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The new paradigm in the assessment of toxicity of nanomaterials relies on a 
mechanistic understanding of the organism’s response to an exposure to 
foreign materials from the initial, molecular level interactions to signaling 
and regulatory cascades. Here, we present a methodology to quantify the 
essential interactions at the bionano interface, which can be used in 
combination with the adverse outcome pathway analysis to build 
mechanism-based predictive schemes for toxicity assessments. We 
introduce a set of new, advanced descriptors of the nanomaterials, which 
refer to their ability to bind biomolecules and trigger the pathways via the 
molecular initiating events. 

1.1   INTRODUCTION 

Predictive toxicology is now experiencing a transition from descriptive 
histopathological analyses to a data‐rich science with a much greater focus 
on the understanding of biological mechanisms down to the molecular level. 
The mechanistic approach to toxicity assessment involves analysis of 
pathways based on particle tracking and on transcriptomics or 
metabolomics data, reflecting the activated system level responses. In this 
paradigm, one assesses the possibility of initiating an Adverse Outcome 
Pathway (AOP), which covers the evolution of a toxic process, from its 
molecular initiating event (MIE), to downstream cascading key events (KEs), 
leading eventually to a pathology or adverse outcome. The pathways are 
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recognised via biomarkers in specific bioassays, which are developed to test 
each of these events.  
 
In this mechanistic picture, AOPs are triggered and steered by molecular-
level interactions including those at the bionano interface, a nanoscale layer 
where biological fluids meet foreign materials. Quantitative understanding 
of the interactions and structure of the bionano interface is, therefore, crucial 
to our ability to predict the probability of a MIE for the specific AOP and to 
relate it to the nanomaterial’s properties. For most nanomaterials studied 
until now, the standard physicochemical descriptors are not sufficiently 
informative to predict the outcome of their interactions with biomolecules 
and the likelihood of the MIEs. The size, charge, and chemical composition 
cannot not immediately predict whether a particle can produce free radicals, 
bind to certain cell receptor or penetrate the cell membrane. Therefore, the 
mechanistic paradigm demands the development of novel characterisation 
techniques and new pathway-oriented descriptors. 

1.2   ADVANCED DESCRIPTORS OF THE BIONANO INTERFACE 

1.2.1   Protein corona 

The exposure of nanoparticle (NPs) to biological fluids leads to the formation 
of a protein layer on the surface of the NP which is known as protein corona. 
This is a central concept in the description of the bionano interface as it has 
been established that the NP-protein complex is what determines the 
bioactivity of the nanomaterial. NPs of size of tens of nanometers can contain 
hundreds of different biomolecules and its structure can be quite complex 
and include two layers which are known as hard and soft corona [1-5]. 
Irreversible (or strong) binding of proteins on the NP is associated with the 
concept of a “hard corona” whereas quick reversible binding of proteins that 
have faster exchange rates are defined as “soft corona”. The list of proteins 
present in the corona depends, on the one hand, on the NP chemistry and 
reflects the bionano interactions. On the other hand, it also depends on the 
content of the biological fluid the NP is immersed in. The corona formed in 
blood is extremely sensitive to the patient’s health state, i.e. to the biological 
environment surrounding the NP, and cannot be predicted from the intrinsic 
properties of the NP alone [6, 7]. Nevertheless, while it is clear that the 
variability of the corona content is immense, one can hope to find regularities 
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if not in the list of molecules as such then at least in the adsorbed proteins’ 
statistics. Certain properties of proteins such as the presence of charged or 
hydrophobic patches, aromatic residues, etc. may tend to increase the 
propensity of molecules to adsorption on specific materials. This observation 
led to an idea of construction of nanomaterial fingerprints that would contain 
the essential relevant information about the interactions and thus 
discriminate between different materials [8]. These fingerprints appeared to 
be useful for the prediction of the biological action of a nanomaterial, namely 
the NP-cell association. Although the initial statistical quantitative structure-
activity relationships (QSAR) model developed in [8] were heavy (64 
parameters), with a more thorough analysis it was possible to demonstrate 
that only few of them are actually important [9], e.g. cell association of gold 
NPs correlated well with the sequence descriptors responsible for protein 
charge (such as basic, acidic, and aspartic amino acids percentage) as well as 
with molecular weight, and propensity of the protein to aggregation. Despite 
that it is generally known that the abundances of any particular protein in 
the corona varies for different nanomaterials (see a review presented in Ref. 
[10]), the properties responsible for this variance have not been identified. 
We believe that a significant improvement in the predictive power of the 
bioinformatics-based models, as compared to the sequence-only descriptor 
sets, can be achieved with structure descriptors characterising size, shape, 
and charge distribution on the protein, i.e. the properties relevant for the 
interactions with NPs.  

1.2.2   Nanoparticle descriptors and QSARs 

Although it is clear that the physicochemical properties of NPs determine 
their interactions with proteins in biological matrices (e.g. blood plasma and 
alveolar fluid) and with the immune cells [11], there are only few known 
structure–activity relationships between the physicochemical properties of 
NPs and their effects on the immune system that lead to the most common 
types of immunotoxicity.  
 
