Evaluation of Machine Learning Algorithms for
Demand Response Potential Forecasting

Dimitrios-Stavros Kapetanakis', Despoina Christantoni?, Eleni Mangina®, Donal P. Finn!

1School of Mechanical and Materials Engineering, University College Dublin (UCD)
2School of Electrical and Electronic Engineering, University College Dublin (UCD)
3School of Computer Science, University College Dublin (UCD)

Abstract

This paper focuses on the ability of machine learn-
ing algorithms to capture the demand response (DR)
potential when forecasting the electrical demand of a
commercial building. An actual sports-entertainment
centre is utilised as a testbed, simulated with Energy-
Plus, and the strategy followed during the DR event
is the modification of the chiller water temperature
of the cooling system. An artificial neural network
(ANN) and a support vector machine (SVM) predic-
tive model, are utilised to predict the DR potential of
the building, due to the significant amount of execu-
tion time of the EnergyPlus model. The data-driven
models are trained and tested based on synthetic
databases. Results demonstrate that both ANN and
SVM models can accurately predict the building elec-
trical power demand for the scenarios without or with
daily DR events, whereas both predictive models are
not accurate in forecasting the electrical demand dur-
ing the rebound effect.

Introduction

Demand response (DR) programs, in which par-
ticipants change their electricity usage in response
to electricity prices or signals, are recently consid-
ered as a possible way to enhance renewable energy
sources (RES) integration in the electricity grid (Ko-
rkas et al., 2016). RES power generation, especially
solar and wind, largely depends on the time evolu-
tion of weather patterns which are to varying degrees
unpredictable. This results in potential imbalances
between the power supply and demand on the gird
(Thomaidis et al., 2016). As a way to compensate
these imbalances, DR is utilised to provide the nec-
essary flexibility to the grid. Additional benefits can
be derived to the electricity grid from the implemen-
tations of DR programs. Namely, DR can restrict
the electricity generation from fossil fuels by adjust-
ing the demand to the present availability of fluctu-
ating resources, so curtailments can be reduced and
the overall RES share can be increased (Beil et al.,
2015; Gils, 2014).

Among the different demand end use categories,
buildings account for almost 50% of the final elec-
tricity consumption and thereby can play a signif-

icant role in maintain the power supply and de-
mand balance (International Energy Agency, 2013).
Commercial buildings, in particular, are of consider-
able interest for the implementation of DR measures,
since they can provide considerable load reduction
and offer a range of options for demand management
(Gao and Sun, 2016). Heating, Ventilation and Air-
Conditioning (HVAC) systems are their largest en-
ergy end-use category (Pérez-Lombard et al., 2008),
which can also be controlled in order to utilise the
building inherent energy storage characteristics and
provide demand reduction (Xue and Shengwei, 2012).

In order for commercial buildings to be capable to
participate in DR, control strategies which respond
and adjust building electricity demand profile are nec-
essary. Forecasting of building electrical power de-
mand under different external and internal conditions
when DR measures are applied is of major impor-
tance. These forecasts can be utilised from the build-
ing energy management (BEM) system to control and
select the ideal response to each DR request.

Building energy models have been widely used for
performance analysis in the building industry and
to demonstrate compliance for codes and standards
(Christantoni et al., 2015). Nevertheless, the use
of building energy models can be extended beyond
that. They can also be used to optimise design so-
lutions or to assist BEM systems during the build-
ing operational phase (Zhao et al., 2015). In recent
years, different approaches are utilised to model and
predict building energy consumption. These meth-
ods can be classified as white (physics-based), black
(data-driven) and grey box (hybrid) methods (Amara
et al., 2015). Detailed physics-based models have
been widely used to demonstrate measures for reduc-
ing peak loads due to their ability to simulate complex
system behaviour and alternative demand response
control strategies (Coakley et al., 2016). Black-box
models are empirical data-driven models which cor-
relate the energy consumption with the influencing
variables, using regression or machine learning al-
gorithms. As they based on historical performance
data, they require sufficient historical data to be col-
lected (Amara et al., 2015). Data-driven models can
be utilised in real-time control schemes, due to their



simplicity to deploy and their fast execution time in
comparison with the physics based models. On the
contrary, one of the main limitations prior to the
implementation of data-driven models in predicting
buildings DR potential is the lack of measured data
under DR conditions.

