
1 INTRODUCTION 

1.1 Non-linearity in the structural response 

Identification of damage or stiffness changes in a structure is mostly based on assuming a linear 
elastic response (Hester & González 2012, Lee 2009, Li et al. 2013, Nagarajaiah & Basu 2009). 
However, a section will only respond in a linear elastic range up to a certain yielding point be-
yond which a non-linear response will take over. How damage relates to non-linearity has been 
a subject of interest in recent research (Farrar et al. 2007). A non-linear behaviour is more likely 
in the case of deteriorated structures (i.e. corrosion or cracks in reinforced concrete structures) 
and/or large loads and deformations, although it can also be motivated by friction at the joints or 
presence of non-linear material, e.g. bearings (González & Aied 2015). In the case of damage 
due to corrosion, Stewart (2009) argues that losses of steel cross-sectional area can be of up to 
16%, while Palsson & Mirza (2002) have found losses up to 80%. Clearly, this level of steel loss 
at a specific section can cause the moment-curvature relationship governing its response to ex-
ceed the linear elastic range and to enter a lower stiffness in a plastic range.  

The unscented Kalman filter (Wu & Smyth 2007), the continuous wavelet transform (Hester 
& González 2012, Wang et al. 2013) and other methods (Chen et al. 2014, Kalvoda & Hwang 
2010, Kijewski-Correa & Kareem 2006, Kunwar et al. 2013, Muto & Beck 2008, Nichols et al. 
2010) have been examined for their applicability in characterization of non-linear responses and 
parameter identification. One of these methods is the Hilbert-Huang Transform (HHT), which 
has been used previously for a wide range of applications from ocean wave data to sound and 
climate variability (Huang et al. 1998, Huang & Pan 2006, Huang & Shen 2005).  

1.2 Application of the Hilbert-Huang transform to damage detection 

The HHT consists of: (1) splitting the original signal into a number of Intrinsic Mode Functions 
(IMFs) using a decomposition process, the so-called "Empirical Mode Decomposition” (EMD), 
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and (2) applying the Hilbert Transform (HT) to each IMFs to produce the Instantaneous Fre-
quencies (IFs) (Kerschen et al. 2008). The HT by itself is used for mono-component signals 
(Feldman 1994, Frank Pai 2010) so the prior application of the EMD process is necessary to 
deal with multi-component signals. The application of the HHT to damage detection in linear 
structures has been shown to be able to detect and locate damage in beams and plates under 
transient loads (Kunwar et al. 2013, Quek et al. 2003, Roveri & Carcaterra 2012), although it 
appears to be sensitive to slight distortions in the signal. For instance, Yang et al (2003) assume 
a linear stiffness loss due to structural damage and using the HHT, they are able to show the lo-
cation of damage and the change in frequency before and after damage via identification of a 
discontinuity in the instantaneous frequency. Kunwar et al (2013) apply the HHT to acceleration 
measurements from different locations in a damaged experimental bridge model and they find 
that sensors close to the damaged location detect the damage by a significant increase in the 
magnitude of the vibrations while sensors further away from the damaged location show little 
difference compared to the undamaged case even for very severe damage. 

1.3 Objective 

Unlike previous research aiming to capture fixed permanent damage from a linear response, this 
paper intends to identify and characterize brief stiffness changes once the yielding point is ex-
ceeded as a result of excessive loading at a section of a bridge due to a moving load. In particu-
lar, the structure is assumed to be a two-span continuous beam made of reinforced concrete 
where one of the sections follows a bilinear hysteresis model to simulate the post-yielding stiff-
ness. Stiffness changes or crossings of the yielding point at this section can only be captured as 
they occur, given that once the section is unloaded, the linear elastic range will again govern the 
response. First, the post-yield stiffness loss in a selected section will be predicted using the IF 
(via the HTT) of the acceleration response at another section located in the mid-length of the 
first span. Once the non-linearity of an output response has been identified and localized via the 
HHT, the next logical step is to assess the stiffness loss associated with that non-linearity accu-
rately, i.e. to quantify it. Finite Element (FE) updating methods have been commonly used to 
quantify linear and non-linear parameters of structures using accelerations and natural frequen-
cies (Kalvoda & Hwant 2010, Mthembu et al. 2011), but this has never been done before for a 
structural change within a time frame as short as proposed here. Bayesian statistics (Earls 2013, 
Gelman et al. 2003, Marwala 2010, Mthembu et al. 2011) and cross-entropy (Dowling et al. 
2012) are two statistical optimization methods that have been extensively used for model updat-
ing and stiffness characterization of structures. This paper tests the accuracy of both methods in 
estimating the post-yield to pre-yield ratio when a section yields. The issue to address is not so 
much the ability of these statistical methods in predicting structural parameters, something that 
has been demonstrated many times in the literature, but to test if the IFs can be used as a valid 
input to accurately predict instantaneous stiffness changes. Different values of post-yield stiff-
ness and of the speed of the moving load are employed for this purpose.  

2 SIMULATION MODEL 

2.1 Bridge model 

A scenario consisting of a continuous bridge made of two equal spans of 10 m each is modelled 
here using a beam discretized into 20 finite elements (Figure 1a). The modulus of elasticity is Ec 
= 35×109 N/m2 and the material density is  = 2400 kg/m3. The cross-section is 12 m wide and 0.6 
m deep, and it is assumed to be made of concrete and steel with equivalent inertia I = 0.2753 m4. 

The stiffness of each discretized element varies depending on the arrangement of reinforcement 
throughout the beam. Therefore, stiffness ratio is defined here as the ratio of the stiffness (EcI)x 
for a particular element x to the stiffness of an undamaged element with double reinforcement 
(EcI)0. The hypothetical distribution of stiffness across the structure shown in Figure 1b is 
adopted to purposely introduce a variation of stiffness throughout the structure. For example, 
there is a stiffness ratio of 1 between 6 m and 8 m from the first support, and also between 12 m 
and 14 m, which correspond to two regions with both compressive and tensile reinforcement.  