QSARs have been considered as a promising step in building the novel NP 
toxicity assessment strategies [12,13]. Their predictive power has been 
demonstrated, for example, for metal oxide NPs, where the conduction band 
energy levels have shown to be correlated with their toxicological potential 
at cellular and systemic levels [14]. However, further progress in the 
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construction of predictive QSARs is seen in connection to the mechanism-of-
action of nanomaterials, which depends on a provision of relevant 
descriptors based on the AOPs. Advanced material characterization that 
includes both intrinsic and extrinsic properties, such as hydrophobicity, 
protein adsorption affinity, dissolution rates, ability to generate reactive 
oxygen species, etc. is necessary to elucidate the molecular level mechanisms 
of toxicity, to identify the properties of concern and thus provide a basis for 
material grouping and read-across techniques, which can be used by 
regulators. 
 
Some descriptors can be derived directly from the physicochemical 
properties of the NPs, such as: band gap energy (related to probability of 
electron transfer and catalytic activity of the material), heat of formation of a 
NP, energies of the highest occupied and lowest unoccupied molecular 
orbitals (HOMO and LUMO), total energy, solvent accessible surface area, 
dipole moment, molecular weight, polarizability and dielectric constant [15]. 
But the activity of a NP can be modified by the medium, which can change its 
surface charge, surface reactivity, and in the case of biological fluids leads to 
the formation of a protein corona. Therefore, a set of extrinsic parameters 
should complement the description. So, to achieve the goal of formulating 
descriptors these should not only be based on properties of the material, but 
also extrinsic properties of the NPs in exposure conditions and properties of 
relevant biomolecules present in the medium, which together are 
responsible for the interactions and the structure of the bionano interface.  

1.2.3   Biomolecule descriptors 

In contrast to NPs, the development of universal descriptors for biomolecules 
is relatively straightforward due to their chemical uniformity, e.g. the same 
aminoacids present in all proteins or nucleic acids in all DNA. For proteins, 
the simplest descriptors can be constructed using their aminoacid (AA) 
sequence. These can include counts of AAs of different types, net charge or 
total mass. Already this characterisation is very rich and capable of 
predicting complex events at the bionano interface [8,9]. Moreover, 
obtaining descriptors from AA sequences can be done by using a wide range 
of software tools such as the EMBOSS PepStats tool [16]. More advanced 
descriptors for proteins can be built by analyzing their structure. In some 
cases, starting with the AA sequence of the protein the 3D structure of the 
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molecule can be retrieved from the Protein Data Bank (PDB) and then used 
to construct the descriptors. When the structure is not available, one can then 
use a structure prediction software. There are multiple automated tools 
available for this task, such as i-Tasser [17]. Using the measured or predicted 
3D structure of the protein, several advanced descriptors can be calculated. 
We previously developed a one-bead-per-aminoacid (united atom – UA) 
model of globular proteins, which is suitable for this purpose. Some examples 
of advanced descriptors that can be calculated include protein globule 
dimensions (radius of gyration and hydrodynamic radius), aspect ratio, 
dipole moment, rotational inertia, dielectric constant, hydrophobicity, 
surface charge at different pH and salt concentrations. In addition, protein 
charge at different pH can be calculated using the Poisson-Boltzmann cell 
model with charge regulation as reported by da Silva et al. [18]. 

1.2.4   Interaction descriptors 

With the known 3D structure of the protein and the nanomaterial, bionano 
interaction descriptors can be systematically calculated based on how the 
proteins adsorb onto the surface of the NPs. While a calculation of the precise 
conformation of adsorbed molecules and a careful evaluation of ensemble 
averages is definitely a challenging task, several relevant quantities can be 
calculated using a simplified approach. We here make two major 
approximations: assume additivity of the interactions between the building 
blocks of the biomolecule and the NP and neglect the change of conformation 
for adsorbed molecules. While these assumptions prevent us from obtaining 
accurate adsorption energies, they create a possibility of a uniform screening 
of thousands of molecules and ranking them based on how strongly they will 
attach to the surface of the NP. This ranking is a statistical measure of the 
content of the biomolecular corona and constitutes a unique fingerprint of a 
NP. Using the UA model [19], one can compute preferred adsorbed 
orientation and evaluate mean adsorption energy at different conditions. 
Moreover, using the same bottom-up construction approach, one can 
engineer an ultra-coarse-grained model (united AA - UAA) that closely 
reproduces the total protein-protein pairwise interaction energy profiles 
obtained in the UA model. In the UAA mode, one typically needs between 5 
and 30 united-aminoacid beads to capture the geometry and reproduce the 
adsorption characteristics of the original protein. This second coarse-
graining can be based on the mass distribution in the complete protein and 
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can be optimized by tuning the protein diffusion coefficients to those 
obtained using UA model. The UAA model is then suitable for modelling 
competitive protein adsorption and formation of protein corona. An example 
of the all-atom, UA and UAA CG models for the same protein is shown in Fig. 1.  

