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Abstract Predicting the three-dimensional structure of proteins is a long-standing
challenge of computational biology, as the structure (or lack of a rigid structure)
is well known to determine a protein’s function. Predicting relative solvent ac-
cessibility (RSA) of amino acids within a protein is a significant step towards
resolving the protein structure prediction challenge especially in cases in which
structural information about a protein is not available by homology transfer. To-
day, arguably the core of the most powerful prediction methods for predicting
RSA and other structural features of proteins is some form of Deep Learning, and
all the state-of-the-art protein structure prediction tools rely on some Machine
Learning algorithm. In this article we present a deep neural network architecture
composed of stacks of Bidirectional Recurrent Neural Networks and Convolutional
layers which is capable of mining information from long-range interactions within
a protein sequence, and apply it to the prediction of protein RSA using a novel en-
coding method that we shall call “clipped”. The final system we present, PaleAle
5.0, which is available as a public server, predicts RSA into two, three and four
classes at an accuracy exceeding 80% in two classes, surpassing the performances
of all the other predictors we have benchmarked.
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1 Introduction

The relative degree of exposure to solvent molecules of amino acids in a protein
(RSA) is an important one-dimensional (1D) property of proteins. Predicting 1D
properties of proteins such as secondary structure (SS) [24], [14], [13] RSA and
torsional angles [37], [36], [7] is a significant step towards solving the long stand-
ing biological problem of predicting a protein’s 3D atomic co-ordinates [9] that
can be used in protein function prediction, protein hydration position prediction
[11], protein analysis, etc. Even though the Protein Data Bank (PDB) [8] regu-
larly releases new protein structures determined by crystallography [32] or other
experiments, the gap between the number of known and unknown structures is
large and growing as experimentally solving protein structures is still expensive
and time consuming. However, we have known for over half a century that the
native conformation of proteins can be predicted solely based on their amino acid
sequence [43] [6], and countless in silico methods have been developed over the fol-
lowing decades to produce inexpensive predictions of various structural aspects of
proteins. In the specific case of RSA, linear regression models have been used [41],
alongside neural network based regression [1], support vector machines (SVM)
[27] [17], nearest neighbor algorithms [15], Bayesian probabilistic methods [39],
random forests [31], information theory [26] and various other algorithms [21], in
all cases relying on information gleaned from the increasing number of proteins
whose structure has been determined by experimental means. As of today, almost
all state-of-the-art RSA predictors use some form of Machine Learning, and in-
creasingly Deep Learning [19]. RSA is typically predicted into two [22], three [42]
or four classes [24], but also as the actual solvent accessible surface area [13]. In
nearly all cases the absolute values of solvent accessibility, often obtained from
the DSSP program [16], are normalized (hence the “Relative”) into percentages
of maximum exposed area calculated by different methods [38] [10] [34] [23] [40].
Current predictors can also be categorized as template based or ab initio, depend-
ing on whether they directly use information from homologues of known structure
in the prediction process or rely exclusively on the sequence of the protein and,
potentially, of evolutionary information in the form of sequences of other homol-
ogous protein of unknown structure. Even though template-based predictors are
usually more accurate [28], they require one or more templates, making them not
applicable in many cases. Selecting the right template can also be a significant
challenge even when templates are found [25].

In this article we describe a new ab initio RSA predictor, PaleAle 5.0, that is a
considerable improvement to our previous system PaleAle 4.0 [24] after a number
of changes to the algorithms. We also describe tests we ran with different Ma-
chine Learning architectures, which led us to choose the final system composed of
stacks of Bidirectional Recurrent Neural Networks (BRNN) [3] and Convolutional
Neural Network layers (CNN) [20]. We performed all the training and testing in
five-fold cross-validation on a very large, state-of-the-art redundancy reduced set
containing over 15,000 experimentally resolved proteins. The final system is tested
against a validation data set containing 1,601 proteins that are independent from
the initial training/testing sets. RSA is predicted into 4-classes using solvent ex-
posure thresholds of 4%, 25% and 50%, and re-cast into 2 classes with 25% ex-
posure threshold or into 3 classes with 10% and 40% thresholds for comparison
with other predictors. We compare PaleAle 5.0 with the recent predictors ACCpro



PaleAle 5.0: Prediction of protein relative solvent accessibility by Deep Learning 3

[22], RaptorX-Property [42], Spider3 [13] and PaleAle 4.0 [24] on our independent
validation set.