 
 
Figure 1. Beam model: (a) elevation and (b) stiffness ratio for each element. 

 
 

In addition to sections with a stiffness ratio of 1, there are sections with a stiffness ratio of 

0.8923, except for an artificially assumed weaker region of stiffness ratio 0.7687 between 4 m to 

6 m. The reasoning behind this modelling is to test if a non-uniform distribution of stiffness 

could mislead the HHT in targeting a change in linear response.  

The 20 discretized beam elements have two degrees-of-freedom (DOFs), namely vertical de-

flection ui(t) and rotation i(t) at each end node i. The 4x4 elementary beam stiffness matrix 

([Ke]) is given by Equation 1.  

 (1) 

where a = 12EcI / Le
3, b = 6EcI / Le

2, c = 4EcI / Le
2, and Le is the length of the element (Le = 1 m 

for the selected discretization level).  

The moving load is modelled as a point force. The simple representation of the load used here 

is deemed to be sufficient to induce the desired effect of exceeding the yielding moment at a 

given section within a narrow time window. The equation of motion that governs the time-

varying displacements (including vertical deflections and rotations for all nodes) {u(t)}, veloci-

ties , and accelerations {ü(t)} due to the point force is given by: 

 (2) 

where [M], [C], and [K] are n x n global mass, damping and stiffness matrices respectively, be-
ing n the total number of DOFs of the system. Global matrices are formed by assembling ele-
mentary matrices taking common DOFs between elements into account. Viscous damping is 
typically low in bridges and the effect of [C] is neglected in these simulations. The first four 
natural frequencies of the bridge model in the linear elastic range are 10.63, 16.38, 42.6 and 53.8 
Hz. The applied point force moving at a velocity v (m/s) is represented by the time-varying vec-
tor {f(t)} which contains the distribution of forces to the nodal DOFs of the structure. All values 
of {f(t)} will be zero except those corresponding to the DOFs of the beam element where the 
load is applied. The moving load is distributed to the DOFs of the underlying element as a prod-
uct of the Hermite shape functions. Equation 2 is implemented using the MATLAB program-
ming language and solved based on the Wilson-θ integration method. The latter is uncondition-



ally stable if the acceleration is assumed to vary linearly within a specified extended time step , 
i.e.  = ɤt where ɤ = 1.42 and t = 0.001 s (Clough & Penzien 1993, Craig 1981, Nickel 1971). 

2.2 Definition of non-linear elements 

The post-yield behaviour of the two elements between 6 and 8 m is established by a stiffness 
curve different from that in the linear range. The transition between pre-yield and post-yield 
stiffness is typically smooth, but for simplification purposes, a bilinear model is employed here 
(Zeynalian et al. 2012). Figure 2 represents the assumed bilinear moment-curvature relationship. 
Moment M and curvature  are linear up to the elastic limit and also linear, although with a 
smaller slope (indicative of stiffness loss) in the plastic range. As a result, there is a sharp transi-
tion at the yielding point. My and y are the yield moment and yield curvature respectively. The 
value of the yield moment (My) is governed by the amount of steel reinforcement in the beam. 
The post-yield ratio,  in Figure 2, relates the pre-yield stiffness to the post-yield stiffness by 
(EcI)p =  (EcI)s, where (EcI)p is the post-yield stiffness and (EcI)s is the stiffness of the undam-
aged section. Since a double reinforcement is assumed between 6 and 8 m (Figure 1a), the pre-
yield stiffness (EcI)s is equal to (EcI)o. Degradation, pinching, and permanent deformation are 
neglected (Pugasap 2006, Song & Der Kiureghian 2006, Stewart & Al-Harthy 2008), therefore 
this model may not necessarily be the most accurate, but acceptable for testing the ability in pre-
dicting stiffness changes when a section yields. 

The bending moment, M(t), at time instant t, is calculated at each section using the expression 

by Pinkaew & Asnachinda (2007): 

 

(3) 

where j is the location of the section within the element j where M(t) is sought (i.e. 0  j  Le), 
and ui(t), ui+1(t) and i(t), i+1(t) are vertical deflections and rotations respectively at both nodes 
of the element.  

 

 

 
Figure 2. Bilinear hysteresis model of moment-curvature relationship. 



 
If the bending moment M(t) exceeds the yield bending moment (My), a hysteretic bending mo-
ment (Mn(t)) is introduced that is dependent on the hysteretic curvature (Z(t)). The hysteretic 
curvature ensures that the curvature at the non-linear elements does not return to its original val-
ue (i.e. Z = max – y  in Figure 2) at unloading. The hysteretic moment, Mn(t), is related to the 
bending moment, M(t), indirectly through the yield curvature (y = My/(EcI)s) and directly 
through the hysteretic curvature (Z) as defined by the equations that follow. The non-linear hys-
teretic moment (Mn(t)) is calculated using Equation 4 (Pinkaew & Asnachinda 2007, Pugasap 
2006, Zeynalian et al. 2012):  

 (4) 

where Z(t) is the hysteretic curvature given by:  

 (5) 

and  is the incremental (i.e. derivative) hysteretic curvature, which is calculated using:  

 (6) 

where  is the derivative of the curvature with time and H1, H2, H3 and H4 are the Heavi-
side’s step functions defined by Pugasap (2006) as:

                        

 

       

        

(7) 

Equation 7 establishes if changes in the bending moment caused by the moving load represent 
a loading or an unloading event at the section under investigation. In order to allow for a post-
yield stiffness behaviour of elements between 6 and 8 m into the dynamic response of Equation 
2, the elemental stiffness matrices need to be recalculated at each point in time and the affected 
coefficients need to be updated accordingly in the global stiffness matrix. In the modelling pro-
cess, the left node or right node of an element can be non-linear. In the case of both nodes being 
non-linear, then the stiffness matrix is simply the original stiffness matrix (undamaged element) 
(Equation 1) multiplied by the post-yield to pre-yield stiffness ratio . In this simulation, it is as-
sumed that yielding is localized at only one node, which coincides with the left-hand node of el-
ement 8 and the right-hand node of element 7. Therefore, the elemental stiffness matrices of el-
ements 7 and 8 are given by Equations 8 and 9 respectively (Cheng 2000). 