 

1.3   MULTISCALE MODELLING OF BIONANO INTERFACE 

1.3.1   General Methodology  

In order to model the bionano interface and generate descriptors to predict 
the toxicity of NPs with molecular simulations one must address length 
scales of up to hundred nanometers and timescales of at least microseconds. 
Despite the growth of the computational power in the last decade, these 
length-time scales are not achievable with atomistic detailed simulations, 
and for this reason coarse-grained (CG) models must be used. Coarse-
graining of a molecule consists of reducing the number of degrees of freedom 
by representing the molecule with CG particles (often called “beads”) instead 
of one particle per atom in the molecule. This reduced representation of the 
structures of the molecules in the simulation allows one to perform 
simulations with longer length and time scales than with detailed atomistic 
models. The main challenge in the development of the CG representation of 
the molecules and the interactions between the segments of the system is 
how to reduce the degrees of freedom while ensuring that the reduced 
representation keeps enough detail to capture the relevant physicochemical 
processes that occur at the bionano interface. For the task of building CG 
models there are two main approaches: the top-down approach in which 
parameters from macroscopic experimental data are used to calibrate the 
models [20-22] and the bottom-up in which atomic simulations are used as 
input to generate the CG structures and force-fields [9,23-25].  We refer the 
reader to the paper of Noid [26] for an overview of these CG techniques. 
 
In the case of bionano interactions, top-down approaches have been used to 
study the formation of the NP-biomolecule corona [19,27,28] but regardless 
of their success the parameterisation process relies on the availability of 
experimental data such as adsorption energies or affinity constants for any 
protein-surface interaction to be simulated. For practical applications, this 
constrain is certainly the main drawback as for example a real NP-protein 
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corona can be composed of hundreds of different proteins. This disadvantage 
can be overcome by a systematic bottom-up CG strategy in which the basic 
building blocks of the model are chosen general enough that they can then be 
used to construct a wide range of molecules. In the case of modelling 
proteins, the obvious choice is to select the CG beads to be AA. Then, using 
atomistic simulations of the interaction of amino acids with a surface of 
interested and techniques such as iterative Boltzmann inversion [29-30] or 
force matching [21,32] the AA-surface interactions can be parameterised. In 
this way, the obtained AA-surface CG force fields can be used to model the 
interaction of any protein present if the structure or sequence of the 
molecule are known. 

1.3.2   Coarse-Grained Protein Model 

As mentioned previously, once a NP is in contact with a biological medium, a 
protein corona forms on its surface [33], and that the nature of the corona is 
what regulates the interaction between the NP and the other biomolecules. 
It has been extremely challenging to develop a model that could predict the 
composition of the protein corona around an inorganic NP, as this depends 
on a multitude of physiochemical properties of both the protein and the NP, 
such as NP size, shape, pH, hydrophilicity/hydrophobicity, and electrostatic 
effects.  
 
Computer simulations of the interactions of NPs with proteins can offer a 
great support to experiments because of their great speed and flexibility [34]. 
Full-atomistic simulations have already proven to be a valuable tool in 
elucidating the binding mechanisms of proteins on metallic NPs [35-37]. 
However, their performance is severely hindered by the inefficiency in 
simulating systems with large NPs due to the high number of pair 
interactions that need to be evaluated. To speed-up the calculations, a cut-off 
of the order of a nanometre is often introduced but this results in an 
underestimation of the adsorption energies of proteins on NPs mainly 
because the core of the NP (especially at sizes of over 10 nm) contributes 
much to their mutual attraction. In this section, we describe a CG model of 
protein-NP interactions that overcomes most of the challenges in inclusion 
of the bulk part of NPs in the interaction. In the final section, we test the 
model by simulating the adsorption of some common proteins such as 
Human Serum Albumin and Lysozyme on TiO2 NPs.  
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Our UA protein model [19], in which every amino acid in the protein is 
substituted by a single bead whose center is placed at the position of the α-
carbon atom, is illustrated in Fig. 1. The aminoacid beads in this model are 
connected by rigid harmonic springs, if the distance between them is less 
than 0.7 nm. The springs take care of the molecule shape, so the conformation 
does not change during the simulation. The model preserves two main 
structural features that guide the binding mechanisms, i.e., the overall shape 
of the protein, which is treated as a rigid body, and the overall charge. The 
super-coarse-grained UAA model that typically contains 5-20 beads presents 
a further simplification and allows one to model a competitive protein 
adsorption is also shown in Fig. 1 along with the full-atom and UA 
presentations. 
 

           

Figure 1 All-atomistic (left), united atom – UA (centre), and united aminoacid (UAA) 
models (right) of human serum albumin (HSA). 

1.3.3   Coarse-Grained Nanoparticles 

The protein model described above allows us to reduce the number of 
components in treating the protein. NP size, however, also plays a 
fundamental role in the formation of the corona and in the interactions at the 
bionano interface.  The number of atoms needed to represent a NP is again a 
severe limitation to all atomistic calculations. Simulation of NPs of size 
greater than 10 nm is an unfeasible task even for modern computers and CG 
model for describing NPs is therefore highly needed.  
 
