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Abstract—This brief aims to intuitively explain and numeri-
cally verify the observed phenomenon of flicker noise reduction
in oscillators of reduced conduction angle (i.e., in class-C), which
has been presented in literature but never properly explained.
The flicker phase noise in a voltage-biased oscillator capable of
operating in class-B and class-C is compared and numerically
verified using a commercial simulation model of TSMC 28-nm
CMOS. We illustrate how narrowing the conduction angle can
suppress the 1/f noise up-conversion by decreasing 1/f noise
exposure to the asymmetric rising and falling edges of oscillation
waveform. The effects of implicit common-mode tank in the class-
C operation is also discussed. We further clarify ambiguities
among several simulation methods of impulse sensitivity function
(ISF) based on periodic small-signal analysis (PAC or PXF),
which is a key tool in understanding the flicker noise up-
conversion. A clearer ISF simulation method based on positive
sidebands of PXF is proposed.

Index Terms—Class-C oscillator, flicker noise up-conversion,
impulse sensitivity function (ISF), periodic transfer function
(PXF) analysis, periodic AC (PAC) analysis, SpectreRF.

I. INTRODUCTION

FLICKER noise up-conversion mechanism in voltage-
biased oscillators [1]–[5] (i.e., where the tail current

source is eliminated [6]) has received a great attention in
recent years. It is recognized that the asymmetry between
rising and falling portions of oscillation waveform results in
1/f noise up-conversion, which is a consequence of a 2nd
harmonic current entering a non-resistive termination. This
conclusion was first proposed in [3], numerically verified in
[4], and further experimentally supported by [7]. Moreover,
Shahmohammadi et al. [3] claimed that the non-resistive
termination of 3rd (or any higher odd-order) harmonic current
does not introduce the 1/f noise up-conversion [1], which was
then theoretically demonstrated by [5].

Several 1/f3 phase noise (PN) reduction mechanisms have
been identified [2]–[4]. Pepe et al. [2] demonstrated that
introducing an additional phase shift between drain and gate
of the cross-coupled pair can suppress the 1/f noise up-
conversion. In addition, an accurate implementation of the 2nd
harmonic resonance in voltage-biased oscillators has proved to
be an effective method in reducing the 1/f3 PN in class-B [7],
class-D [3], and class-F oscillators [3], [4], [8], which all cover
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Fig. 1. Survey of state-of-the-art oscillators with low measured 1/f3 corner
(< 300 kHz).

single-GHz RF [3], [7] and mmW bands [4], [8], as surveyed
in Fig. 1.

Interestingly, Fig. 1 also suggests that the class-C operation
can achieve similarly good 1/f3 PN performance as the
aforementioned techniques in both its current-biased [9]–[11]
and voltage-biased [12] versions. As a variant of class-C
oscillator, “pulse-tail-feedback” topology [13] recently sported
a record-low 1/f3 corner of 700 Hz. It adds controlled tail-
switches to significantly decrease the current conduction angle
of cross-coupled pair, making it much smaller than π. The
reduced conduction angle improving the 1/f3 PN is also seen
in the measurements of [14], [15]. Two PMOS transistors are
added under the cross-coupled pairs to decrease the conduction
angle, through the coupling of RC-filter [14] or transformer
[15]. However, the literature still lacks a detailed explanation
on why reducing the current conduction angle would improve
the 1/f3 PN performance [9]–[15].

To study the 1/f noise up-conversion in oscillators, impulse
sensitivity function (ISF) [16] plays an important role [4].
Unfortunately, its conventional extraction method based on
transient simulations (TRAN) is rather time-consuming and
not accurate. Kim et al. [17] associated ISF with periodic
small-signal analysis, especially, periodic AC (PAC) analysis.
It was not until recently that a periodic transfer function
(PXF) was recognized as a more convenient simulation method
to obtain the ISF [18]–[20]. A single-run PXF simulation
can acquire N harmonic terms of ISF, which is much more
convenient than running PAC simulations N times. However,
several confusing issues still persist: 1) It is not straightforward
to understand a derivation linking ISF to PXF in which a
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small-signal voltage at ω0 + ∆ω is observed in response to
a small input test current at kω0 − ∆ω [19], [20]. 2) All
the derived equations linking ISF to PXF require negative
sidebands of PXF (i.e., negative frequency), while the default
settings in PXF does not support negative frequencies [21]. 3)
The concept of index of PXF sidebands is missing.