 

(8) 

 

(9) 

where q is given by q = 1 – , e = 3EcI / Le, f = 3EcI/Le
2 and g = 3EcI/Le

3. Other variables in the 
equations above have been defined before.   

In summary, vertical deflections and rotations, their velocities and accelerations for all nodes 
of a two-span continuous FE beam traversed by a moving load are obtained via integration of 
Equation 2. The relative stiffness distribution with respect to the two-layer reinforcement, 



shown for each element in Figure 1b, is employed to fill up the values of EcI populating the ele-
mentary stiffness matrices ([Ke] defined in Equation 1), which are assembled into the global 
stiffness matrix [K] of Equation 2. Those accelerations at mid-length of the first span (5 m from 
the first support, i.e. at the right node of element numbered 5 in Figure 1b) are then used in the 
following sections for characterizing the stiffness of the system using the HHT and model up-
dating methods. The moment, M(t), at any section within a discretized element and point in time 
t, can be calculated replacing vertical deflections and rotations of the two closest nodes into 
Equation 3. In this process, if the moment applied to a section, M(t), exceeds the yield moment, 
My, at some instant during the crossing of the load, then, the non-linear elemental stiffness ma-
trices defined in Equations 8 and 9 replace the matrix of the healthy elements defined in Equa-
tion 1 affected by the yielding of the section. More specifically, the yielding moment of the sec-
tion at 7 m from the first support (i.e. right node of element numbered 7 in Figure 1b) has been 
purposely reduced to simulate a damaged section and to induce yielding as a result of the mov-
ing load. When the latter occurs, the elementary stiffness matrices of the elements numbered 7 
and 8 in Figure 1b, typically represented by [Ke] (Equation 1), are replaced by the two non-
linear elemental stiffness matrices [Ken1] (Equation 8) and [Ken2] (Equation 9) at elements 7 and 
8 respectively to allow for a post-yielding behaviour. The response of the section in the plastic 
range typically lasts only a small time interval (when the response follows the slope EcI in Fig-
ure 2), after which, the section is unloaded (i.e. the moment M(t) decreases) and the matrixes of 
the healthy elements are reintroduced (i.e. the slope EcI governs the response again). The meth-
od proposed to estimate  from the simulated accelerations at this precise time interval is de-
scribed next. 

3 ALGORITHM FOR IDENTIFYING BRIEF STIFFNESS CHANGES IN NON-LINEAR 
STRUCTURAL SYSTEMS 

This paper proposes a two-stage algorithm to characterize changes in structural stiffness as a re-
sult of a non-linear response. The algorithm estimates the level of post-yielding stiffness experi-
enced by a section as it occurs during the load crossing by (1) applying the HHT to the accelera-
tion response which allows identifying its occurrence and the instantaneous frequencies 
associated with this transitory situation, and (2) using a statistical optimization method which al-
lows quantifying the stiffness loss corresponding to those instantaneous frequencies.   

3.1 Calculation of frequencies by the Hilbert-Huang transform 

The HHT (Chen et al. 2014, González & Aied 2015, Huang et al. 1998, Huang & Shen 2005, 
Huang & Pan 2006, Kerschen et al. 2008, Kunwar et al. 2013, Quek et al. 2003, Yang et al. 
2003) is a data analysis method used for non-linear and non-stationary signals that consists of 
two main steps: the EMD, and the HT. The EMD is used to generate a collection of IMFs. An 
IMF is a component of the signal that satisfies two conditions: (1) The number of extrema and 
the number of zero-crossings must differ by no more than one, and (2) the mean value of the en-
velope defined by the maxima and the minima at any given time must be zero. The process of 
decomposing the signal into IMFs is done via a ‘sifting’ process as follows. 

• First iteration: 
a) Envelops of local maxima and local minima of the signal are identified and created 

using a cubic spline interpolation scheme 
b) The mean m1(t) of the upper and lower envelops is calculated for each point in time  
c) The difference between the signal and the mean, i.e. h1(t) = x(t) – m1(t)  is obtained. 

h1(t) rarely satisfies the two conditions of IMFs mentioned above and therefore, the 
process is repeated in a second iteration and likely more iterations as follows: 

• Second and subsequent iterations: The steps a) to c) above are carried out again, only that 
this time h1(t) is treated as the signal. Step b) will produce a mean m11(t) and step c) will 
result in a signal h11(t) = h1(t) – m11(t). It is checked if h11(t) meets the two conditions for 
an IMF. If they are not met, the sifting process is repeated in a similar fashion, but with 
h11(t) being treated as the signal. After the sifting process is repeated k times, both condi-
tions will actually be met and an IMF, i.e. h1k(t), will be obtained.  



 

(10) 

h1k(t) is treated as the first IMF, and the difference between the rest of the signal and the first 
IMF gives the residual r1(t) = x(t) – h1k(t). This residual is used as the input to calculate the sec-
ond IMF using the same iterative ’sifting’ process described above. As before, the criterion for 
the sifting process to stop and define a second IMF is based on meeting the two conditions for 
an IMF. The decomposition process into IMFs is repeated S times until the value of rs(t) be-
comes a monotonic component from which no more IMFs can be extracted. 

The second step of the HHT analysis is the application of the HT to the IMFs from which the 
Instantaneous Phase (IP), IF and amplitude of each IMF are calculated. A complex analytical 
signal, zi(t), is formed for each IMF consisting of a real part defined as the ith IMF (ci(t)), and an 
imaginary part defined by the HT (yi(t)), that can be formulated in an exponential format as per 
Equation 11. 

 

(11) 

where , ai(t) is the amplitude at time t, and IPi(t) is the instantaneous phase. In other 
words, the analytical signal zi(t) represents a rotation in the complex plane with the instantane-
ous phase angle IPi(t) and the radius of rotation ai(t) given by Equations 12 and 13 respectively. 