Our model starts by considering the contributions that different atoms in the 
NP give to the binding interaction and propose to partition the NP into two 
segments – a core and a surface segment. The outer layer on the NP surface 
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is directly in contact with the solvent and the pair interaction with the 
protein residues must include solvent effects as well as the chemical 
composition, charge, and hydrophilicity/hydrophobicity of the NP surface. 
Therefore, the interaction of each residue with the nearest part of the surface 
must be parameterized to reflect these details, using full-atomistic 
simulations. The size of the surface segment is thus determined by the cutoff 
𝑟௖ ≪ 𝑅 used in the full-atomistic simulation (typically, 1 to 2 
nm).Geometrically, the surface segment is a lens formed by an intersection 
of a sphere of radius rc, centered on the AA bead, and a sphere of radius of 
the NP, R, centered on the NP itself (Figure 2).The core comprises majority of 
the atoms, but these only interact with the protein via long-range forces, for 
which we assume that a continuum-level description is sufficient. The core of 
the NP is then modeled as a single bead of the shape of a sphere of radius 
with a cut-out surface lens. The potential between the core and the AA beads 
in our model is calculated using the Lifshitz theory [38] for interaction 
between two macroscopic bodies. The overall interaction energy between 
the NP and protein is then estimated by a sum over all AAs in the protein 

𝑈(𝐷, 𝜃, 𝜙) = ∑ 𝑈௜൫ℎ௜(𝐷, 𝜃, 𝜙)൯
ேಲಲ
௜ୀଵ      (1.1) 

where the energy contributions from individual AAs are evaluated as a sum 
of the interaction potentials with the core and the surface of the NP: 
 
𝑈௜൫ℎ௜(𝐷, 𝜃, 𝜙)൯ = (𝑈௦)௜ + (𝑈௖)௜        (1.2) 
 
Here, ℎ௜ , 𝐷, 𝜃, 𝜙 are the variables desribing the distance between the AA 
centre of mass (COM) and the surface of the NP, distance between the 
protein‘s COM  and the NP‘s COM, and orientation of the protein globule, 
respectively.  
 
In the next two subsections, we describe how the potentials are 
parameterized for the AA-NP interaction. 

1.3.4   Generation of surface pair potentials 

Here, we assume a pairwise additivity of AA-NP interactions. To calculate the 
adsorption energy of a whole protein, we need to determine the pair 
interactions for each AA type with the NP. The potentials of mean force (PMF) 
for an AA-NP interaction must be first calculated at the atomistic level in 
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order to capture the surface and protein specific details. These potentials can 
be obtained using Metadynamics method [39]. Our starting point is the PMF 
of an AA with a flat slab of the material of interest. Details of how the 
atomistic PMFs used in our model were calculated, as well as the parameters 
used to model the slabs, are described in [40]. Note that the PMFs obtained 
in this way include solvation effects. 
 
Generally, the interaction with a convex surface of a NP of finite radius is less 
than that for the flat slab due to the lesser number of atoms of the NP within 
the interaction cut-off distance. To account for this reduction, we correct the 
PMFs for the flat surface by a distance-dependent multiplicative function 
𝑓(ℎ) that reflects also the cutoff radius rc used in the calculations as well as 
the radius R of the NP. 
 

𝑈௦(ℎ, 𝑅) = 𝑈௦(ℎ, 𝑅 → ∞)𝑓(ℎ)    (1.3) 
 
Here, h is the minimum distance between the AA-bead center and the NP 
surface By taking the appropriate limits for R, it is possible to calculate a 
correction factor for any geometry. A diagram showing how an AA bead 
interacts with a CG NP is shown in Figure 2. 
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Figure 2 Schematic representation of an AA bead (green sphere) interacting 
with a slab (left) and with a NP of radius R (right) with a cut-off radius of rc. h 

is the minimum distance between the AA and the NP surface. 

 

We assume that the relevant point-point interaction is dominated by 
dispersion forces that scales as 𝑟ି଺, where r is the distance between the 
interaction centers (e.g. atoms).In this case, the attraction energy for a 
particle to a sphere of radius R, given the finite cut-off rc can be calculated via 
the following equations: 

𝑈௦(ℎ, 𝑅) = 𝜀𝑉 ∫ ∫ ∫
௥మ ୱ୧୬

௥ల

ଶగ

଴
𝑑𝜙𝑑𝜃

ఏౣ౗౮ 

଴ 
𝑑𝑟

௥೎

௛
        

𝜃୫ୟ୶ = cosିଵ ቆ
𝑟ଶ − 𝑅ଶ + (𝑅 + ℎ)ଶ

2𝑟(𝑅 + ℎ)
ቇ

୫ୟ୶

      

𝑈௦(ℎ, 𝑅) = −
గఌ௏

௛ାோ
ቀ

௛ିଶோ

ଵଶ௛య +
ି଺௥೎

మା଼௥೎(௛ାோ)ିଷ௛(௛ାଶோ)

ଵଶ ೎
ర ቁ          (1.4) 

Here,  is the interaction energy per unit volume. For 𝑅 → ∞, Eq. 1.4 reduces 
to that of a flat surface: 
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𝑈௦(ℎ, 𝑅 → ∞) = 𝜋𝜀𝑉 ቀ
ଵ

଺௛య −
ଶ

ଷ௥೎
య +

௛

ଶ௥೎
రቁ    (1.5)  

and the correction factor is calculated as: 

𝑓 =
௎ೞ(௛,ோ)

௎ೞ(௛,ஶ)
= −

௥೎
మ(௛ିଶோ)ାଶ௥೎௛(௛ିଶோ)ିଷ௛మ(௛ାଶோ)

ଶ൫௥೎
మାଶ௥೎௛ାଷ௛మ൯(௛ାோ)

                       (1.6) 

In the equations above, 𝑉 , is the volume of the AA, which can be represented 

by a volume of equivalent sphere of radius 𝑅ଶ: 𝑉 =
ସగோమ

య

ଷ
, reflecting the size of 

the respective AA. 
 
