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Abstract

This paper is concerned with the evaluation of the
ability of data-driven predictive models to capture the
demand response potential in residential buildings. A
mid-floor apartment with an air to water heat pump
for space heating, utilised as an archetype dwelling, is
simulated using EnergyPlus. The research is focused
on forecasting the electrical demand from the heating
load for the coldest month of the year, considering two
types of DR events, load reduction and load increase.
After the generation of the synthetic database, an
artificial neural network model and a support vector
machine model are examined regarding their ability
to predict the electrical demand from heating loads.

Introduction

The integration of renewable energy sources (RESs)
requires more flexibility from the power system, due
to the variable and uncertain nature of RESs, partic-
ularly wind and solar generation. Utilisation of the
flexibility offered by electricity demand side manage-
ment (DSM) and demand response (DR) is one pos-
sible strategy. DSM is defined as the modification of
customer electricity demand in order to coincidentally
effect desirable changes in the electric utility load, in
both magnitude and shape, as well as reduce cus-
tomer expenses (Gellings, 1985). Several advantages
are linked with the correct application of DSM, as
listed below (Corbin and Henze, 2016; Strbac, 2008;
Pina et al., 2012; Warren, 2014):

• reduce generation margin used to handle peak
demands;

• improved operational efficiency in generation,
transmission and distribution of electric power;

• lower price volatility;

• reduced electricity costs for customers;

• more cost-effective utility system investments,
and;

• a cost-effective integration of RESs.

DR is one form of DSM and is defined as the changes
in electric usage, implemented directly or indirectly
by end-use customers, from their normal consump-
tion patterns in response to certain signals (He et al.,
2013). The outcome of DR load shaping alters the

electric load profile of electrically driven heating ven-
tilation and air conditioning (HVAC) systems by dis-
sociating in time the demand for electrical and ther-
mal power, which could result in operational benefits
on the power system level (Arteconi et al., 2012).

Forecasting of building electrical demand from ther-
mal loads will be of vital importance to grid oper-
ators, aggregators and building energy management
systems. These forecasts could offer comprehensive
knowledge regarding the DR potential in different
building types and may be able to offer useful in-
sight to the power system, as already targeted by
IEA (Jensen, 2014). Three major categories of models
which can simulate or predict the electricity load of
individual buildings exist in the literature (Foucquier
et al., 2013; Zhao and Magoulès, 2012): building en-
ergy simulation, resistance-capacitance network and
data-driven models. Predictions of building electrical
demand from thermal loads can be estimated using
appropriate simulation software (Crawley et al., 2008)
when detailed data such as building geometry, occu-
pancy as well as environmental variables are avail-
able. In reality, such data are often unknown, espe-
cially for older buildings, where uncertainty arising
from parameter and occupancy estimation can lead
to significant additional modelling efforts (Kwok and
Lee, 2011). An alternative way to forecast these loads
for residential buildings is to take advantage of smart
metering data. These data records include underly-
ing information regarding building thermal response
and can be introduced to data-driven models, which
utilise extensive assessment of input and output vari-
ables, in order to produce accurate predictions (Fouc-
quier et al., 2013). In particular, data-driven models
require measured historical data of buildings to ac-
curately predict the electrical demand from thermal
loads. An obvious drawback regarding the implemen-
tation of data-driven models to capture the DR po-
tential is the fact that it is unlikely to obtain a reliable
database of residential buildings that includes histor-
ical DR events.

The main objective of the current paper is the eval-
uation of the performance of data-driven models in
capturing DR potential of heating loads in residen-
tial buildings. An archetype approach for character-



ising the existing building stock in Ireland is adopted
in the context of the present research. The imple-
mentation of residential building archetypes with the
present methodology could provide an estimation of
DR potential at city or even national scale.