The main objective of the current paper is the eval-
uation of the performance of machine learning al-
gorithms in capturing DR potential of commercial
buildings. A building energy simulation model of a
multi-purpose commercial building is utilised to ob-
tain a synthetic database and evaluate the DR poten-
tial of the current strategy. This evaluation provides
insight regarding the suitability of these algorithms
for use in real time control when the participation of
a commercial building during a DR event is required.

Background

Numerous studies applying machine learning algo-
rithms for forecasting the electrical load of commer-
cial buildings exist in the literature. On the contrary
to building energy simulation models, machine learn-
ing techniques do not require any physical informa-
tion of the building as input (Foucquier et al., 2013).
Support vector machine (SVM) and artificial neural
network (ANN) are among the most common algo-
rithms used in the literature to achieve the prediction
of commercial building electricity and thermal loads.

SVM models have been used for predicting energy
consumption in buildings relatively recently. They
are highly effective models in solving non-linear prob-
lems even with small quantities of training data. Re-
garding the building energy domain, SVM models are
mainly used for forecasting heating or cooling energy
consumption (Foucquier et al., 2013). These mod-
els can be trained utilising data with different time
scales (yearly, monthly, hourly) and various nature
(instantaneous or space/time averaged).

Dong et al. (2005) were the first to introduce the use
of SVM for prediction of the building energy con-
sumption. The objective of their work was to exam-
ine the feasibility and applicability of SVM in build-
ing load forecasting area. Four commercial buildings,
of the Central Business District, in Singapore were
selected as case studies. The input variables were
the mean monthly outdoor dry-bulb temperature,
the mean monthly relative humidity and the mean
monthly global solar radiation. The kernel function
used was the radial basis function kernel. The ob-
tained results were found to have coefficients of vari-
ance less than 3% and percentage of error within 4%.
Li et al. (2009a) used the SVM model in regression
to predict hourly building cooling load for an office
building in Guangzhou, China. The outdoor dry-
bulb temperature and the solar radiation were the
input parameters for this model. Results indicated
that the SVM method can achieve accurate predic-
tions, with mean relative error of 1%, and that it is

effective for building cooling load prediction. A com-
parison of the newly developed SVM model against
different artificial neural networks was published by
the same research group later the same year (Li et al.,
2009b). The SVM model was compared with the
traditional back propagation, the radial basis func-
tion and the general regression ANN. All predictive
models were applied at the same office building in
Guangzhou, China. The SVM and general regression
ANN methods achieved better accuracy and generali-
sation than the back propagation neural network and
radial basis function ANN methods. Hou and Lian
(2009) also used an SVM model for predicting cool-
ing load of an HVAC system in a building in Nanzhou,
China. The performance of the SVM with respect to
two parameters, C and €, was explored using stepwise
searching method based on radial-basis function ker-
nel. Actual prediction results showed that the SVM
forecasting model, whose relative error was about 4%,
may perform better than autoregressive integrated
moving average ones. Zhao and Magoules (2012) de-
veloped SVM predictive models of office buildings, in
France, to forecast their hourly electricity consump-
tion using as possible inputs; weather variables, occu-
pancy, internal heat gains and indoor variables. The
datasets were generated using EnergyPlus and two
input variable selection techniques, correlation coef-
ficient and gradient guided selection, were applied.
Results indicated that the selected subset of input
variables was valid and provided acceptable predic-
tions. More recently, Jung et al. (2015) combined a
genetic algorithm with an SVM model to forecast the
daily building energy consumption of the Telecom-
munication Corporation building in Korea. In this
study, historical data of building energy consumption
for the previous four weekdays were considered as in-
put parameters in order to predict the daily quarter-
hourly weekday building energy consumption. The
average root mean square error (RMSE) of the devel-
oped model varied from 7.59 to 11.13.

ANN predictive models have been utilised to analyse
commercial buildings energy demand, such as heat-
ing and cooling load, under different conditions. The
datasets implemented for the development of ANN
models contain data with different time scales vary-
ing from hourly up to yearly. The completeness of
the learning dataset is the main and most essential
condition for applying the ANN technique (Foucquier
et al., 2013).