Figure 3 shows how the volume correction factor changes with the distance 
from the AA to the surface for a set of NP radii. One can see that, as the radius 
increases approaching the flat surface limit, 𝑓 → 1 for all values of ℎ. 
 

 

Figure 3 Correction factor 𝑓 vs. distance from the surface ℎ for a range of NP radii. 

1.3.5   Generation of the core potential 

The NP core plays a crucial role in the protein adsorption as it contains most 
of the nanomaterial. A serious limitation of the all-atom models is the 
difficulty of a correct account for the attraction by the core atoms. This 
problem is mainly due to the short-range cutoff employed in simulations 
leading to a considerable underestimation of the adsorption energies. The 
latter, however, can be easily calculated in the continuum approximation, 
which is commonly used in colloid science. The correction we propose in this 
report is to evaluate the contribution of the core of the NP at distances 𝑟 <
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𝑟௖   by treating the remote part of the NP as a single sphere less the part within 
the cut-off distance from the specific AA. The interaction energy between an 
AA and the core can be computed using the Hamaker method for dispersion 
forces [38]. For this, we assume that the spheres representing AAs (sphere 
2) are small compared to those representing the NP core (sphere 1) and 
perform an integration over the volume of AAs first. Then, depending on the 
distance D between the sphere centers, the interaction energy becomes: 
 

𝑈஼(𝐷) =

⎩
⎪
⎨

⎪
⎧ −

16𝐴ଵଶଷ

9
 

𝑅ଶ
ଷ𝑅ଷ

(𝐷ଶ − 𝑅ଶ)ଷ
, 𝑅 + 𝑟௖ < 𝐷

−
4𝐴ଵଶଷ𝑅ଶ

ଷ

9
ቆ

4𝑅ଷ

(𝐷ଶ − 𝑅ଶ)ଷ
−

8𝐷𝑟௖ − 6𝑟௖
ଶ − 3𝐷ଶ + 3𝑅

4𝐷𝑟௖
ସ

−
3𝑅 − 𝐷

4𝐷(𝑅 − 𝐷)ଷ
ቇ , 𝑅 < 𝐷 < 𝑅 + 𝑟௖ 

 

(1.7) 
 
 

i.e. where the distance to the AA centre exceeds the reach of the PMFs, 𝑅 + 𝑟௖ , 
the interaction is just the Hamaker potential for two spheres in the 
approximation 𝑅ଶ ≪ 𝑅 while where a part of the NP is covered by the PMF, 
the van der Waals force on the AA is calculated only for the part of the sphere 
beyond the cut-off distance. In these expressions 𝐴ଵଶଷ is the Hamaker 
constant for interaction between material 1 (e.g. the NP) with material 2 (e.g. 
the protein) through material 3 (e.g. water), the only material dependent 
term in the equation. The Hamaker constant for the AA (phase 1)-material 
(phase 2) interactions through a medium (phase 3) can be obtained as 
follows: 

𝐴ଵଶଷ =
ଷ

ସ
𝑘஻𝑇

(ఌభିఌయ)

(ఌభାఌయ)

(ఌమିఌయ)

(ఌమାఌయ)
+

ଷ௛ఔ೐

଼√ଶ

൫௡భ
మି௡య

మ൯൫௡మ
మି௡య

మ൯

൫௡భ
మା௡య

మ൯
భ
మ൫௡మ

మା௡య
మ൯

భ
మቆ൫௡భ

మା௡య
మ൯

భ
మା൫௡మ

మା௡య
మ൯

భ
మ ቇ

    (1.8) 

where 𝑛௜ are the refractive indices of the materials in the visible region, 𝜈௘ is 
the main electronic absorption frequency in the UV (3×1015 s-1) for the and εi 
are the dielectric constants of the materials, which are equal to 𝑛ଶ in the 
visible part of the spectrum. In the case one of the materials is a conductor, 
Eq. 1.8 must be modified to take into account the high values of the 
polarizability and therefore of the dielectric constant. The equation for a 
dielectric-conductor interaction in a medium is given by:  
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𝐴ଵଶଷ =
ଷ

଼√ଶ
ቀ

௡భ
మି௡య

మ

௡భ
మା௡య

మቁ
௛ඥఔభఔయ⋅ఔమ

ඥఔభఔయା
ഌమ

ට೙భ
మష೙య

మ

       (1.9) 

where 𝜈௜  are the frequencies of maximum absorption for the material in the 
UV region, for metals this corresponds to the plasma frequency. 