Background

The literature is rich with various models which apply
machine learning algorithms to predict the electricity
load of individual buildings. The difference of ma-
chine learning techniques with building energy simu-
lation models is the fact that they do not require any
physical information of the building as input (Fouc-
quier et al., 2013). Heat transfer equations, geomet-
rical parameters and thermal properties are not ex-
pected in machine learning algorithms. These algo-
rithms are based on the implementation of a function
deduced only from samples or training data, which
capture the thermal response of a building (Foucquier
et al., 2013). Several algorithms have been used to
build predictive models implementing machine learn-
ing techniques. The most common algorithms used in
the literature to achieve forecasting of building elec-
tricity and thermal loads are artificial neural network
(ANN) and support vector machine (SVM).

ANNs have been applied to analyse various types of
building energy consumption, as well as electrical and
heating loads. Kalogirou et al. (1997, 2001) imple-
mented ANN at an early design stage to predict the
required heating load of buildings. Input data in-
cluded the areas of windows, walls and floors, the
type of windows and walls, roof classification and the
room temperature. The relative error of the network
was 3.5%. González and Zamarreño (2005) used an
ANN approach to predict the hourly energy consump-
tion in buildings. The inputs of the network were
current and forecasted values of ambient air temper-
ature, the current load, the hour and the day. Yang
et al. (2005) evaluated the performance of adaptive
ANN models that are capable of adapting themselves
to unexpected pattern changes in the incoming data.
Two adaptive models were proposed and evaluated,
accumulative training and sliding window training.
These models can be used for real-time on-line build-
ing energy prediction. Moreover, they used both sim-
ulated (synthetic) and measured datasets. Neto and
Fiorelli (2008) compared an ANN model with a build-
ing energy simulation model, developed with Energy-
Plus, regarding their ability to forecast the energy
demand in an administration building in Sao Paulo,
Brazil. Two ANN models were developed, one with
five input variables (external temperature, humidity,
two solar radiation parameters and day-type) and one
with two input variables (external and internal tem-
perature). Results from both ANN and EnergyPlus
models appeared to be close indicating their suitabil-
ity for energy consumption forecast. Ekici and Aksoy
(2009) used an ANN to predict building energy needs

benefiting from orientation, insulation thickness and
transparency ratio. A back propagation network was
preferred and available data were normalised before
being presented to the network. The calculated values
compared to the outputs of the network gave satisfac-
tory results with a deviation of 3.4%. More recently,
Burger and Moura (2015) formulated an ensemble
machine learning method that performs model valida-
tion and selection in real time using a gating function.
The ensemble models was designed to forecast build-
ing electricity demand, by learning from electricity
demand data streams, while requiring little knowl-
edge of energy end-use. The models was tested both
on commercial and residential buildings. In particu-
lar, 24 residential buildings were used and the gener-
ated electricity demand forecasts had a mean absolute
percent error of 55.8%.

SVM models have been used more recently for pre-
dicting energy consumption in buildings. Lai et al.
(2008) employed the SVM as a data mining tool for
the prediction of the electrical consumption in resi-
dential sector in the region of Tohoku, Japan. Data
from outdoor and indoor air temperatures and hu-
midities were considered as input parameters. Kavak-
lioglu (2011) used a regression SVM model to pre-
dict the electricity consumption in Turkey. Electric-
ity consumption was predicted until 2026 using data
from 1975 to 2006. The radial basis was used as
the kernel function of the SVM model, while the in-
put variables were socio-economic indicators such as
population, Gross National Product, imports and ex-
ports. Results illustrated that electricity consump-
tion can be modelled using a regression SVM model,
which can be used to predict future electricity con-
sumption. Che et al. (2012) developed an adaptive
fuzzy combination model based on a self-organizing
map, an SVM and the fuzzy inference method to pre-
dict the electrical load in New South Wales. It was
demonstrated that the adaptive fuzzy combination
model can effectively count for electric load forecast-
ing with good accuracy and interpretability at the
same time. Li et al. (2010) predicted the annual en-
ergy consumption of residential buidlings using four
different machine learning algorithms such as SVM
and three types of ANN, the traditional back propa-
gation neural network, the radial basis function neu-
ral network as well as the general regression neural
network. Their study was based on 59 residential
buildings in Guangdong, China and the obtained re-
sults demonstrated that the SVM model was more
accurate that the ANN models.