 

 
(12) 

 

 
(13) 

Equation 14 obtains the instantaneous frequency IFi(t) associated with the ith IMF at time t 
from the derivative of the instantaneous phase. 

 

(14) 

The final result of the HHT is an energy-frequency-time representation of the original data 

that allows characterizing the frequency of a nonlinear system.  

3.2 Statistical optimization method 

Statistical methods have been widely used for damage detection, parameter estimation and mod-
el updating (Mthembu et al. 2011). They are particularly suited to problems with limited infor-
mation on the structure (as is usually the case) and lots of potential solutions available to fit the 
data. In these problems, they are useful in the sense that they give not only an estimation of the 
values of structural parameters but also of the confidence associated with this estimation. For the 
problem in hand, which deals with the identification of the post-yield to pre-yield stiffness ratio 
at a selected section, the theoretical model j with the value  that minimizes the objective func-
tion Oj given by Equation 15 is sought. 

 

(15) 

where IFr,i
 
 and IFt,i() are the instantaneous frequencies at the time instant i corresponding to 

the ‘experimental/real’ data and to the theoretical model with an assumed  (value to be quanti-
fied) respectively. In this objective function, t0 is the time instant where calculations start, t is 
the time step between consecutive IFs and NIF is the number of IFs considered in the calculation. 
All values in Equation 15 refer to a specific IMF. In this optimization problem, the only un-
known is  Clearly, such a problem could be solved by Monte-Carlo simulation, sampling a 
wide range of values of  and choosing the value giving the lowest objective function. Howev-
er, the latter is not computationally efficient, particularly when applied to more complex models 
than the simple planar model tested in this paper. For this reason, the ability of two alternative 
statistical optimization methods, cross-entropy and Bayesian statistics, in estimating  is tested 
here. The following subsections describe how these methods can be implemented within the 



context of Section 2, although they could be readily generalized to other scenarios with more 
than one unknown parameter.  

3.2.1 Cross-entropy 
Cross-entropy (Dowling et al. 2012, González et al. 2013) is an iterative optimization procedure 
that minimizes differences between measurements and the response by a theoretical model via 
an iterative procedure characterized by the generation of many trial structural models (beams, in 
this case) with the same geometry as the original structure but different mechanical properties. 
Initially, statistical distributions are assumed for each unknown structural parameter based on 
typical values. Trial beam models are then generated by randomly sampling from these statisti-
cal distributions. The value of an objective function that calculates differences between meas-
urements and theoretical predictions is calculated for each trial beam. Then, the values of the 
structural parameters in the trial beams performing best (i.e. giving lowest values of the objec-
tive function) are used to update the statistical distributions and the process is repeated until 
convergence is achieved or the error of the objective function stops decreasing any further. For 
the problem in hand, it is sought to find the value of  leading to a response of the theoretical 
beam model that will resemble the IFs calculated from the simulated acceleration. Therefore, the 
objective function is defined by Equation 15. The entire process of quantifying the stiffness 
change using cross-entropy is illustrated in Figure 3 in which b is the standard deviation at iter-
ation b. 
 
 

 

Figure 3. Schematic of the HHT combined with the cross-entropy optimization process.  

 

3.2.2 Bayesian model updating  
Scientific experimental or observational results generally consist of many sets of data of the 
general form D = {x1,…,xn}, where the x’s are homogeneous and possibly multi-dimensional 
observations. A central problem of any statistical analysis is the specification of a probability 
model which is assumed to describe the mechanism which has generated the observed data D as 
a function of a parameter vector θ (i.e. a single parameter α). The main consequence of these 
foundations is the mathematical need to describe by means of probability distributions for all 
uncertainties present in the problem. This task becomes more difficult when the system is non-
linear. Unknown parameters in probability models must have a joint probability distribution 
which describes the available information about their values; this is often regarded as the char-
acteristic element of a Bayesian approach. In Bayesian statistics, a set of measured data, D, for a 
specific model class M is used to assess the plausibility of the generated models depending on 



the parameter value  (Neal 1993). For this purpose, Bayes’ theorem is applied. For the non-
linear damage identification scenario under investigation, the observed data are taken as the in-
stantaneous frequencies (IFr,i, in which r is for ‘real’ between times i = t0 and i = t0+NIFΔt) ob-
tained by applying the HHT to the acceleration signal at mid-length of the first span. The un-
known parameter is the post-yield to pre-yield stiffness ratio, α. There are instantaneous 
frequencies for each IMF. Here, the IMF that appears to be more sensitive to changes without 
the interference of other frequency components is selected as the ‘experimental/real’ data.  

One contrast between conventional statistics and the Bayesian approach is that parameters are 
treated as random variables within the Bayesian theory. This is not a description of their varia-
bility but a description of the uncertainty about their true values. A Bayesian analysis synthesiz-
es both sample data (IFr), expressed as the likelihood function ( ), and the prior distri-
bution ( ), which represents additional information that is available. The posterior 
distribution ( ) expresses what is known about a set of parameters (in this case, the un-
known parameter is ) based on both the sample data and prior information. A fundamental fea-
ture of the Bayesian approach to statistics is the use of prior information in addition to the ‘ex-
perimental/real’ data. The prior information is represented by a distribution giving the 
probability that  took any particular value based on whatever additional information is given. 
Bayes’s theorem, synthesizing these two sources of information, is applied through Equation 16. 