This brief extends our previous work [4], offering a clear
derivation associating the ISF with positive sidebands of PXF,
and clarifies the ambiguities existing in its negative sidebands.
It numerically verifies the 1/f3 PN reduction mechanism in
a class-C oscillator, featuring the proposed simulation method
of ISF. The rest of this brief is organized as follows: Section
II presents the derivation from PXF to ISF based on positive
sidebands of PXF and explains the confusing parts in the PXF
negative sidebands. The flicker noise reduction mechanism in
class-C oscillators is shown in Section III.

II. NON-NORMALIZED ISF EXTRACTION FROM PXF

A. Transimpedance in LTI System and Periodic Tran-
simpedance in LPTV System

For a linear time-invariant (LTI) system, its transimpedance
transfer function [of magnitude |H(ω0 + ∆ω)| and phase
6 H(ω0 + ∆ω)] at a specific frequency (ω0 + ∆ω) can be
calculated by observing a response of an output voltage signal
vt at ω0 + ∆ω to an input test current signal it at ω0 + ∆ω, as
shown in Fig. 2(a). Note that the observed vt at ω0 + ∆ω can
be only caused by the input test current signal it at exactly the
same frequency. However, for a linear periodically time-variant
(LPTV) system with a period of 2π/ω0 (e.g., an oscillator),
the observed small output voltage vt at ω0 + ∆ω could result
not only from the input current it at the same frequency
ω0+∆ω, but also from other positive harmonics of the current
at ω0 + ∆ω + (k − 1)ω0 (i.e., ∆ω + kω0) or from negative
harmonics at ω0 + ∆ω − (k + 1)ω0 (i.e., ∆ω − kω0), where
k = 0, 1, 2, ..., N . A periodic transfer function (PXF), e.g.,
periodic transimpedance, was introduced to describe this type
of LPTV system [21], as illustrated at the top of Fig. 2(b). The
(k−1) and −(k+1) (rather than k and −k) are the indices of
positive and negative PXF sidebands, respectively, since the
output at frequency ω0 + ∆ω (rather than at ∆ω) is observed
in the case of oscillator.

B. ISF Extraction from Positive Sidebands of PXF

The link between ISF and positive sidebands of PXF will
be built based on a voltage-biased oscillator shown in Fig. 3.
Assume a small test signal current source across the drain-
source of M1/2 at ω0 + ∆ω + (k − 1)ω0 (i.e., ∆ω + kω0),

it(t) = It cos[(ω0 + ∆ω)t+ γk + (k − 1)ω0t] (1)

where k−1 (= −1, 0, ..., N−1) is the chosen index of positive
sidebands, N is the number of harmonics for consideration,
and It, γk are the amplitude and initial phase, respectively.

Further, assume a non-normalized ISF, hDS, associated with
VDS of M1/2,

hDS(t) =
1

2
h0 cos θh0 +

N∑
m=1

hm cos (mω0t+ θh,m) (2)
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Fig. 2. (a) Transimpedance in a linear time-invariant (LTI) system. (b)
Periodic transimpedance in a linear periodically time-variant (LPTV) system
with a period of 2π/ω0, supporting negative frequencies (top, PXF option:
“freqaxis = in”), and not (bottom, PXF option (default): “freqaxis = absin”).

where hm and θh,m are the magnitude and phase of mth
harmonic term, respectively.