Dombayci (2010) developed an ANN model in order
to forecast hourly heating energy consumption of a
single-storey building, in Denizli, Turkey. The hourly
heating energy consumption of the building was cal-
culated using the degree-hour method. The model
was trained with heating energy consumption values
of years 2004-2007 and tested with values for the year
2008. Input data of the ANN model were the month,
day of the month, hour of the day and energy con-



sumption values at certain hours. Best estimate was
found with 29 neurons and a good coherence was ob-
served between calculated and predicted values. The
RMSE value of the models was 0.988 for the test-
ing period. Massana et al. (2015) created a method
to forecast the electric load in commercial buildings.
An analysis was performed regarding which type of
data (such as weather, indoor ambient, calendar and
building occupancy) was the most relevant in build-
ing load forecasting. The newly proposed method
was tested with three different models, such as re-
gression, ANN and SVM. The results, from an ac-
tual case study in the University of Girona, indicated
that the developed method had high accuracy and low
computational cost. Chitsaz et al. (2015) suggested
a new prediction method, in which a Self-Recurrent
Wavelet Neural Network was applied as the forecast
engine. Moreover, the LevenbergMarquardt learning
algorithm was implemented and adapted to train the
ANN model. The proposed method was examined
on real-world hourly data of an educational building,
in British Columbia Institute of Technology (BCIT),
Vancouver, within a micro-grid. The results showed
that the proposed ANN model generated more accu-
rate forecasts when a volatile time series prediction
was of interest. Burger and Moura (2015) formulated
an ensemble machine learning method that performs
model validation and selection in real time using a
gating function. The ensemble models was designed
to forecast building electricity demand, by learning
from electricity demand data streams, while requiring
little knowledge of energy end-use. The models was
tested both on commercial and residential buildings.
In particular, eight commercial buildings were used
and the generated electricity demand forecasts had a
mean absolute percent error (MAPE) of 7.5%. Chae
et al. (2016) proposed a short-term building energy
usage forecasting model based on an ANN model with
Bayesian regularization algorithm. This study inves-
tigated the effect of the network design parameters
such as time delay, number of hidden neurons, and
training data on the model capability and generality.
The results demonstrated that the proposed model
with adaptive training methods was capable to pre-
dict the electricity consumption with 15-minute time
intervals and the daily peak electricity usage reason-
ably well in a test case of a commercial building com-
plex.

The utilisation of machine learning algorithms, such
as SVM and ANN, for the prediction of commercial
building electrical and thermal loads is an active re-
search topic for the last two decades. However, the
suitability of these algorithms in capturing the DR
potential of commercial buildings has not been fully
evaluated. Hence, the performance of machine learn-
ing algorithms on datasets that include DR events is
examined in the context of the current paper.

Methodology

A four-stage methodology was developed to assess the
effectiveness of SVM and ANN machine learning al-
gorithms to capture the DR potential of commercial
buildings. The sequence of the steps followed in this
paper is the following:

1. Development of a virtual testbed capable of cap-
turing dynamic DR effects;

2. Implementation of a selected DR strategy;

3. Machine learning algorithms utilisation for elec-
trical power demand prediction, and;

4. Assessment of machine learning algorithms accu-
racy.

Development of Virtual Testbed

EnergyPlus (U.S. D.O.E., 2015) was used to develop a
virtual DR testbed, based on a mixed-use commercial
building. This building is the new Student Learning
Leisure and Sports Facility (SLLS), located on the
University College Dublin campus, and it was selected
since it exhibits a strong commercial profile including
a wide variability of HVAC systems, space usage and
occupancy patterns.

The SLLS building is used as a sports / entertain-
ment centre and consists of three storeys with total
floor area of 11,000 m2. It contains a gym, a 50 m
x 25 m swimming pool and additional facilities such
as offices, meeting rooms, retail units and a cinema
(Christantoni et al., 2015). The building electrical
and space conditioning requirements are provided by
two combined heat and power (CHP) units (506 kW
thermal and 400 kW electrical output), two gas boil-
ers (each 1146 kW) and an air cooled water chiller
(865 kW). Moreover, heat is also provided by the
campus district heating installation (500 kW). The
building operates from 06:00 to 23:00 on weekdays
and from 08:00 to 18:00 on weekend days.