We show that PaleAle 5.0 compares favourably with all ab initio competi-
tors on all three formulations of the problem, roughly matching the template-
based performances of ACCpro [22] in our tests. PaleAle 5.0 is freely available
for academic users as a public web server and as a standalone program at http:

//distilldeep.ucd.ie/paleale/

Methods

Datasets

We extracted experimentally resolved publicly available data from the PDB [8]
of December 2014 to form training and test sets for our models. The dataset is
redundancy-reduced at a 25% identity threshold for sequence identity to avoid bi-
ases within sets and remove homologue pairs across training and testing sets.
The solvent accessibility values are assigned by the DSSP [16] program from
experimentally resolved 3D structures from the PDB. The target value (RSA)
for each amino acid i in the final dataset RSAi is calculated by the formula
RSAi = SAi/MAXi × 100%, where SAi is the solvent accessibility of the ith

amino acid residue, in Å2, calculated by the DSSP program and MAXi is the
highest solvent accessibility of amino acid type i in Å2 [34]. The final dataset
consists of 15,753 proteins containing 3,797,425 residues. These 15,753 protein se-
quences are then split into five subsets to perform five-fold cross-validation with
more than 12,000 sequences in each training set and more than 3,000 sequences in
each test set. Supplementary Figure 1 shows the percentage of amino acid residues
below a given RSA threshold in our final dataset. Almost half of the residues in
our final dataset are less than 20% exposed and some residues are more than
100% exposed. This issue arises from the fact that normalizing values commonly
used (e.g. as calculated by Rose et al [34]) are the highest exposed area for an
amino acid type based on available structures at the time of calculation, and that
typically terminal amino acids are excluded from the calculations. While later
research revealed that there are amino acids with higher exposure area for each
amino acid type, older normalising values are retained for consistency and fair
comparison with older predictors. The amino acids in our dataset are labelled into
four classes using the following RSA ranges: [0% − 3%], [4% − 24%], [25% − 49%]
and [50%−∞%]. The four classes were chosen to be roughly equally balanced as
balanced classes are most informative. For comparison with other predictors, RSA
is also re-cast into three and two classes. Ranges used for three class prediction
are [0%− 10%], [11%− 40%] and [41%−∞%], and [0%− 24%] and [25%−∞%]
for two classes. Supplementary Table 4 shows the number of residues in each class
for each classification problem in our sets.

We also constructed a validation set from the June 2017 PDB, completely
independent of the datasets used to train and test our models, to estimate the final,
unbiased performance of the resulting predictor. This validation set is redundancy
reduced at 25% identity threshold for sequence identity within the set and against
the training and test sets. This process resulted in 1,601 proteins and 352,864
amino acids. The validation set is labelled and enriched with alignments using the
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same procedures and datasets that are employed to generate the training and test
sets.

Input encoding

Evolutionary information

Encoding evolutionary information, usually in the form of frequency profiles is
proven to increase the accuracy of models for predicting protein 1D properties
[14] [35] [4]. Most modern ab initio RSA predictors use evolutionary information
as an input. Sequence profiles for all sequences in our sets are generated from
a combination of PSI-BLAST [2] and HHblits [33]. PSI-BLAST is run against
the Jun 2016 version of UniRef90 [5] for three iterations with the e-value 0.001.
HHblits is run against the February 2016 UniProt20 for three iterations with the e-
value 0.001. These PSI-BLAST and HHblits profiles are combined to generate the
overall alignments for each protein, and from these to generate frequency profiles
used as the actual input to the models. We encoded these proteins into a single
profile by calculating the frequencies of each amino acid type in each column of
the resulting alignment. Each amino acid is encoded using 22 numbers consisting
of the frequencies of the 20 common amino acids in the first 20 positions, the
frequency of uncommon or unknown (B, J,O,U,X,Z) amino acids as the 21st

number and the frequency of gaps as the last number. If there are k occurrences
of amino acid acid type t in a column i of an alignment, the frequency of amino
acid type t in that position F t

i is calculated simply as:

F t
i = k/n

where n is the total number of amino acids occurring within column i.