 

(16) 

The proportionality symbol   expresses the fact that the product of the likelihood function 
and the prior distribution on the right-hand side of Equation 16 must be scaled (sum of probabil-
ity must equal to one) to integrate to one over the range of plausible  values to be a proper 
probability distribution. The scaled distribution  is the posterior distribution for  giv-
en the data IFr. The posterior distribution expresses what is now known about  based on both 
the sample data (likelihood) and the prior information. One way to scale the posterior distribu-
tion is dividing by what is known as the evidence ( ): 

 

(17) 

where  is the posterior probability of the parameter given the ‘experimental/real’ data 
IFr and  is the probability of prior distribution of the parameter . The prior distribution 
function contains information that is known about the problem. In this paper, the prior distribu-
tion is assumed to be Gaussian (Neal 1993): 

 

(18) 

The Gaussian prior has been successfully used to identify a large number of weights in neural 
networks (Gelman et al. 2003, Marwala 2010) and therefore it is assumed that will also be valid 
for the identification of the single updating parameter in this investigation.  

The likelihood function can be defined as the probability of observing the data IFr being con-
ditional on the values of the parameter . Initially, the parameter  is set arbitrarily and the re-
sponse of the theoretical model is generated. The predicted response at some location along with 
the structure, IFt,i(), will differ from the ‘experimental/real’ data, IFr,i, by some amount at in-
stant i. The experimental data is simply the predicted response plus some amount of error at 
each time step. If the error between the predicted and ‘experimental/real’ data is assumed to fol-
low a Gaussian distribution, then the probability that the ‘experimental/real’ data is produced by 
the generated model, under assumed parameter () and some variance () is: 

 

(19) 

From the above, it can be stated that the probability of IFr,i is conditional on the parameter  
and variance , the so-called likelihood probability. The likelihood function along with Equa-
tion 18 is used to obtain the posterior distribution (  at instant i. In Equation 17, 

 is the evidence or marginal likelihood which is a normalized constant that does not de-
pend on or affects the shape of the posterior distribution. The analytical evaluation of  



may be difficult or impossible if the product of the prior and the likelihood is not simple (usually 
a multi-dimensional Gaussian distribution). Therefore, the resulting posterior distribution is not 
well-behaved, i.e. the integration of the posterior distribution does not add to one. A problem as-
sociated with a statistical approach such as Bayesian statistics is that posterior distributions are 
almost always unknown due to the variability and complexity of the parameters to be updated. 
Sampling from the posterior distribution is difficult and sometimes impossible without the use 
of Markov Chain Monte Carlo (MCMC) sampling methods. Nichols et al (2011) apply a new 
method of MCMC, i.e. the Metropolis-Hastings (MH) algorithm, to sample from a posterior dis-
tribution and identify a crack location, its length and orientation. Nichols et al (2010) identify 
linear and non-linear parameters in a Multi-Degree-of-Freedom structure with the MH algorithm 
to sample from the posterior distribution in a Bayesian approach, and they are also able to locate 
and quantify (size and depth) the level of delamination in a composite beam.  

In this paper, the use of such evidence in Bayes’s theorem is excluded by, first, dividing 
Equation 17 by the sum of the prior probability times the likelihood probability instead of the 
use of the term , leading to: 

 

(20) 

In the equation above, Nb is the number of generated beams with different parameter values 
(α’s) and these parameters values are extracted from the prior distribution. So initially Bayes’ 
theorem is used to obtain a posterior distribution of the data assuming it is a Gaussian distribu-
tion. Once the posterior distribution is obtained, it is used as the prior distribution in the next it-
eration if the number of iterations (Ni) is not exceeded. The process is repeated until the variance 
 is sufficiently small and no further iterations are required as the difference of the parameter 
between consecutive iterations becomes negligible or very small. 

Secondly, the use of Equation 17 without using evidence does not give a probability distribu-
tion (i.e. prior distribution × likelihood distribution > 1), therefore a sampling technique is used 
to sample from the posterior distribution  to ensure that the posterior distribution is a 
probability distribution. Sampling techniques are useful numerical methods which can be used 
to simplify the process of Bayesian inference by proposing a set of random samples from a pos-
terior distribution. Therefore, sampling techniques are employed to predict the updating parame-
ter distribution. Although there are different sampling techniques applied in the literature 
(Mthembu et al. 2011, Neal 1993), the MH algorithm is chosen here due to its general, powerful 
and easy implementation. The algorithm constructs a Markov-Chain but does not care about the 
full conditionals. Figure 4 shows the full process of the approach. 

 

 

 
 
Figure 4. Schematic of the HHT combined with Bayesian updating process.  



The main aim of the MH algorithm is to generate dependent samples of parameter estimates that 
fall in the posterior distribution ( ). By letting  = xn (where n = 1…Ni, being Ni the 
number of iterations) as the current value, it is possible to obtain xn+1. The first stage of the MH 
process is to generate a proposal value (xn

*) from a proposal distribution ( ). The pro-
posal distribution is normally chosen as a Gaussian distribution with a mean xn and variance .  
xn

* is either rejected or accepted depending on the acceptance criterion as per Figure 4. The iter-
ation procedure produces Ni dependent samples of xn from an unknown posterior distribution. 

Points made in favor of the Bayesian approach argue that it offers an intuitive and meaningful 
approach to analyzing uncertainty, that it gives the ability to tackle more complex problems and 
that it allows the incorporation of prior information in addition to the ‘experimental/real’ data. 
While classical frequentist approaches do not provide an interval estimate containing the true 
value of the parameter, the Bayesian approach allows the construction of interval estimates 
which do have a probabilistic interpretation. There is controversy with regard to defining the 
prior distribution. A way to represent prior information is to specify skeptical prior distributions 
(which is the case of this paper using Gaussian distribution). In doing so, the idea of selecting a 
non-informative prior fails to exploit the full potential of the Bayesian approach. However, there 
is no unique way in which the prior distribution is defined without a high level of uncertainty.  