 

1.3.6   Calculation of the adsorption energy  

To evaluate the average adsorption energy for a protein globule on a NP we 
scan the configurational space (i.e. all possible orientation in which a protein 
can adsorb on the surface of the NP) by a systematic rotation of the protein 
and calculate the Boltzmann-averaged energy. There are three degrees of 
freedom (DOF) that must be scanned [19]. The orientation of the protein can 
be described by a vector from the center of mass (COM) to an arbitrary point 
of the molecule. It is characterized by two angles: ϕ and 𝜃, and by rotating 
the molecule an angle −𝜙 about the z-direction and then by an angle −𝜃 = 𝑧 
the mean interaction energy for any particular orientation for the case of a 
protein interacting with a spherical NP is given by: 

𝐸൫𝜙௜ , 𝜃௝൯ = −𝑘஻𝑇 ln ቈ
ଷ

ቀோା௔൫థ೔,ఏೕ൯ቁ
య

ିோయ
 ∫ 𝐷ଶ exp ൬−

௎൫஽,థ೔,ఏೕ൯

௞ಳ்
൰ 𝑑𝐷

ோା௔൫థ೔,ఏೕ൯

ோ
቉  

  (1.10) 

𝐸௔ௗ =
∑ ∑ ௉೔ೕா൫థ೔,ఏೕ൯ೕ೔

∑ ∑ ௉೔ೕೕ೔
  (1.11) 

 

𝐸(𝜙௜ , 𝜃௝) is the total adsorption energy for a fixed set of angles (𝜙௜ , 𝜃௝). 𝑃௜௝  in 
eq. 1.11 is given by: 

𝑃௜௝ = sin 𝜃௝ exp ൬−
ா൫థ೔,ఏೕ൯

௞ಳ்
൰  (1.12) 

 
 𝑎(𝜙௜ , 𝜃௝) in Eq. 1.10 is the maximum interaction distance from the center of 
mass of the protein to the surface for the given orientation. 
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1.3.7   From united-atom to united aminoacid description 

As mentioned above, to study the formation of a realistic protein corona a 
more aggressive coarse-graining approach is needed which we defined as 
UAA model. To parameterize the UAA beads, the data output from the UA 
model described in the previous section is used as a reference. The required 
output from this UA model consists of a two-dimensional adsorption energy 
map for the average adsorption energies 𝐸൫𝜙௜ , 𝜃௝൯.  
 
The generation of the UAA model is done in two steps: (i) a reduced 
representation of a protein is created based on its all-atom 3D structure, and 
(ii) the effective bead-bead potentials are derived for the UAA beads and NP 
beads. In the first part, we used VMD Coarse-Grain Builder (CGB) to create 
the reduced representation. For this we chose CGB shape-based method, 
where a neural network learning algorithm is used to determine the 
placement of neurons (or CG beads). The CG beads have masses correlated to 
the clusters of atoms which the beads are representing [41]. 
 
At the second stage, a pseudo-random piece-wise potential, describing the 
interaction with the NP, is created for each of these beads. A population of 
these test potentials is generated and a genetic algorithm is used to minimize 
the overall difference between the original CG adsorption map from the UA 
model and the new CG adsorption map. The genetic algorithm minimizes the 
function: 

 
𝑆 = Σ௜,௝  ቀ𝐸௧௥௜௔௟൫𝜙௜ , 𝜃௝൯ − 𝐸൫𝜙௜ , 𝜃௝൯ቁ

ଶ

    (1.13) 
 
Once our CG UAA solution had reached the optimum, we are left with a 
simplified model of the original protein that has the same (or, at, least 
similar) characteristic adsorption map as the original UA model. 

 

1.4   APPLICATION OF THE METHOD 

1.4.1   Protein descriptors 

To perform a simulation of adsorption, we use a 3D folded globular structure 
of the molecule. The 3D structures of the proteins can be obtained from the 
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Protein Data Bank or calculated using an automated predictor system. Here, 
we demonstrate how advanced descriptors can be calculated. For 
illustration, we take the most common plasma protein: Human serum 
albumin (HSA). The structure of the HSA protein used in this work 
corresponds to the Protein Data Bank ID 1N5U. We assume physiological 
conditions, which correspond to a monovalent electrolyte concentration of 
100 mM and pH 7. Residue charges at these conditions are +e for LYS and 
ARG, −e for ASP and GLU, and +0.5e for HIS. The rest of the residues are 
neutral. Thus, the total charge of the HSA molecule is −6e. 

Table 1 Descriptors of HSA protein. 

𝐼௫௫

𝐼௬௬

 

 
 

𝐼௬௬

𝐼௭௭

 

 

𝐼௭௭

𝐼௫௫

 

  

Rotational 
Inertia  
(g Å2/mol) 

Total 
Charge 
(e) 

Dipole 
moment, 
dx (e Å) 

Dipole 
moment, 
dy (e Å) 

Dipole  
moment,
dz (e Å) 

Solvent 
accessible 
surface area 
(nm2) 

4.955 0.3233 0.6240 2.883×107 -6.0 386.0 128.0 98.7 315.9 

 
In the above example, the three descriptors are the principle moments of 
inertia, obtained by calculating the three eigenvalues of the following inertial 
matrix: 
 