As per the physical meaning of ISF, the phase perturbation
φ(t) at VDS is derived as

φ(t) =

∫ t

−∞
hDS(τ)it(τ)dτ

≈ Ithk
2∆ω

sin (∆ωt+ γk − θh,k)

(3)

in which only the slow frequency term (i.e., ∆ω) dominates
when m = k. Then, φ(t) will appear at VDS as

VDS ≈ VH1 cos (ω0t+ θ + φ(t)) ≈ VH1 cos (ω0t+ θ)

+
VH1Ithk

4∆ω
cos [(ω0 + ∆ω)t+ γk + θ − θh,k]

− VH1Ithk
4∆ω

cos [(ω0 −∆ω)t− γk + θ + θh,k]

(4)

where VH1 and θ are the 1st harmonic amplitude and phase of
VDS, respectively. From it in (1) to the upper sideband of VDS
in (4), the periodic transimpedance from the small current it
at the (k − 1)th sideband to the small output voltage of VDS
at ω0 + ∆ω can be written as
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|H(k − 1)| = VH1hk
4∆ω

(5)

6 H(k − 1) = θ − θh,k (6)

where H(k−1) represents H(ω0+∆ω+(k−1)ω0). |H(k−1)|
and 6 H(k − 1) are the magnitude and phase of periodic
transimpedance, which can be simulated directly by PXF.
The magnitude VH1 and initial phase θ of 1st harmonic of
VDS can be simulated by PSS with Harmonic Balance (HB)
engine, which solves for the steady-state of cosines rather than
sines [4]. As per (2), (5), (6), we can link ISF with positive
sidebands of PXF as,

hDS(t) =
1

2

4∆ω|H(−1)|
VH1

cos[θ − 6 H(−1)]

+

N∑
k=1

4∆ω|H(k − 1)|
VH1

cos [kω0t+ θ − 6 H(k − 1)].

(7)

C. ISF Extraction from Negative Sidebands of PXF

Following the similar derivation steps as above, we can also
derive the periodic transimpedance from a small-signal test
current source at (ω0 + ∆ω)− (k + 1)ω0 to a resultant small
output voltage of VDS at ω0 + ∆ω as

|H(−(k + 1))| = VH1hk
4∆ω

(8)

6 H(−(k + 1)) = θ + θh,k (9)

where −(k + 1) (= −2,−3, ...,−(N + 1)) is the index of
negative sidebands of PXF. H(−(k + 1)) represents H(ω0 +
∆ω − (k + 1)ω0). |H(−(k + 1))| and 6 H(−(k + 1)) are
magnitude and phase of the periodic transimpedance, respec-
tively. The linking equations (8) and (9) between ISF and
negative sidebands of PXF are exactly same as the counterparts
in [19], [20]. In other words, they are actually the periodic
transimpedance based on current at (ω0 + ∆ω) − (k + 1)ω0

(i.e., −(kω0−∆ω)) rather than the current at kω0−∆ω, which
was a rather confusing assumption in [19], [20].

However, the negative frequency is not supported in PXF
at the default settings [21], in which the input frequency axis
is only available for absolute frequency (i.e., PXF options:
freqaxis = absin). To get the correct results of |H(−(k+ 1))|
and 6 H(−(k + 1)), it should enable negative frequency in
PXF by setting the option “freqaxis = in”. Otherwise, PXF
will give the periodic transimpedance of H(−(ω0+∆ω−(k+
1)ω0)) rather than H(ω0 +∆ω−(k+1)ω0) (with a shorthand
notation of H(−(k + 1))), when the negative sidebands of
−(k + 1) are chosen, as illustrated at the bottom of Fig. 2(b).
For a real-signal system (e.g. oscillator), the H(−(ω0 +∆ω−
(k + 1)ω0)) and H(ω0 + ∆ω − (k + 1)ω0) are Hermitian
symmetric.

It would be easy to make a mistake using (8) and (9), since it
requires special but easily overlooked settings for PXF. Thus,
we recommend to extract the ISF based on positive sidebands
(see (7)) rather than for the negative sidebands of PXF.

Ldiff Ldiff

Cdiff Cdiff

VSS

Cac

 Ldecap
≈ 0

Cdecap 
≈ 100pF

VDDoff-chip Lbond ≈ 2nH 
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it  

Fig. 3. Schematic of a conventional voltage-biased oscillator in TSMC 28-
nm LP CMOS with separated VB from VDD to enable either class-B (e.g.,
VDD =VB = 0.96 V) or class-C (e.g., VDD = 1.2 V, VB = 0.58 V) configurations.