The frequency of gaps for position i is calculated as:

F gap
i = g/N

where g is the total number of gaps in the column and N is the total number of
sequences, rather than amino acids, present in the alignment.
The same formulas are used to construct HHblits profiles using UniProt20 of Febru-
ary 2016. These plain frequencies are calculated with the assumption that every
homologous sequence and its residues are equally important. However, some stud-
ies have shown that calculating the plain frequency is not the optimal solution
[18].

Maximum Entropy profiles

Further to plain profiles, we also encoded profiles generated from PSI-BLAST and
HHblits weighing aligned sequences by their entropy [18].

First F t
i is calculated the same way as for plain frequency profiles. Then the

weight of each homologous sequence Ws is calculated as the sum the entropies of
its amino acids in each column of the alignment.
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Ws = −
L∑

i=1

F
s(i)
i logF

s(i)
i /L

where, L is the length of the sequence, and s(i) is the type of amino acid occurring
in sequence s in column i of the alignment.

The final 22 numbers encoding each position i are calculated by weighing each
sequence s using the weight Ws. The weighed frequency of amino acid type t at
position i is:

Et
i =

S∑
s=1

Ws ×Os(t)
i /

S∑
s=1

Ws ×Oi

where S is the total number of sequences in the alignment, O
s(t)
i is 1 if amino acid

t occurs in sequence s in column i of the alignment and 0 otherwise, and Oi is 1
if any valid amino acid (including unusual or unknown) occurs in sequence s in
column i of the alignment and 0 if the sequence has a gap in that position.

The encoded frequency of gaps in this case is calculated as:

Egap
i =

S∑
s=1

Ws ×Ogap
i /

S∑
s=1

Ws

where, again, S is the total number of sequences in the alignment, and Ogap
i is 1 if

there is a gap in sequence s in column i of the alignment and 0 otherwise. That is,
even in this weighed encoding amino acid frequencies are computed disregarding
gaps when normalising, while gap frequencies are computed over the total number
of sequences in the alignment.

It should be noted that this encoding scheme emphasises diversity, in that an
unusual sequence (as measured by how infrequent its amino acids are with respect
to the plain profile) will be weighed more than one mainly composed of amino
acids commonly occurring in the profile.

Clipped encoding

As in previous research [35], [42], [30] the results from our tests show that encoding
evolutionary information from alignments increases the accuracy of the prediction.
However, classic encoding of an alignment (as a Position Specific Scoring Matrix,
or as a frequency profile) conceals the identity of the amino acids present in the
sequence S (the main sequence) from which the alignment is compiled. That is,
while there is abundant evidence that evolutionary information is useful, its use
typically also leads to some loss of potentially important information. To overcome
this problem, we have tested a third encoding scheme, which we will call “clipped”
encoding. In this scheme we first compute a frequency profile, plain or weighed, e.g.
as described in the previous sections. Then, for each position in the alignment, we
substitute the frequency of the amino acid that appears in that position in sequence
S with the value 1, leaving the rest of the profile unchanged. It should be noted that
no information from the initial (unclipped) profile is lost after this modification, as
the frequency which we substitute with 1 could still be reconstructed as 1 minus
the sum of the other frequencies. On the other hand, the identity of sequence S is
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now present in the modified profile: its amino acids are those whose profile entry
is 1.

Encoding the length

We also tested explicitly adding the sequence length to the input. This is obtained
by adding a 23rd number to the input. Specifically, the length is normalised by a
fixed value (1000). It should be noted that in this case the 23rd value of the input
is identical for all positions of a sequence.