𝐈መ = ቎

∑ 𝑚௞(𝑦௞
ଶ + 𝑧௞

ଶ)௞ ∑ 𝑚௞𝑥௞𝑦௞௞ ∑ 𝑚௞𝑥௞𝑧௞௞

∑ 𝑚௞𝑥௞𝑦௞௞ ∑ 𝑚௞(𝑥௞
ଶ + 𝑧௞

ଶ)௞ ∑ 𝑚௞𝑦௞𝑧௞௞

∑ 𝑚௞𝑥௞𝑦௭௞ ∑ 𝑚௞𝑦௞𝑧௞௞  ∑ 𝑚௞(𝑥௞
ଶ + 𝑦௞

ଶ)௞

 ቏  (1.14) 

 
Here, 𝑚௞  are the masses of the aminoacids, (𝑥௞ , 𝑦௞ , 𝑧௞) are the coordinates of 
their centers of mass. The eigenvectors now form a new reference system, 
which is protein specific and independent from the arbitrary axes used 
within each PDB file. It is along these axes which we calculate the dipole 
moments, which is simply the sum of all the residue charges by the position 
vector from the origin along each axis  
 

𝐝 = ∑ 𝑞௞𝐫௞௞          (1.15) 
 
The solvent accessible surface area is calculated using the Shrake-Rupley 
algorithm. 
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1.4.2   Bionano-interface descriptors  

The model has been validated for a set of common proteins in blood plasma 
on TiO2 NPs of radii ranging from 2.5 nm to 640 nm, see Ref. [19] for details 
on the validation procedure. We sample protein orientations 
𝜙 from 0 to 355 in steps of 5 and 𝜃 from 0 to 175 in steps of 5. Table 2 
summarizes the Hamaker constants for AA-TiO2 interaction in water 
calculated from equation 1.8, the UV absorption frequencies for AA are taken 
from [43] and the refractive indices from the procedure described in [44], 
the refractive index of TiO2 was taken to be 2.5.  

Table 2 Hamaker constants for AA-TiO2 interaction through water. All values are reported in 
units of 10-20J 

ARG HIS LYS ASP GLU SER THR ASN GLN  
5.36 5.87 4.65 5.87 5.22 5.53 4.69 5.74 5.44 
CYS GLY PRO ALA VAL ILE LEU MET PHE 
5.66 5.66 4.37 4.52 4.00 3.96 3.91 5.10 5.61 
TYR TRP 
5.06 6.62  

 

 
The potentials generated were then used to calculate the binding energies of 
a test protein, human serum albumin (HSA, PDB code: 1N5U) on TiO2 NPs of 
radii ranging from 2.5 nm to 640 nm, without surface charges. The binding 
energies were calculated using the ESPResSo package [45] as described in 
section 1.3.6. In order to evaluate the energy for each binding orientation, the 
protein was systematically rotated along two angles (𝜙௜ , 𝜃௝) around the 
position vector that joined the protein’s center of mass to the center of the 
NP. Energies were thus evaluated for 2592 different orientations. A more 
detailed account of the rotation procedure is given in Refs. [19] and [46].  
 
In Table 3, we present a set of descriptors based on the AA-TiO2 PMFs from 
Ref. [40]. 
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Table 3 Mean adsorption energies for AA-TiO2 interaction (uncharged flat surface) through 
water, calculated using Eq. 1.10. All values are reported in units of 𝑘஻𝑇. 

ALA ARG ASN ASP CYS GLN GLU 

0.327 -0.864 -0.493 -0.197 0.145 -0.696 -0.193 

GLY HIS ILE LEU LYS MET PHE 

-0.024 -0.156 -0.127 -0.138 0.054 0.000 -0.169 

PRO SER THR TRP TYR VAL   

-0.040 -0.710 -0.234 -0.871 -1.220 0.107   

 
 
Figure 4 below shows the binding energy for one particular orientation of 
HSA on a 5 nm and 50 nm TiO2 NP. The contributions from the core and the 
surface have been separated. 
 

Figure 4 HSA 𝐸(𝜙, 𝜃) profile on 5 nm (left) and 50 nm (right) TiO2 NP. The protein 
orientation corresponds to the PDB configuration. 

The contribution from the NP core is evident in both NP sizes, however it 
increases as NP radius is increased and for some orientations becomes the 
dominant contribution. We also see a much-structured short-range part of 
the potential, which includes a contact minimum at about zero energy 
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compared to the bulk, a maximum of 1𝑘஻𝑇 −  2𝑘஻𝑇 that corresponds to a 
hydration layer between the protein and the NP surface, and a much 
shallower secondary minimum. 
 
Figure 5 shows a binding energy map (𝐸(𝜙௜ , 𝜃௝)) for HSA on 5 nm and 50 nm 
TiO2 particles. We see that the binding energy changes in magnitude with the 
NP size as the large NP produces deeper minima. Moreover, the map for the 
50 nm particle shows more features: in addition to the minima at (230°, 40°) 
and (340°, 80°) for the 5 nm NP, we find a preferred orientation at (200°, 
140°) and another minimum at (70, 130°). 
 

 
Figure 5 𝐸(𝜙௜ , 𝜃௝) map of HSA on the surface of a 5 nm TiO2 NP (left) and 50 nm 

TiO2 NP (right).  
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Figure 6 Average Ead for HSA (left) on (100) rutile TiO2 with increasing NP radius. 