4 THEORETICAL TESTING 

This section assumes that the stiffness distribution of the structure in its linear form, i.e. the 
stiffness profile and the boundary conditions of Figure 1 are available. This stiffness distribution 
can be obtained via the application of modal updating techniques based on measurements in free 
vibration of the structure as demonstrated by Mthembu et al (2011). It is also assumed that the 
magnitude and speed of the moving load are known. In practice, these values can be obtained 
from a weigh-in-motion system installed prior to the bridge. Therefore, this section places focus 
upon the identification of stiffness changes of short duration as a result of yielding during forced 
vibration. The relevance of this investigation lays on the possibility of identifying those sections 
that yield more often, and consequently, are weakened and closer to the failure point. This in-
formation can be used to prioritize those bridges (and bridge sections) requiring immediate at-
tention. It is acknowledged that the simulated test conditions here are rather ideal. In a real-life 
situation, there will inaccuracies in the estimates provided by the HHT-statistical optimization 
process derived from the uncertainty associated with noise and parameters assumed for the load 
and the theoretical FE model. 

4.1 Identification of stiffness loss after yielding using HHT 

The response at mid-length of the 1st span (i.e. at a section located 5 m away from first support) 
of a 20 m long two-span continuous beam (as described in Section 2) is obtained when traversed 
by a load of 100 kN moving at 15 m/s. Figure 5 shows the acceleration for a scenario where the 
beam has not reached its yielding point yet. In this figure, the horizontal axis gives the time from 
the instant the load enters the bridge. Therefore, the load will be over the measurement section 
at 0.333 s and over the internal support at 0.667 s. Free vibration starts at 1.33 s. 
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Figure 5. Acceleration at mid-length of the first span due to a load moving at 15 m/s  
without yielding. 



 
 

The IMFs and IFs of the acceleration response in Figure 5 are shown in Figures 6 and 7 respec-
tively. For each IMF, IFs (Equation 14), represented by dots in Figure 7, vary with time, even 
though the stiffness and mass matrices of the system remain constant. This is a consequence of 
the influence of the static component of the response and mode mixing in the EMD process. 
IMFs separate high and low-frequency components, with IMF1 containing the highest frequen-
cies of the signal. IMF3 and IMF2 give the closest IF to the actual first (i.e. 10.63 Hz) and 2nd 
(i.e. 16.38 Hz) natural frequencies of the structure respectively. Mode mixing between consecu-
tive IMFs is evident, especially between IMF1 and IMF2. In the case of IMF1, IFs have values 
close to 100 Hz between 0 and 0.2 s, and around the 4th and 3rd natural frequencies (i.e. 53.8 and 
42.6 Hz) between 0.2 and 0.6 s, and they drop to the 2nd natural frequency after 0.6 s. Mode 
mixing associated with EMD has been mitigated to some extent by the development of tech-
niques such as Ensemble Empirical Mode Decomposition (Aied et al. 2016, Wu & Huang 
2009). 

Figures 5, 6 and 7 correspond to a linear system where the frequencies of the system remain 
constant during the load crossing (mass of the vehicle is assumed to be negligible compared to 
the bridge mass here). When the yield bending moment, My, is exceeded (Figure 2), the response 
of the beam becomes non-linear, and the stiffness matrix must be adjusted as described in Sec-
tion 2.2. If a loss in reinforcement (e.g. reduced steel cross-sectional area due to corrosion) is as-
sumed between 6 and 8 m (Figure 1a), the value of My will be lower than that corresponding to 
an intact steel section (Nickel 1993). In particular, the yield moment My in this hypothetical cor-
roded region has been assumed to be 95% lower than the original intact steel section. This selec-
tion of My guarantees that the section at 7 m will yield before any other elements during the 
crossing of the moving load. Other combinations of load and yield moment could have also been 
employed to demonstrate the ability of the proposed algorithm in capturing and quantifying a 
sudden stiffness loss as it occurs. 

The acceleration at mid-length of the first span is shown in Figure 8 when using  = 0.1 for 
the yielding of the section at 7 m from the first support. The impact of post-yield stiffness on the 
acceleration response is evident after 0.3 s and 0.7 s during which  = 0.1 is acting. The first 
signs of yielding developing at 0.3 s correspond to a location of the load at 0.3*15 = 4.5 m from 
the first support, that is, yielding for the section at 7 m occurs before the load reaches the loca-
tion due to an acting moment that has already exceeded My. However, the impact and level of 
yielding are not clear from the acceleration response alone.  
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Figure 6. IMFs 1-4 of the acceleration at mid-length due to a load moving at 15 m/s  

without yielding. 

 



 
Figure 7. Instantaneous frequency of acceleration at mid-length of 1st span without yielding  
due to a load moving at 15 m/s for: (a) IMF1, (b) IMF2, (c) IMF3, and (d) IMF4.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Acceleration at mid-length of the first span due to a load travelling at 15 m/s using  = 0.1:  
(a) total response in forced vibration, (b) response before section at 7 m yields and enters the plastic  
range (0.35 s), and (c) response after section at 7 m re-enters the elastic range (0.9 s).  

 
 

Figure 9 shows the IMFs 1-4 corresponding to the acceleration in Figure 8. There are sharp 
peaks around 0.35 s and again around 0.7 s. As previous research has shown using other struc-
tural models (Aied et al. 2016, Meredith et al. 2012), these sharp peaks can be used to identify 
periods of stiffness changes (i.e. due to the presence of damage). The IFs of IMFs 1-4 are shown 
in Figure 10. As expected, the disturbances introduced by stiffness changes at the 7 m section, 
are also captured by the associated IFs in the form of sudden discontinuities. 
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Figure 9. IMFs 1-4 of acceleration at mid-length due to a load travelling at 15 m/s using  = 0.1. 

 

 
Figure 10. Instantaneous frequency of acceleration at mid-length of 1st span due to a load 
travelling at 15 m/s using  = 0.1 for: (a) IMF1, (b) IMF2, (c) IMF3, and (d) IMF4. 

 

 
Figure 11a shows the ‘real’ variation of stiffness with time using  = 0.1 at the section under in-
vestigation and Figure 11b shows the IP of the acceleration signal in Figure 10a. Figure 11b has 
been calculated by applying Equation 12 and Figure 11a has been obtained following Section 
2.2. The IP in Figure 11b captures the time instants of stiffness drop (i.e. post-yield stiffness) at 
0.35 s and 0.7 s, but it is less clear when the stiffness drops at 0.41 s and 0.5 s. This is attributed 
to the duration of the stiffness drop, being longer at times 0.35 s and 0.7 s than at 0.41 and 0.5 s. 
At 0.5 s there are two consecutive drops in stiffness of shorter duration than other peaks. The de-
rivative of the IP leads to the IF and as expected, post-yield stiffness in Figure 11b is denoted by 
a sudden change in slope (i.e. larger gradients in the phase) when yielding occurs.   