Clipped combined profile weighed by entropy

Sequence alignment tools find similar sequences based on the set of hypotheses
underpinning the sequence alignment algorithm used. To mediate over these hy-
potheses, we tested an encoding to our system obtained by combining profiles
generated using PSI-BLAST [2] and HHblits [33].

Predictive architecture

Stack of Bidirectional Recurrent Neural Networks and Convolutional Neural Net-
works

In order to intercept long-range signal in the sequence, we implemented a model
made of a stack of Bidirectional Recurrent Neural Networks (BRNN) and Convo-
lutional Neural Networks (CNN). In particular, the model has a first BRNN-CNN
stage mapping the sequence into its RSA, and a second BRNN-CNN stage that
filters the predictions of the fist stage.

In the BRNN we use [3], information about a whole sequence at a given position
i is embedded in a forward memory F i and a backward memory Bi, representing,
respectively, the context to the left and to the right of position i.

The forward memory F i at position i is generated via a forward transfer func-
tion as:

F i = φ(F i−1, F i−2, ...., F i−c, Ii) (1)

where Ii is the input in position i of the sequence, c is the length of the longest
memory shortcut, and φ() is a non-linear function modelled by a 2-layer FNN.

Analogously, the backward memory Bi at position i is generated by a backward
transfer function as:

Bi = β(Bi+1, Bi+2, ...., Bi+c, Ii) (2)

Downstream of the BRNN, a CNN kernel takes as inputs a window of BRNN
memories to map them into a local state Oi, i.e.:

Oi = ω(F i−w, ..., F i, ..., F i+w, Bi−w, ..., Bi, ..., Bi+wIi) (3)

Here 2w+1 is the size of the kernel and ω() is a non-linear function implemented
by a two-layered FNN.
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Input profile

FnF1 FtFt-1 Ft+1... ...

BnB1 BtBt-1 Bt+1... ...

BRNN

... ...

CNN

O1 Ot-1 Ot Ot+1 On

Averages over contiguous windows

FnF1 FtFt-1 Ft+1... ...

BnB1 BtBt-1 Bt+1... ...

BRNN

... ...

CNN

O1 Ot-1 Ot Ot+1 On

Relative Solvent Accessibility

Fig. 1: Architecture of the double BRNN-CNN
stack used in this work

The second, filtering BRNN-
CNN stage is structurally identical
to the first one, but its input is made
of predictions by the first stage av-
eraged over multiple contiguous win-
dows, as in [29].

In particular, if Oi is the output
of the first BRNN-CNN stage for po-
sition i in the sequence, the input to
the second BRNN-CNN stage is the
vector J i:

J i = (Oi, Ôi−fc
w , . . . , Ôi

w . . . , Ôi+fc
w )

(4)
where:

Ôv
w =

v+w∑
n=v−w

On/(2w + 1) (5)

We use w = 7, i.e. each value
Ôx

w is the average of first-stage pre-
dictions over a window of 15 amino
acids centered at position x. We set
f = 2w+ 1, i.e. the windows on which the first-stage outputs are averaged are ad-
jacent and non-overlapping. We fix c = 10, i.e. there are 2c+ 1 = 21 such windows
that concur to the input. That is, information extracted from up to 21× 15 = 315
amino acids in total is presented at any position i to the second BRNN-CNN stage.

In summary, the sequence is processed by a first BRNN-CNN stage, and the
outputs of the first stage are pooled into sets of averages which are processed by
a second BRNN-CNN stage which is structurally identical to the first one apart
from the different nature of the inputs. A diagram of the overall architecture is
represented in Figure 1.

The first and second BRNN-CNN stages are supervised independently, but
concurrently. That is, the first stage is supervised to predict RSA (rather than to
produce a hidden representation) and so is the second stage, and the two stages
are trained at the same time. In preliminary testing we have found this solution
preferable to training the second stage using a fully trained first stage, possibly
because the error surface for the second stage is not a static function of its internal
weights and of the data, but morphs during the training process, which reduces
the impact of basins of stagnating gradient.