The dots represent a multiscale calculation according to Eq (1.11), red dashed line is 
for the flat surface (𝑅 = ∞). The blue solid line is a fit with 𝐸௔ௗ =  −5.0 (1.0 − e௔ோమ

)  

The dependence of the adsorption energy of HSA on the NP size is shown in 
Fig. 6. The maximum binding energy is about −5𝑘஻𝑇, which corresponds to 
relatively weak adsorption. This means that the HSA molecules, if adsorbed, 
will be easily displaced by larger ones, according to the Vroman effect. As we 
can see from the data in Table 3, the contributions to the adsorption energy 
from most AAs are positive or slightly negative. The largest negative figures 
come from the charged ARG, and large SER, TYR and TRP. These observations 
are in agreement with results of direct atomistic and ab initio simulations of 
AA and peptide adsorption on titania surfaces, which confirm that the 
adsorption is driven by charged residues [47-49]. We also note two other 
important features of the size dependence of the adsorption energy: the 
saturation at large NP radii, such that the limiting value corresponds to a flat 
surface, and the stronger binding at large radii due to the greater van der 
Waals attraction. 

1.4.3   United-aminoacid model 

Table 4 Ultra-coarse-grained (UAA) model for HSA protein as obtained from VMD CG builder. 
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Bead  X Position 
(nm) 

 Y Position 
(nm) 

Z Position 
(nm) 

Radius 
(nm) 

Bead 1 5.8252 0.9764 2.1574 1.2905 
Bead 2 4.0639 0.9955 1.2708 1.1097 
Bead 3 0.2843 0.7511 4.7677 1.1667 
Bead 4 1.1033 -0.4196 2.1635 1.1767 
Bead 5 1.4744 0.4070 -1.2432 1.1042 
Bead 6 4.8305 -0.6400 2.6579 1.1598 
Bead 7 0.9128 1.3064 1.5903 1.1918 
Bead 8 3.2678 1.2892 3.5817 1.1686 
Bead 9 2.5456 0.0073 0.6177 1.1631 
Bead 10 -0.2788 -0.2642 3.5709 1.1036 
Bead 11 2.8617 1.8590 0.0009 1.1923 

 
The UAA model of the HSA protein as obtained from our UA model using the 
procedure from section 1.3.7 is described in Table 4. The presentation we 
obtained contains 11 beads of radius of about 1 nm. This model is visualized 
in Fig. 1. The corresponding interaction potentials for the UAA blocks with a 
TiO2 NP are shown in Fig. 7. All the obtained potentials are all smooth and 
most of them have a single minimum. 
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Figure 7 PMFs for beads 1-11 of UAA presentation of HSA protein (see Table 3) with 
a TiO2 nanoparticle of size 50 nm. 

The UAA presentation preserves the shape of the protein and is sufficient to 
reproduce the detailed structure of the adsorption energy map. The energy 
maps obtained within UA and UAA presentations are shown in Figs. 8-9. A 
comparison of these shows that the UAA models captures all the main the 
energy minima (corresponding to the preferred orientations of the protein 
on the NP surface): (230°, 40°) and (340°, 80°) for 5 nm NP, although they 
become more diffuse (Fig. 8). For 50 nm NP (Fig. 9), the structure of the 
energy surface in the UAA model is also more diffuse: the two minima at 
(230°, 40°) and (150°, 50°) are now represented by a single extensive 
minimum spanning an area of 100°20°. Although the minima seen in the 
UAA presentation are more diffuse, they match the magnitude of those in the 
UA model and ranked in the same order. 
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Figure 8 𝐸(𝜙௜ , 𝜃௝) map of HSA on the surface of a 5 nm TiO2 NP from UA model (left) 
and UAA model (right). 

Figure 9 𝐸(𝜙௜ , 𝜃௝) map of HSA on the surface of a 50 nm TiO2 NP from UA model 
(left) and UAA model (right). 

1.5   CONCLUSIONS 

We presented a universal methodology of evaluation of advanced 
descriptors of bionano interface, which can be used to characterise the 
interaction of a specific NP with essential biomolecules constituting the 
protein corona of the NP. Although we made a number of strong 
approximations on the way, the main benefit we achieved is that the 
calculation can be applied in a uniform fashion to a large number of 
biomolecules in a short time and to add more descriptors to elucidate further 
the mechanism of corona formation and its dependence on the protein’s and 
NP’s physicochemical properties. The new descriptors include those for 
proteins (principal moments of inertia, charge, dipole moment and the 
solvent accessible area) and those for interaction with NP (Hamaker 
constants for residues, their mean adsorption energies, and the overall 
adsorption energy for the protein globule). In addition to this, our method 
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delivers preferred orientations for proteins on a specific NP, thus 
systematically taking into account the NP shape and size, and allows one to 
rank arbitrary proteins by the adsorption affinity. Thus, dozens of essential 
descriptors can be routinely calculated. Another achievement of our 
methodology is that the core of the NP is included in the calculation, which 
makes the size-dependence of the interaction more credible. These 
descriptors can be used to produce interaction fingerprints for arbitrary 
nanomaterials with respect to specified interactions and, therefore, provide 
key information for gauging their biological activity, e.g. its ability to produce 
the molecular initiating events or disturb the key events of the adverse 
outcome pathways.  
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