In Figure 12, the IPs of IMF1 are calculated for two simulations with a load velocity of 5 m/s 

and two  values of 0.1 (large stiffness loss) and 0.8 (small stiffness loss). The ‘real’ stiffness 
change with time is shown in Figures 12a and 12c for  = 0.1 and   = 0.8 respectively. 



 
Figure 11. (a) Instantaneous stiffness and (b) Instantaneous phase associated with IMF1  
of the acceleration at mid-length of 1st span due to a load travelling at 15 m/s using  = 0.1. 

 

 
Figure 12. Instantaneous stiffness and instantaneous phase associated to IMF1 of the  
acceleration at mid-length of 1st span due to a load travelling at 5 m/s using  = 0.1  
in (a) and (b), and using  = 0.8 in (c) and (d). 



Stiffness changes can be identified more clearly in Figure 12b (lower speed) than in Figure 11b. 
The time duration of the drop in stiffness is almost instantaneous due to loading and unloading 
scenarios of the moving load. Figures 12b and 12d denote the time instances when post-yield 
stiffness starts to develop by large gradients at approximately 1 second. While Figure 12b is able 
to approximately resemble the pattern in Figure 12a after that initial instant, Figure 12d is un-
clear. 

This section has demonstrated the capability of the HHT for identifying and localizing a non-
linear response in time. IMFs, IFs and IPs have all left evidence of stiffness changes. As ex-
pected, this evidence has been clearer for the lowest speed and the lowest . In order to quantify 
the post-yield stiffness, IFs are preferred as input for the updating methods in the next section on 
the basis of its physical meaning.  

4.2 Quantification of post-yield stiffness using a statistical approach 

The IF of acceleration extracted in Section 4.1 is used as input to cross-entropy and Bayesian 
statistical methods to identify the  value for the section at 7 m. In this procedure, it is important 
to choose the correct IMF. For the case of a load travelling at 15 m/s, IMF2 appears to be the 
most sensitive IMF to changes in stiffness. For instance, IMF1 exhibits higher interference of 
other frequency components than IMF2. There are obvious differences between the IFs associat-
ed with IMF2 for a response with  = 0.1 (Figure 10b) and the IFs associated with IMF2 for a 
response without yielding (Figure 7b). In the procedure that aims to minimize the objective 
function defined by Equation 15, it is not necessary to choose the IFs for the entire duration of 
the load crossing, but only those IFs within a time interval where there are potential signs of ini-
tiation and decline of the post-yield stiffness loss effect. For  = 0.1, the impact of loss in stiff-
ness on IF of IMF2 can be visualized in Figure 13 between 0.35 s and 0.6 s, while between 0.8 s 
and 1.1 s the IF is close to the 4th natural frequency of the structure.  
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Figure 13. Range of IFs used in the optimization procedure. 

 
 
Once the time interval from 0.35 s to 0.6 s has been established,  can be calculated by two al-
ternative means: cross-entropy and Bayesian statistics described in Sections 3.2.1 and 3.2.2 re-
spectively. The accuracy of cross-entropy and Bayesian estimations of  is illustrated by Figures 
14 and 15 respectively, for three different levels of post-yield stiffness loss:  = 0.1 (high stiff-
ness loss in post-yielding),  = 0.2 and   = 0.8 (low stiffness loss in post-yielding). In all cases, 
Bayesian statistics and cross-entropy detect the value of  exactly with the exception of a small 
inaccuracy in the prediction of  = 0.8 by cross-entropy (Figure 14c).  

The parameters employed in the cross-entropy procedure are a total of 1000 trial beams gen-
erated in each iteration with an initially assumed normal distribution for  of mean 0.5 and 
standard deviation 0.5. The convergence criterion is established as the difference between stand-
ard deviations in consecutive iterations being less than 1%. It is interesting to note that the final 
distribution in Figure 14c associated with the inaccurate prediction of  has a wider standard 
deviation than the final narrow distributions in Figures 14a and 14b associated with exact pre-
dictions. 



 
Figure 14. Cross-entropy method for identification of post-yield to pre-yield stiffness  
ratio using: (a)  = 0.1, (b)  = 0.2, and (c)  = 0.8. 

 
 

Bayesian statistics is founded on maximizing the likelihood function. From 1000 generated 
beams (Nb = 1000), the most likely value that fits the IFs is chosen and used as a prior probabil-
ity and the process of Bayesian inference is repeated for the same beams until a value is reached 
with highest posterior probability. When 1000 beams are generated (with similar properties but 
different parameter ), their likelihoods (Equation 19) are assessed, and their posterior distribu-
tion is then calculated. The value with the highest posterior probability is used as the prior mean, 
while the variance is obtained from the values generated by the prior distribution. For example, 
at the 200th iteration, the posterior probability distribution may have a mean of 0.15 (if ‘real’  = 
0.1) and variance of 0.2, which are used as the mean and variance for the prior distribution from 
which 1000 ’s are generated. This is repeated until the difference between consecutive stand-
ard deviations is minimal, i.e. smaller than 1%. The validity of this assumption is discussed fur-
ther on using a sampling method. While the distributions using cross-entropy are plotted for the 
x-axis () from 0 to 1 in Figure 14, the posterior distributions using Bayesian analysis have a 
wider standard deviation and they are represented from −1 to 1 in Figure 15 for illustrative pur-
poses. This is attributed to the variance associated with 1000 beams considered by Bayesian 
analysis in contrast to 100 beams (i.e. top 10%) considered by cross-entropy.  