The research field related to building energy con-
sumption (both electrical and thermal loads) forecast-
ing has been very active, involving the implementa-
tion of various ANN and SVM data-driven models.
Nevertheless, it is clear from the literature that lit-
tle attention has been given to the ability of data-
driven models to capture the DR potential of resi-



dential buildings. The reason behind this research
gap might be the fact that it is unlikely to obtain a
reliable database of residential buildings that includes
historical DR events.

Methodology
To evaluate the ability of data-driven models to cap-
ture the DR potential of residential buildings, a syn-
thetic database for a reference dwelling is generated
utilising EnergyPlus. In this way the deficiency of
obtaining a reliable database of residential buildings
that includes historical DR events is avoided. The
methodology developed and implemented in this pa-
per consists of four stages:

i Generation of a synthetic database, for an
archetype dwelling;

ii Introduction of DR events at the synthetic
database;

iii Development of data-driven predictive models,
and;

iv Evaluation of the accuracy of predictive models.

Generation of Synthetic Database

The reference dwelling used in this paper, is an
archetype of a mid-floor apartment in Ireland, as il-
lustrated in Figure 1 (Neu et al., 2014). In general,
the development of building archetype models, being
representative of a group of dwellings and dwelling
loads, allows modelling and simulation of the perfor-
mance of building stock as a whole. Moreover, this
approach complements a power system perspective
on the aggregated DR potential offered by residential
dwellings through the implementation of DSM strate-
gies, as emphasized by Ma et al. (2013).
The mid-floor apartment utilised is considered an
archetype due to the integration of the necessary
operational data with high space and time resolu-
tion (15-minutes). This data subset is built upon
the bottom-up approach proposed by Neu et al.
(2013), by implementing an adjusted Markov-Chain
Monte Carlo technique, pioneered by Richardson
et al. (2008). This technique is applied to the 2005
Irish time-use survey (TUS) activity data (ESRI,
2005a), thus taking into account end-user behaviour.
Activity-specific profiles for occupancy, electrical ap-
pliance and lighting use, domestic hot water (DHW)
demand (Neu et al., 2013, 2014, 2016) are developed
following this technique. These operational inputs

Figure 1: Mid-floor apartment archetype.

were verified against surveyed (ESRI, 2005b) and me-
tered data (CER, 2012).
Moreover, the simulated outputs from the dwelling
archetype model were validated against the dwelling
energy assessment procedure (DEAP) methodology
(SEAI, 2012), in terms of annual electricity, space
and water heating requirements and daily DHW de-
mand (Neu et al., 2014, 2016). The validation was
performed using the International Weather for En-
ergy Calculations (IWEC) data (ASHRAE, 2001). In
addition, the archetype is considered over two dif-
ferent construction periods, new and existing. The
new construction of the archetype was built in accor-
dance with the latest Irish building regulations (DE-
CLG, 2011), while existing constructions do not meet
the standards set by these regulations, particularly in
terms of the building envelope insulation level, infil-
tration and ventilation levels. This approach allows
variations in energy performance and potential elec-
trical flexibility resource across different construction
periods to be captured on a 15-minute basis.
The system used for space heating of the archetype is
an air to water heat pump. In the context of investi-
gating the DR potential of residential buildings, space
and water heating systems are expected to offer larger
potential for flexible operation than electrical appli-
ances and non-heating loads (CER and UR, 2011).
Furthermore, the shift from fossil fuel-based space
and water heating systems, such as gas or oil-fired
boilers, towards electrified and more energy-efficient
technologies, such as heat pumps, is foreseen both
globally (IEA, 2011) and in the European Union (Eu-
relectric, 2011). Among those technologies consid-
ered by the IEA (2011) for space and water heating,
heat pumps contribute to more than 40% of building-
related carbon dioxide emissions by 2050. Thus, a
heat pump is chosen in this study as a replacement
for gas and oil-fired boilers to meet the space and wa-
ter heat demands of the new and existing archetypes.