We use tanh() hidden units for all BRNN and CNN internal nodes, while we
use softmax units for the overall outputs of both stages. It should be noted that
the model we use is somewhat different from most off the shelf solutions in that, for
instance, both BRNN transfer functions and CNN kernels are implemented as 2-
layered FF neural networks rather as single layers. The BRNN transfer functions
also contain shortcuts, i.e. model Markov chains with memory greater than 1,
which create shorter paths for information propagation, similarly to Deep Residual
Networks [12].
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Training and Evaluation: We train eight different double BRNN-CNN stacks (de-
tails in Supplementary Table 1). The input to these stacks is encoded using clipped
maximum entropy profiles with encoded length using alignments generated by PSI-
BLAST, HHblits and a concatenation of the two. The models are ensembled and
their performances measured on the unbiased validation set. The performances of
individual models on the validation set and on all of the 5 cross-validation folds are
reported in Supplementary Tables 2 and 3, while a comparison between first-stage
and full stack results is reported in Supplementary Table 5.

To evaluate the performance of PaleAle 5.0 against other predictors, we use ac-
curacy, macro averaged F1 score and individual class precision and recall. If true
positives, false positives, true negatives and false negatives are, respectively tp, fp,
tn and fn, then it is:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

F1 = 2
Precision ·Recall
Precision+Recall

Results and Discussion

Accuracy with different encodings

We tested our systems using frequency profiles extracted from alignments and
without profiles. We generated different types of frequency profiles: plain, weighed
based on sequence entropy, and using the “clipping” technique. We tested profiles
generated using PSI-BLAST, HHblits and PSI-BLAST and HHblits concatenated.
The performances of the system with different encoding techniques are listed in Ta-
ble 1. The encoding schemes are tested using double BRNN-CNN stacks. Clipped
profiles weighed by sequence entropy with sequence length encoded lead to the
best performances, and so do profiles generated by both PSI-BLAST and HHblits
combined (Table 1).

Performance compared to other systems

The comparisons with other systems are listed in the Table 2 and 3.
We compare our system with ACCpro [22], RaptorX-Property [42], PaleAle

4.0 [24] and Spider3 [13] using the same validation set of 1,601 proteins for a fair
comparison. ACCpro has an ab initio and a template based version both predict-
ing two-class RSA with a 25% threshold and the same normalizing values used by
our predictor. In our tests ACCpro ab initio version has an accuracy of 76.70%
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BRNN-CNN

Dataset No-EL EL

no profiles 46.65 46.76
plain 55.15 55.23
MaxEnt 55.13 55.17
Clip 56.10 56.20
Clip+MaxEnt 56.27 56.24
Clip+MaxEnt comb 56.81 56.93

Table 1: BRNN-CNN stack accuracy for four class RSA prediction on test set for different
encodings. Plain are plain profiles, MaxEnt are profiles in which sequences are weighed based
on their entropy, Clip are plain profiles with “clipping”, Clip+MaxEnt comb are combined
PSI-BLAST + HHblits profiles with clipping and entropy weighing. No-EL vs. EL are datasets
without or with sequence length encoding added, respectively.

2-Class 3-Class 4-Class

System ACC F1 ACC F1 ACC F1

Consensus of all 79.9 0.80
Consensus of top 3 80.3 0.80

Accproa 76.7 0.77 —- —- —- —-
Accprot 80.5 0.80 —- —- —- —-
Spider3 77.9 0.78 61.2 0.62 49.0 49.0
RaptorX-Propertya —- —- 55.5 0.54 —- —-
RaptorX-Propertyp —- —- 63.3 0.63 —- —-
PaleAle 4.0 78.2 0.78 —- —- 52.5 0.52
PaleAle 5.0 80.5 0.80 66.4 0.66 56.5 0.56

Table 2: Performance of different predictors expressed as percentages of accuracy (ACC) and
F1-Score (F1) on validation set. Consensus prediction is implemented by majority vote.