III. FLICKER NOISE UP-CONVERSION AND REDUCTION

The 1/f3 PN caused by a single MOS transistor in a cross-
coupled pair of voltage-biased oscillator (e.g., M1 in Fig. 3)
can be written as [4],

L(∆ω) =

( √
2

2∆ω
· 1

T

∫ T

0

hDS(t) · I1/f, rms(t)dt

)2

(10)

where T (= 2π/ω0) is the oscillation period and I1/f, rms(t) is
the periodically modulated rms value of flicker current noise at
a specific low-frequency ∆ω (e.g., 2π×10 kHz), modeling the
process of flicker noise modulation. It can be directly simu-
lated by dc/NOISE engines using a discrete waveform point of
VGS and VDS from periodic steady-state (PSS) simulations. The
waveforms of I1/f, rms(t) and hDS(t) provide an accurate and
intuitive way in understanding the flicker noise up-conversion
and reduction in oscillators.

A. Voltage-Biased Oscillator in Class-B and Class-C
Fig. 3 shows a conventional voltage-biased oscillator, where

Rac and Cac are inserted to separate VB from VDD, thus en-
abling either class-B (VB = VDD) or class-C (VB = 1

3 · · ·
1
2 VDD)

configuration. A two-turn inductor is employed to make the
physical distance between local supplies (i.e., VDD/VSS) very
short, leading to almost zero parasitic inductance (i.e., Ldecap ≈
0) of the decoupling capacitor network (i.e., Cdecap ≈ 100 pF).
Only a differential capacitor (Cdiff) is used to model the
capacitance of switched-capacitor bank (sw-cap), which could
be implemented by separating the supplies of sw-cap from
the oscillator [4]. Thus, the common-mode (CM) capacitance
in the implicit CM tank mainly comes from the parasitic
capacitance of M1/2.

B. Flicker Noise Reduction Mechanism in Class-C oscillators
To study the 1/f3 PN reduction mechanism in class-C

oscillators in an intuitive and comparative manner, the voltage-
biased oscillator in Fig. 3 can be configured in either class-C
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Fig. 4. Simulated one period of VGS, VDS, and ID waveforms in (a) class-B,
and (b) class-C configurations.

(VB = 0.58 V, VDD = 1.2 V) or as a reference in class-B (VB =
VDD = 0.96 V), while ensuring the same power consumption
(6.62 mW). As per simulations, the resonance frequency of
implicit CM tank (fcm,tank) is set to ∼5.5f0, ensuring that
the 2nd harmonic resonance technique cannot be availed to
explain the reduction of flicker noise up-conversion in either
configuration. Fig. 4 presents the simulated waveforms of VGS,
VDS, and ID in both configurations, in which the conduction
angle in class-C is reduced to about 2

3π. Table I summarizes
the overall performance. Compared with the class-B reference,
the thermal PN (e.g., PN @10 MHz) of class-C reduces by a
few dB, while its flicker PN (e.g., PN @10 kHz) decreases
by as much as 13 dB (also see Fig. 5(d)), leading to a 10x
improvement in the 1/f3 corner. Obviously, the original
thermal PN theory in [9] cannot explain the 1/f3 PN reduction
in class-C oscillators due to the lack of consideration of higher
ISF harmonics and, especially, the implicit CM tank.

In contrast to the thermal noise of MOS transistors spread-
ing very wide in frequency, its 1/f noise only appears at very
low frequencies (e.g., 10 kHz), which is much less than the
oscillation frequency (e.g., 28 GHz). Thus, when the flicker
current noise injects into the tank to change the phase of VDS,
the “polarity” of flicker current noise will likely not change,
but only its magnitude (i.e., I1/f,rms) will be modulated for one
oscillation period (see Fig. 5(b)). Assuming that the “polarity”
of the flicker current noise is positive (i.e., causing positive
∆V of VDS) in a given oscillation period, it will introduce
a negative phase change (i.e., delaying the edge) of VDS in
the falling edge (e.g., t ≈ 5 to 10 ps), while positive phase
change (i.e., advancing the edge) in the rising edge (e.g., t ≈

*PN@10MHz + 60dB represents the thermal PN part of PN@10kHz.
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Fig. 5. (a) Non-normalized ISF, hDS(t). (b) Modulated rms value of
flicker current noise at 10 kHz, I1/f,rms(t). (c) Effective non-normalized
ISF, hDS(t) · I1/f,rms(t). (d) Numerical verification of PN @10kHz across
conduction angle.