Introduction of DR Events at the Synthetic
Database

To evaluate the ability of data-driven predictive mod-
els to capture the DR potential of the electrical de-
mand from the heating load, the coldest month of
the year was selected to be examined. The location
of the archetype was to be in Dublin, Ireland, hence
the coldest month based on IWEC data is February.
The archetype dwellings, both new and existing, are
initially simulated without the presence of any DR
event and subsequently with a DR event occurring
daily and weekly. The two scenarios investigated in
the current research, weekly and daily, reflect a mod-
erate and an excessive implementation of DR event
strategy from grid operators, respectively.
Furthermore, two types of DR events, load reduc-
tion and load increase, by changing the setpoints of
the heating system thermostat, are considered, while
maintaining the thermal comfort of the occupants



within acceptable limits. More precisely, in response
to a signal sent to the thermostatically controlled
space heating system, the temperature setpoints are
varied. These are either decreased or increased in
value until their minimum or maximum limits of op-
eration, thus simulating a load reduction or increase
event, respectively. A one-hour load variation (reduc-
tion or increase) event is considered, lying within the
range of durations specified by EirGrid (2015) for de-
mand side resources, which varies from half an hour
to two hours. Following the one-hour DR event (re-
duction or increase), the setpoint values are returned
to their initial settings.
The occurrence time of the load reduction DR event
is selected to be from 18:00 to 19:00, while regard-
ing the load increase DR event is set from 16:00 to
17:00, for both scenarios under investigation, weekly
and daily. The load reduction DR event is initiated
at 18:00, in order to curtail the evening peak in con-
sumption of residential buildings. Likewise, the load
increase DR event is designed to avoid the evening
peak, by pre-heating the archetype starting at 16:00.
Moreover, the days when the DR event is occurring
for the weekly scenario are selected randomly and are
Monday for the first week, Thursday for the second
week, Wednesday for the third week, Friday for the
fourth week and Tuesday for the fifth week.

Development of Data-Driven Models

Following the generation of the synthetic database,
ANN and SVM data-driven models are examined re-
garding their ability to predict the electrical demand
from heating loads, with and without DR events. The
development of the models is performed considering
only the weekdays of the coldest month. Weekend
days are excluded due to the completely different
electrical demand profiles of residential buildings over
weekends.
Initially, the datasets are divided into two partitions,
training and testing, which are used to train and test
the developed predictive models. Each partitions con-
sists of eleven weekdays. In particular, the training
partition consists of the weekdays from 30th of Jan-
uary to 13th of February, while the testing partition
consists of the weekdays from 14th to 28th of Febru-
ary. The input variables of the data-driven predictive
models in the context of this research are time, am-
bient air temperature, ambient air relative humidity,
solar radiation, wind speed, zone air temperature of
the four zones of the archetype dwelling and a binary
variable indicating if there is a DR event in place or
not. The output of the predictive models is the elec-
trical demand associated with the heating loads of
the archetype. Moreover, individual predictive mod-
els are developed for predicting the electrical demand
from heating loads, when daily and weekly DR events
are included in the dataset.
The ANN predictive models are ensemble models de-
veloped using boosting, which generates a sequence of

models to obtain more accurate predictions. Boosting
produces a succession of models, each of which is built
on the same training partition of the dataset. Prior
to building each successive model, the input variable
measurements are weighted, based on the residuals of
the previous model. Measurements with large residu-
als are given relatively higher analysis weights, so that
the next model focuses on predicting these records
better. In addition, the ANN models connect the in-
put to the output variable through the hidden layers
using the multilayer perceptron (MLP) structure and
the sigmoid activation function.
The SVM predictive models use a machine learning
regression algorithm that maximizes the prediction
accuracy without overfitting the training data. A ker-
nel function is implemented when applying the SVM
algorithm in order to overcome the presence of non-
linearity relationships between input and output vari-
ables. The kernel function selected is the polynomial
one.
The IBM SPSS Modeler 14.2 software (IBM Corp.,
2011) was used for the development of the predic-
tive models using a computer with an Intel Core i7-
3630QM processor and 8 GB of DDR3 RAM. The
settings of the ANN and the SVM models are selected
automatically from the software with the objective to
enhance the models accuracy. The ANN model struc-
ture can not be extracted from the software when the
boosting option is selected, while the details of the
most accurate SVM algorithm are as follows:

• regularization parameter (C) equal to 10;
• regression precision epsilon (ε) equal to 0.1;
• gamma (γ) equal to 1;
• bias parameter equal to 0.8, and;
• degree of complexity set to 6.