and macro averaged F1 score of 0.77 while ACCpro template-based has an accu-
racy of 80.5% and macro averaged F1 score of 0.80. RaptorX-Property is an ab
initio predictor. RaptorX-Property predicts amino acids into three-classes, buried,
intermediate and exposed, with 10% and 40% thresholds. RaptorX-Property has
a version that does not use sequence profiles, RaptorX-Propertya, which predicts
amino acids in our validation set into three-classes with an overall accuracy of
55.45% and macro averaged F1 score of 0.54 while RaptorX-Propertyp, which
uses profiles, has an accuracy of 63.25% and macro averaged F1 score of 0.63.
However, RaptorX-Property uses a different set of values [23] to ours [34] to nor-
malize absolute surface area into RSA. Therefore, we re-normalize RSA values in
our validation set to [23] when testing RaprotX-Property for a fairer comparison.
Spider3 [13] is an ab initio predictor using sequence profiles. Spider3 predicts over-
all exposed area of each amino acid in Angstroms (Å). This method gives us the
freedom to use any normalizing values to convert overall exposed area into RSA,
and to divide classes as required. Spider3 predicts all amino acids in our validation
set with an accuracy of 77.91% and macro averaged F1 score of 0.78 for the two-
class RSA problem with a threshold of 25%. For the three-class problem with 10%
and 40% thresholds, Spider3’s accuracy is 61.9% and macro averaged F1 score is
0.62, and 49.01% accuracy and macro averaged F1 score of 0.49 for the four-class
problem with 4%, 25% and 50% thresholds.
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PaleAle 5.0 predicts 56.4% of all residues in the correct class (a 3.8% improve-
ment over PaleAle 4.0) in its 4-class version, 66.4% for the three class problem and
80.5% for the two-class problem. Precision and Recall of PaleAle 5.0, in general,
are more balanced compared to other predictors. The accuracy of PaleAle 5.0 is
almost equal to Accprot, however, Accprot is a template based predictor while
PaleAle 5.0 is an ab inito predictor. Table 2 also shows the performances of 2-class
consensus predictors between the top 3 and all predictors we have tested. The
consensus roughly matches the results of PaleAle 5.0 and Accprot but does not
improve on them.

Predictor
Precision Recall

cls 0 cls 1 cls 2 cls 3 cls 0 cls 1 cls 2 cls 3

Two class prediction

Accproa 0.78 0.76 – – 0.79 0.74 – –
Accprot 0.81 0.80 – – 0.83 0.78 – –
Spider3 0.86 0.71 – – 0.70 0.88 – –
PaleAle 4.0 0.79 0.77 – – 0.81 0.75 – –
PaleAle 5.0 0.81 0.80 – – 0.83 0.78 – –

Three class prediction

Spider3 0.84 0.46 0.64 – 0.53 0.58 0.75 –
RaptorX-Pa 0.64 0.44 0.54 – 0.66 0.32 0.68 –
RaptorX-Pp 0.78 0.51 0.61 – 0.67 0.48 0.75 –
PaleAle 5.0 0.76 0.54 0.67 – 0.76 0.51 0.72 –

Four class prediction

Spider3 0.82 0.42 0.39 0.60 0.33 0.49 0.56 0.60
PaleAle 4.0 0.62 0.46 0.44 0.55 0.73 0.40 0.36 0.62
PaleAle 5.0 0.70 0.49 0.48 0.58 0.69 0.51 0.38 0.68

Table 3: Precision and recall of each class for two, three and four class predictions on valida-
tion set.

Discussion

The prediction of RSA alongside other 1D structural properties of proteins is often
a fundamental step towards the prediction of protein structures. We have presented
PaleAle 5.0 a predictor based on double BRNN-CNN stacks and a number of
algorithmic improvements in the handling of evolutionary information in the form
of frequency profiles. According to our tests the system performs at or above the
state-of-the-art in the field, and is publicly available at http://distilldeep.ucd.
ie/paleale/.
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