performed on autoencoders
for acoustic novelty detection where novel sounds in various
environments were detected. Although lacking evaluation on
convolutional architectures, it was found that bidirectional
LSTM autoencoders with denoising and non-linear predic-
tion (prediction of current points using a previous point or
points) performed best when compared to similar fully con-
nected models and other statistical approaches—one-class
support vector machine, Gaussian Mixture Models and Hid-
den Markov Models. A variation of adversarial autoencoders
[15] was used for acoustic novelty detection of sounds in
home environments by [22]. In this variation, the discrimina-
tor was used to discriminate between data reconstructed by
an autoencoder and data from the training set. Convolutional
autoencoders have also been used on spectrogram data to
detect anomalies in machine sound [18].



Beyond audio, LSTMs and a scaled down version of
WaveNet have also been utilised as predictive models for
anomaly detection in radio signals [19]. A denoising au-
toencoder combined with RNNs was used to detect outliers
in sequential data in [14]. Here the denoising autoencoder
acts as a feature extractor while the RNN models the sequen-
tial structure in these features. This model first pre-trained
the denoising autoencoders before training an RNN with the
learned features, and finally performing finetuning on the
model. An ensemble of autoencoders was used in [11] to
detect unseen falls from wearable sensor data. In this work,
channel-wise autoencoders were trained on raw accelorome-
ter and gyroscope data.

Outside of anomaly detection, as part of an effort to ex-
plore the amount of feature engineering necessary before
modelling speech signals in raw audio, [23] showed that deep
networks were capable of building rough estimations of the
appropriate bandpass filters that would normally be applied
during pre-processing. It was also found that increased train-
ing data and deeper networks led to improved performance.
Convolutional layers, however, were found to outperform
fully connected layers for feature learning on the TIMIT cor-
pus [5] by [21], and for Large Vocabulary Continuous Speech
Recognition by [7]. Convolutional layers were also found to
effectively learn filter banks on a large speech dataset with
artificially added noise in [9]. More recently, convolutional
autoregressive architectures such as WaveNet have shown
promising results in raw audio generation [24] and music
synthesis [4]. Motivated by these recent successes, we apply
a WaveNet model to the domain of anomaly detection in raw
audio.

3. ANOMALY DETECTION WITH WAVENET

WaveNet [24] is an autoregressive approach to speech syn-
thesis based on the PixelRNN [25] and PixelCNN [26] ap-
proaches developed for high resolution image generation. In
a WaveNet model, dilated causal convolutions are used in or-
der to increase the receptive field of convolution filters, and
rectified linear activations are replaced with gated units in or-
der to provide the benefits of LSTM models without the need
for a recurrent algorithm. The receptive field can also be fur-
ther increased using multiple stacks of dilated convolutions.
In this model samples are generated one at a time, based on a
softmax distribution over all possible sample values. This is
made tractable by quantizing the inputs to be 8-bit, leading to
256 possible values on the outputs for each sample.

Neural autoregressive models obtain a probability distri-
bution over all outputs by conditioning each on all preceding
outputs, assuming a sequential structure in the data [12][6].
The product rule allows the output distribution to be factor-
ized into the product of conditionals such that

p(x) =

T∏
t=1

p(xt|x1, ..., xt−1) (1)

where xt denotes an output at time t [24] [4]. These types of
autoregressive models are a form of generative model where
a given input variable is conditioned on all preceding data
points. In this way, this formulation is similar to recurrent ar-
chitectures, except that each output can be computed in par-
allel during training, which leads to significant computational
efficiency, as these models are easily parallelizable.

The sum of the dilation rates Rs for a single stack s in a
WaveNet model is given by

Rs =

|s|−1∑
i=0

2i (2)

where |s| is the number of layers in stack s. The sum of dila-
tion rates for each stack can then be used to calculate the total
receptive field, RT , for a model with m stacks

RT = 1 + (k − 1)

m∑
s=1

Rs (3)

where k is the kernel size. Samples at the very beginning of a
sequence will not have access to past values and are therefore
generally zero padded.

As causal convolution is used in the WaveNet model,
each new timestep may only be computed based on previous
timesteps. At the beginning of the sequence, if causality is
imposed used zero padding, points at the beginning of the
sequence will have less information with which to compute
their outputs.

To use a WaveNet architecture for semi-supervised anomaly
detection, we train the network to predict the next sample in
a sequence using only normal data. This means that the
network will learn a conditional distribution across normal
sequences and that anomalous sequences should not follow
this distribution. To recognise anomalies, sequences are pre-
sented to the trained network and the distances between the
predictions generated by the network and the subsequent ac-
tual values in the sequences are calculated. A small distance
is indicative of a normal sequence while a large distance
is indicative of an anomaly. Mean squared error is used to
calculate distance in our implementation.

One of the noted drawbacks of WaveNet is the time taken
for generation, as samples are generated sequentially one at
a time. There have been a number of solutions proposed to
accelerate this process [27] [20]. In the context of anomaly
detection, at prediction time an entire window is presented to
the algorithm at once meaning that all outputs can be com-
puted in parallel in the same way as training, leading to fast
detection of anomalies.



4. EXPERIMENTAL SETUP

In this section we describe our experimental setup including
the datasets used, the specific architectures implemented; and
the performance measures used.

4.1. Datasets

We extract 15 datasets from the 2017 DCASE Challenge Task
2 dataset [17]. This dataset consists of three different classes
of rare event—babycry, glassbreak and gunshot—that have
been artificially mixed with background audio from 15 differ-
ent environmental settings (e.g. beach, restaurant, and train).
Rare events were mixed at different ”event-to-background”
ratios which is defined as the ratio between the root mean
square energy of the rare event and the background audio
[17]. The original audio mixtures were sampled at 44.1KHz
with 24-bit bit depth. We use the original mixture audio files
from the challenge, which contains 491, 496 and 500 audio
files of roughly 30 seconds each for training, validation and
testing respectively.