Evaluation of Accuracy of Predictive Models

The evaluation of the accuracy of the data-driven pre-
dictive models is based on their performance with the
testing partition of the synthetic datasets. The over-
all accuracy of each predictive model is calculated
based on the coefficient of variation of the root mean
square error (CV-RMSE):

CV −RMSE =
RMSE

ȳ
=

√
n∑

i=1
|yi−ŷi|2

n

ȳ
(1)

where, y are the actual values, ŷ are the predicted
values of the electrical demand associated with the
heating loads of the archetype, ȳ is the mean of the
actual values and n is the total number of timesteps
summed up at the testing partition period.
Further to the overall accuracy of the predictive mod-
els, specific days of the testing dataset are monitored
in order to evaluate the ability of the predictive mod-
els to capture the occurring DR events and sudden
changes to the electrical demand from heating loads
of the archetype.



Table 1: CV-RMSE of data-driven models.

Building Construction Scenario ANN SVM

Existing

Without DR event 2.448 2.028
Daily DR load increase 1.788 1.551

Daily DR load reduction 2.850 1.961
Weekly DR load increase 3.192 1.916

Weekly DR load reduction 2.853 1.996

New

Without DR event 2.157 2.102
Daily DR load increase 1.391 1.342

Daily DR load reduction 2.092 1.813
Weekly DR load increase 2.619 1.788

Weekly DR load reduction 2.397 1.925

Results and Discussion

Once the synthetic database is generated using the
archetype dwelling, ANN and SVM data-driven mod-
els are investigated regarding their ability to predict
the electrical demand from heating loads, with and
without DR events. The overall results regarding the
accuracy of the data-driven models are summarised
in Table 1. It is observed that for all the scenarios
examined, the SVM predictive model performs bet-
ter than the ANN model. Furthermore, it is noticed
that the most accurate results, of both construction
periods, are obtained for the scenario when a load
increase DR event is occurring daily. The least accu-
rate results for the ANN predictive models, of both
construction periods, are captured for the scenario
when a load increase DR event is occurring weekly. In
general, the SVM predictive models forecast the elec-
trical demand from heating loads at the same level
of accuracy, while the least accurate results, of both
construction periods, appear for the scenario without

the presence of a DR event.

Additionally, to the overall accuracy of the predictive
models, specific days of the testing partition of the
dataset are plotted, in order to visualise and evalu-
ate the ability of the predictive models to capture the
occurring DR events as well as other sudden changes
to the electrical demand from heating loads of the
archetype. The days selected for each scenario are
the 21st, 20th and 28th of February, when none, daily
and weekly DR event are included in the dataset, re-
spectively.

The performance of the ANN and SVM predictive
models for the scenario without DR event, is pre-
sented in Figure 2 (a) and (b) for the existing and
new construction period, respectively. The visual-
isation of the prediction of the data-driven models
provides the ability to make useful observations. Ini-
tially, it is noted that neither the ANN or the SVM
models, where able to predict the sudden changes of
the electrical demand from heating loads appearing
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Figure 2: Prediction of electrical demand from heating load without DR event. (continued)
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Figure 2: Prediction of electrical demand from heating load without DR event.

within the day, both for the existing and the new
construction of the archetype. These sudden changes
were observed with various magnitudes and occur-
rence times from one day to another, thus making
it difficult for the predictive models to capture them
accurately. Moreover, the ANN predictive model did
not manage to accurately forecast the electrical de-
mand, while generated some negative predictions as
well. On the contrary, the SVM predictive model il-
lustrates the ability to forecast accurately the base

electrical demand of the existing and new construc-
tion archetype.