25 to 30 ps) (see Fig. 4 and [13, Fig. 4(b)]). Ideally, if VDS
is symmetric in falling and rising parts, and magnitude of
flicker current noise is also equally modulated in both parts,
the phase change caused by this flicker current noise will
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TABLE I
SIMULATED AND CALCULATED PERFORMANCE OF THE VOLTAGE-BIASED

OSCILLATOR IN CLASS-B AND CLASS-C CONFIGURATIONS.

Class-B Class-C

Technology (nm) 28

VDD (V)
0.96

1.2

VB (V) 0.58

Freq. (GHz) 28

PN @10kHz (Sim./Cal.)
(dBc/Hz)

-40.2/-40.3 -53.4/-54

PN @1MHz (dBc/Hz） -96.9 -104

PN @10MHz (dBc/Hz) -122.7 -127.5

Power (mW) 6.62

FoM @10MHz (dB) -183.4 -188.2

1/f3 Corner (kHz) ~2000 ~200

cancel each other, resulting in no flicker noise upconversion.
However, due to the resonant frequency of implicit CM tank
(∼5.5f0) being much higher than 2f0, the 2nd harmonic
current enters non-resistive (i.e., inductive) path, causing the
asymmetry between falling and rising edges of VDS (i.e., more
sensitive hDS in falling edge of VDS) in both class-B and class-
C configurations (see Fig. 5(a)). The effective non-normalized
ISF, hDS(t) · I1/f,rms(t), of class-B, illustrated in Fig. 5(c),
shows the negative phase change in the falling part (i.e.,
negative area) is much larger than the positive phase change in
the rising part (i.e., positive area), leading to a large net phase
change in one period (i.e., asymmetry in hDS(t) · I1/f,rms(t),
flicker noise up-conversion).

Different from the 2nd harmonic resonance resulting in sym-
metric waveform [4], the flicker noise reduction mechanism in
the class-C configured oscillator is due to the small exposure
of flicker current noise to the unbalanced sensitive regions
of ISF. As shown in Fig. 5(a), hDS(t) values in both class-B
and -C configurations are almost identical and asymmetric due
to the lack of 2nd harmonic resonance. However, the class-
C configuration has much smaller flicker noise in the two
sensitive regions, illustrated in Fig. 5(b), since the transistor
in class-C operation is almost turned-off at the rising and
falling edges of VDS. It ultimately results in symmetry in
hDS(t)·I1/f,rms(t) of class-C operation, thus reducing the 1/f3

PN (see Fig. 5(c)).
The numerical verification of PN @10kHz with a sweep

of conduction angles (implemented by different biasing con-
figurations of VB and VDD while keeping same power) from
class-B to class-C is shown in Fig. 5(d). The agreement be-
tween the calculations based on (10) and simulations is better
than 0.6 dB, thus demonstrating effectiveness of the proposed
numerical method.

IV. CONCLUSION

The 1/f3 phase noise reduction mechanism in a voltage-
biased class-C oscillator is discussed and numerically verified.
We identify that the reduced conduction angle leads to the
reduced 1/f noise exposure to the notorious asymmetric rising
and falling edges of oscillation waveform (i.e., due to the lack
of 2nd harmonic resonance), ultimately suppressing the flicker

noise up-conversion. We further propose a clear ISF extraction
method based on positive sidebands of PXF and clarify the
confusing assumptions (i.e., input test current at kω0 − ∆ω)
in ISF extraction based on negative sidebands of PXF.
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