Assuming that events may be more difficult to detect
in some environments than others, we examine the perfor-
mance of these models across multiple contexts, leading to
15 datasets, one for each type of environment, see Table 1.
As we take a semi-supervised approach, we train a single
model on only data from a single environment that contains
no anomalous examples, and consider an anomaly to be an
instance of one of the rare event sounds. For each audio file in
a given scene, we window the training set with a window size
of 4096 samples with no overlap. We discard any windows
containing anomalies in the training phase. A window is con-
sidered anomalous if most of the samples from that window
are from any of the three rare event classes.

4.2. Baseline Convolutional Autoencoder

We use a convolutional autoencoder (CAE) as a baseline
model against which to compare the performance of the
WaveNet model. The use of a convolutional autoencoder as
a robust baseline is motivated by previous research showing
the ability of convolutional architectures to model raw audio
[9][7][21]. The CAE is composed of 20 layers (10 layer
encoder, 10 layer decoder), matching the number of layers
in the WaveNet model, with a kernel size of 3 throughout.
The data is scaled between -1 and 1. Strided convolution is
used for downsampling, with a stride of 2 being applied at
every second convolutional layer in the encoder. For upsam-
pling transposed convolution otherwise known as fractionally
strided convolution [3], is used—see Figure 1. For each audio
window, the mean squared error between the output of the
network and the example originally input into the network is
computed, i.e. the reconstruction error.

Table 1. Number of examples (windows) in each subset of
data. Data is highly imbalanced in favor of the normal class.

% anomalies
Scene # train # test (test)
beach 34 768 37 352 2.11
bus 26 482 33 810 2.27
cafe/restaurant 36 097 30 590 2.29
car 30 303 36 386 1.70
city center 34 343 33 488 2.16
forest path 27 132 30 590 1.99
grocery store 35 336 28 658 1.79
home 29 774 30 590 2.46
library 34 054 32 200 2.07
metro station 33 153 28 980 2.18
office 32 985 34 454 2.88
park 28 245 30 590 2.29
residential area 29 524 30 268 1.87
train 28 107 35 742 1.80
tram 24 894 29 302 2.19

Fig. 1. Baseline Convolutional autoencoder. Input is down-
sampled into an encoding of size 1x64 along the time dimen-
sion using strided convolution in every second layer. Encod-
ing is upsampled using fractionally strided transposed convo-
lution.

4.3. WaveNet model

The WaveNet model uses two stacks of 10 layer causal dilated
convolutions, leading to a total of 20 layers. Residual and
skip connections are used along with an exponentially grow-
ing dilation rate in each stack, as per the original WaveNet
paper [24]. Data is quantized using µ-law companding and
scaled between -1 and 1 for the inputs. The softmax distri-
bution of the quantized integer range (256 values) for each
sample is then generated. The number of filters in each layer
is based on those found to be optimal in previous literature
[4] with 512 filters in skip connections, and a further 256 fil-
ters for residuals. Cross-entropy is minimized during training
however the reconstruction error is measured at testing time
using mean-squared error. The implementation of this model



is based on code from [4]1 and also with reference to other
open source implementations 2 3. The code for our particular
implementation can be found on GitHub 4.

4.4. Evaluating Model Performance

To evaluate the model we train both the CAE and WaveNet
model using training sets containing normal examples only,
and evaluate their performance on hold-out test sets (as de-
scribed in Table 1). In the testing phase the reconstruction
error, in the form of mean squared error, is computed for each
example. Using these reconstruction errors as an anomaly de-
tection signal we can compute the Area Under the ROC Curve
(AUC) [10] to show the ability of the models to recognize
anomalies.

5. RESULTS

The performance of the two models across the 15 datasets is
shown in Table 2. We find that the WaveNet models con-
sistently outperform the baseline CAE models in almost all
datasets, with a tie in the home and office scenarios. It is
also noteworthy that performance of both models noticeably
varies across the different acoustic scenarios, indicating that
the ability of the models to detect anomalies can be signifi-
cantly affected by different acoustic environments.

Table 2. AUC scores for both models on each dataset.
Scene CAE WaveNet
beach 0.69 0.72
bus 0.79 0.83
cafe/restaurant 0.69 0.76
car 0.79 0.82
city center 0.75 0.82
forest path 0.65 0.72
grocery store 0.71 0.77
home 0.69 0.69
library 0.59 0.67
metro station 0.74 0.79
office 0.78 0.78
park 0.70 0.80
residential area 0.73 0.78
train 0.82 0.84
tram 0.80 0.87

6. CONCLUSIONS AND FUTURE WORK

In this paper we have adapted the WaveNet architecture to the
domain of acoustic anomaly detection. We find that we obtain

1https://github.com/tensorflow/magenta/tree/master/magenta/models/nsynth
2https://github.com/ibab/tensorflow-wavenet
3https://github.com/r9y9/wavenet vocoder
4https://github.com/EllenRushe/AudioAnomalyDetectionWaveNet

significant performance gains over standard convolutional au-
toencoders across multiple datasets.

In the future we intend to explore building a single model
that will operate across all of the scenarios in the DCASE
Challenge Task 2 datasets by using conditioning [24] to adapt
models to different contextual environments. This will be a
first step towards exploring the use of conditioning to build
models that can address the issue of concept drift [13].
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