Figure 3 (a) and (b), depicts the performance of the
predictive models for the scenario with daily DR load
increase event, for the existing and new construction
period, respectively. The load increase DR event is
set from 16:00 to 17:00 and it is noticed that both
ANN and SVM models manage to capture that in-
crease. Overall, once again it is observed that the
SVM model manages to forecast the base electrical
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Figure 3: Prediction of electrical demand from heating load with daily DR load increase event. (continued)



-1

0

1

2

3

4

5

6

20
/2

 0
0:

00
:0

0

20
/2

 0
1:

00
:0

0

20
/2

 0
2:

00
:0

0

20
/2

 0
3:

00
:0

0

20
/2

 0
4:

00
:0

0

20
/2

 0
5:

00
:0

0

20
/2

 0
6:

00
:0

0

20
/2

 0
7:

00
:0

0

20
/2

 0
8:

00
:0

0

20
/2

 0
9:

00
:0

0

20
/2

 1
0:

00
:0

0

20
/2

 1
1:

00
:0

0

20
/2

 1
2:

00
:0

0

20
/2

 1
3:

00
:0

0

20
/2

 1
4:

00
:0

0

20
/2

 1
5:

00
:0

0

20
/2

 1
6:

00
:0

0

20
/2

 1
7:

00
:0

0

20
/2

 1
8:

00
:0

0

20
/2

 1
9:

00
:0

0

20
/2

 2
0:

00
:0

0

20
/2

 2
1:

00
:0

0

20
/2

 2
2:

00
:0

0

20
/2

 2
3:

00
:0

0

E
le

ct
ri

ca
l d

em
an

d 
fr

om
 h

ea
tin

g 
lo

ad
 (k

W
)

Date / Time

Actual ANN SVM

(b) New construction

Figure 3: Prediction of electrical demand from heating load with daily DR load increase event .

demand better than the ANN model. Regarding the
archetype with the existing construction, two peaks
are taking place within the day under examination,
the first of which none of the models manages to cap-
ture, while the second one is captured only by the
ANN model. Despite the fact that the ANN model
predicted the second peak, its predictions prior to the
peak are far from the actual electrical demand. There
is only one sudden peak for the archetype with the
new construction, but none of the models was able to

capture it.

The performance of the predictive models for the sce-
nario with daily DR load reduction event, is displayed
in Figure 4 (a) and (b) for the existing and new con-
struction period, respectively. The load reduction
DR event is set from 18:00 to 19:00 and it is no-
ticed that both ANN and SVM models manage to
capture that reduction for the archetype with the ex-
isting construction type. On the contrary, only the
SVM model performed closely to the actual electrical
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Figure 4: Prediction of electrical demand from heating load with daily DR load reduction event. (continued)



-1

0

1

2

3

4

5

20
/2

 0
0:

00
:0

0

20
/2

 0
1:

00
:0

0

20
/2

 0
2:

00
:0

0

20
/2

 0
3:

00
:0

0

20
/2

 0
4:

00
:0

0

20
/2

 0
5:

00
:0

0

20
/2

 0
6:

00
:0

0

20
/2

 0
7:

00
:0

0

20
/2

 0
8:

00
:0

0

20
/2

 0
9:

00
:0

0

20
/2

 1
0:

00
:0

0

20
/2

 1
1:

00
:0

0

20
/2

 1
2:

00
:0

0

20
/2

 1
3:

00
:0

0

20
/2

 1
4:

00
:0

0

20
/2

 1
5:

00
:0

0

20
/2

 1
6:

00
:0

0

20
/2

 1
7:

00
:0

0

20
/2

 1
8:

00
:0

0

20
/2

 1
9:

00
:0

0

20
/2

 2
0:

00
:0

0

20
/2

 2
1:

00
:0

0

20
/2

 2
2:

00
:0

0

20
/2

 2
3:

00
:0

0

E
le

ct
ri

ca
l d

em
an

d 
fr

om
 h

ea
tin

g 
lo

ad
 (k

W
)

Date / Time

Actual ANN SVM

(b) New construction

Figure 4: Prediction of electrical demand from heating load with daily DR load reduction event.

demand during the DR event period for the new con-
struction archetype. An interesting observation for
this scenario, is that none of the predictive models
manage to capture the rebound effect occurring at
19:00 right after the DR event ended, for both exist-
ing and new construction types of the archetype. Fur-
thermore, similarly with the previous examined days,
the SVM model manages to forecast the base electri-
cal demand better than the ANN model, while none
of them captures the sudden peak occurring within

the day under examination.