 



 
Figure 15. Bayesian statistics for identification of post-yield to pre-yield stiffness  
ratio using: (a)  = 0.1, (b)  = 0.2, and (c)  = 0.8. 

 

 
Table 1 provides errors in the estimation of  using Bayesian statistics, for a load speed of 15 
m/s and different levels of post-yielding stiffness and iterations. Table 2 gives relative errors in 
the estimation of post-yielding stiffness using Bayesian statistics, for a value  = 0.1 and differ-
ent load speeds and iterations. In Tables 1 and 2, pr and pr

2 are the prior mean and variance 
while po and po

2 are the posterior mean and variance, respectively. These tables show that 
1000 iterations lead to negligible errors and better results than 100 iterations.  

 

 
Table 1. Mean and variance of the iteration process using Bayesian statistics for different . 

Actual 

value 
Prior  100 iterations (posterior)        1000 iterations (posterior) 

 pr 2
pr po 2

po %Error po 2
po %Error 

0.1 0.5 0.5 0.0926 0.1 7.4 0.0986 0.0316 1.4 

0.2 0.5 0.5 0.1907 0.1 4.65 0.1994 0.0316 0.3 

0.8 0.5 0.5 0.7981 0.0704 0.24 0.8 0.0316 0 

 



Table 2. Mean and variance of iteration process using Bayesian statistics,   = 0.1 and different speeds. 

 = 0.1 Prior  100 iterations (posterior)     1000 iterations (posterior) 

Speed 

(m/s) 

pr 2
pr po 2

po %Error po 2
po  %Error 

15 0.5 0.5 0.0926 0.1 7.4 0.0986 0.0316 1.4 

25 0.5 0.5 0.2597 0.0987 159.7 0.1009 0.0316 0.9 

35 0.5 0.5 0.0992 0.1 0.8 0.1002 0.0316 0.2 

 
 
Section 3.2.2 explains that in Bayesian statistics, it is always difficult to obtain a well behaved 
posterior distribution of the data due to the properties of Bayes’ theorem and the marginal likeli-
hood function. In this paper, it is initially assumed that the posterior distribution is a normal dis-
tribution and the maximum likelihood function is used to calculate the parameter that fits the da-
ta best. The MCMC approach is applied using the MH algorithm to sample from an unknown 
posterior distribution. The sampled values have an initial value of  (mean of the posterior 
distributions from Tables 1 and 2) and are plotted for true  = 0.1 in Figure 16a and for true  = 
0.8 in Figure 17a. As discussed before, the sampled values do not correspond to any distribution. 
The frequencies of the values sampled from the posterior distribution are plotted in Figures 16b 
and 17b, where  values around 0.1 and 0.8 in Figure 16 and around 0.4, 0.5 and 0.8 in Figure 
17 produce the highest number of acceptance rate.   

Cross-entropy and Bayesian statistics have proven to estimate the post-yield stiffness to pre-
yield stiffness ratio from the IFs successfully. The Bayesian approach has appeared to be more 
robust than cross-entropy, but the latter is simpler and easier to implement. Benefits of the 
Bayesian approach are its flexibility and possibility of integration with different sampling tech-
niques such as MH algorithm and nested sampling. Regarding computational time, the Bayesian 
approach has performed faster, i.e. the cross-entropy simulations needed to find the solution in 
Figure 14a take around 2.5 hours for 1000 generated beams (Nb = 1000) compared to the Bayes-
ian simulations for 1000 iterations taking between 1 and 2 hours, based on a HP Intel Core i7 
windows system with 3.5 GHz RAM and 64-bit operating system. 

 

 
Figure 16. Sampled values of   from the posterior distribution at 15 m/s seeking for true  
 = 0.1: (a) sampled value at each iteration and (b) frequency of  after 1000 iterations. 



 

 
Figure 17. Sampled values of  from the posterior distribution at 15 m/s seeking for true  
 = 0.8: (a) sampled value at each iteration and (b) frequency of  after 1000 iterations. 

5 CONCLUSIONS 

A reasonably accurate FE model of a structure can be calibrated via field testing. Then, vibration 
measurements will be compared against the model periodically to identify permanent stiffness 
changes. However, there are other types of stiffness changes that are only transitory and of very 
short duration, i.e. those due to yielding. The identification of these short-duration changes can 
be important to ensure the safety of the structure, i.e. by identifying those sections more sensi-
tive to changes and as a result, to failure. For that purpose, this paper has proposed a mathemati-
cal procedure that predicts the level of post-yield stiffness loss in a bilinear damaged continuous 
beam using a two-stage process. In the first stage, the HHT has been applied to the acceleration 
response to calculate the associated instantaneous frequency response and to locate the period at 
which changes in stiffness take place. Sudden stiffness changes have been revealed in three 
types of outputs of the HHT: (i) as sharp peaks in the intrinsic mode functions, (ii) as disconti-
nuities in the instantaneous frequencies, and (iii) as high gradients of the slope in the instantane-
ous phases. In a second stage, instantaneous frequencies associated with a time interval experi-
encing a post-yield stiffness have been used to quantify the change. Two alternative statistical 
methods have been tested for exploring the solution space: cross-entropy and Bayesian statistics. 
Bayesian statistics have shown to be more robust and faster than cross-entropy. The level of 
post-yield stiffness has been successfully quantified for different stiffness losses and speeds of 
the moving load. 

Although preliminary results in this paper have been promising, it is acknowledged that in a 
field test, the values of parameters of the theoretical model assumed to be known may be inaccu-
rate or simply unavailable. Corrupted measurements and poor selection of parameters for the 
theoretical model due to wrong assumptions will unavoidably lead to a loss of accuracy in the 
estimation of the variable/s targeted by an HHT-statistical optimization process. Therefore, fur-
ther fieldwork and theoretical simulations are needed to investigate how uncertainties associated 
with damping, noise, a full vehicle-bridge interaction system and/or more than one source of 



non-linearity can affect the performance of the proposed method for identifying and quantifying 
transitory stiffness changes in a structure. 
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