Figure 5 (a) and (b), presents the performance of the
predictive models for the scenario with weekly DR
load increase event, for the existing and new con-
struction period, respectively. During the load in-
crease DR event (from 16:00 to 17:00) both ANN
and SVM models overestimate the potential increase
for the new construction type of the archetype. Re-
garding the archetype with the existing construction,
the ANN slightly underestimates and the SVM model
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Figure 5: Prediction of electrical demand from heating load with weekly DR load increase event. (continued)



-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

28
/2

 0
0:

00
:0

0

28
/2

 0
1:

00
:0

0

28
/2

 0
2:

00
:0

0

28
/2

 0
3:

00
:0

0

28
/2

 0
4:

00
:0

0

28
/2

 0
5:

00
:0

0

28
/2

 0
6:

00
:0

0

28
/2

 0
7:

00
:0

0

28
/2

 0
8:

00
:0

0

28
/2

 0
9:

00
:0

0

28
/2

 1
0:

00
:0

0

28
/2

 1
1:

00
:0

0

28
/2

 1
2:

00
:0

0

28
/2

 1
3:

00
:0

0

28
/2

 1
4:

00
:0

0

28
/2

 1
5:

00
:0

0

28
/2

 1
6:

00
:0

0

28
/2

 1
7:

00
:0

0

28
/2

 1
8:

00
:0

0

28
/2

 1
9:

00
:0

0

28
/2

 2
0:

00
:0

0

28
/2

 2
1:

00
:0

0

28
/2

 2
2:

00
:0

0

28
/2

 2
3:

00
:0

0

E
le

ct
ri

ca
l d

em
an

d 
fr

om
 h

ea
tin

g 
lo

ad
 (k

W
)

Date / Time

Actual ANN SVM

(b) New construction

Figure 5: Prediction of electrical demand from heating load with weekly DR load increase event.

overestimates the potential increase. Again it is ob-
served that for both construction types the SVM
model manages to forecast the base electrical demand
better than the ANN model and that none of the
models captured the sudden peaks of the electrical
demand.

Finally, the performance of the predictive models for
the scenario with weekly DR reduction event, is given
in Figure 6 (a) and (b) for the existing and new con-
struction period, respectively. It is observed that

during the load reduction DR event (from 18:00 to
19:00), for the existing construction type, the SVM
model performs quite well, while the ANN model does
not manage to capture the reduction. The results
from the new construction illustrate that the ANN
model overestimates the potential reduction that can
be achieved, while the SVM model does not capture
the reduction. The obtained results of this scenario
suggest that training the models with weekly events
might not be sufficient for accurate predictions.
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Figure 6: Prediction of electrical demand from heating load with weekly DR load reduction event. (continued)
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Figure 6: Prediction of electrical demand from heating load with weekly DR load reduction event.

Conclusions
To summarise, it is shown that the predictive models
are capable of forecasting accurately the base electri-
cal demand of a residential archetype, as it is well
documented in the literature, but at the same time
are not able to generate accurate predictions when
sudden peaks appear, which is due to the high vari-
ability of the residential electrical demand. Moreover,
regarding the ability of the predictive models to cap-
ture DR events, results indicate that SVM models can
achieve higher accuracy in predictions, while captur-
ing better the DR events compared to the ANN mod-
els. In general, it is noticed that the models managed
to handle better DR events that target a load increase
rather than a load reduction. The issues related to
the load reduction DR events, for the scenarios that
occur daily and weekly, are the inability to capture
the rebound effect and the over/under estimation of
the reduction potential, respectively. Future research
work includes the application of the methodology pre-
sented in this paper to different dwelling archetypes.
Additionally, other types of heating systems will be
under investigation to evaluate if more accurate pre-
dictions can be generated. In this way, the effective-
ness of ANN and SVM model in capturing DR po-
tential of heating loads in other types of residential
buildings, with different heating systems, will be ex-
amined. Finally, through this future research work,
the reasoning for the performance of the predictive
models as well as the generalisation of the obtained
results will be assessed.
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