The building geometry was created using the 3D mod-
elling software Google SketchUp 8.0, depicted in Fig-
ure 1, while the EnergyPlus model consists of 63 zones
(Christantoni et al., 2015). The model was created
utilising building design and operational parameters
including: building orientation, building fabric, oc-
cupancy loads, HVAC equipment schedules, ventila-
tion rates, as well as indoor control setpoints. The
weather file used was compiled from 2014 actual mea-
sured weather data from the UCD campus weather
station. A simulation time-step of 15 minutes was

Figure 1: EnergyPlus model of SLLS (Christantoni
et al., 2015).



defined in order to produce detailed results that can
be validated against the BEM system archived data.
Furthermore, this time-step enables building electric
loads to be controlled over different timeframes from
real-time to 24-hour horizons.

A building energy simulation model built for DR anal-
ysis should be able to model building response to ag-
gregator/utility requests for electric load curtail/shift
in a time range from 15 minutes to several hours (up
to 24 hours). For this reason, the model was cal-
ibrated utilising archived data by the BEM system
for 2014 on a 15 minutes basis (Christantoni et al.,
2015). The mean bias error (MBE) and the coeffi-
cient of variation of the RMSE (CV-RMSE) indexes
were used as calibration metrics. The criteria, set by
ASHRAE, for a model to be considered as calibrated
are 5% for MBE and 15% for CVRMSE when cali-
brating using monthly data (ASHRAE, 2002). The
calibration results using monthly and 15 minutes in-
tervals data are presented in Table 1.

Table 1: Building total electricity consumption cali-
bration results.

Monthly | 15 minutes
MBE -1.6% 5.5%
CV-RMSE 10.5% 7.8%

Introduction of a DR Strategy

The development of the building energy simulation
model addresses the lack of historical data, by en-
abling a wide permutation of DR strategies to be
evaluated in an effective manner (Christantoni et al.,
2016). The average electrical power demand of the
weekdays for the hottest month (July) in 2014, at
fifteen minute intervals, is depicted in Figure 2. As
shown, the building demand exhibits a peak at 06:00
when the building starts to operate. A DR strat-
egy targeting the chiller load was developed to cur-
tail this peak. Specifically, the chilled water tem-
perature (CWT) setpoint, which was set at 6 °C for
normal operation, was increased to 12 °C (upper op-
erational temperature limit) during the event (Chris-
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Figure 2: Average weekday total electrical power de-
mand profile in July in 15 minute time-step.

tantoni et al., 2016). This increase results in the rise
of the chiller COP during a DR event as the chiller
performs better at higher water temperatures. The
main advantage of this strategy is that energy sav-
ings can be achieved without a significant impact on
occupant comfort, so long as the delivery equipment
can maintain the supply air temperature setpoints.
A synthetic database was created for the CWT in-
crease strategy in July, by considering DR events
occurring daily and weekly. The events were com-
menced at 06:00 and lasted for one hour. The dura-
tion of the DR event lies within the range of dura-
tions specified by EirGrid (2015) for demand side re-
sources, which varies from half an hour to two hours.
The CWT setpoint values are returned to their initial
settings, following the one-hour DR event.

Machine Learning Algorithms

Once the synthetic database is generated, SVM and
ANN data-driven models are utilised and assessed re-
garding their ability to predict the electrical power
demand of the testbed building, with and without
DR events. The data-driven models are developed
taking into account only the weekdays of July, since
weekend days have different electrical power demand
profiles.

The synthetic datasets are divided into training and
testing partitions, which are used to train and test the
developed predictive models, respectively. The train-
ing partition consists of eleven weekdays, from 37 to
17t of July, while the testing partition consists of ten
weekdays, from 18" to 31°¢ of July. Ambient tem-
perature, ambient relative humidity, solar radiation,
wind speed, zone air temperature of the building and
time of the day are the input variables of the data-
driven models. The output of the predictive models
is the total electrical power demand and the cooling
electrical power demand of the testbed building. Fur-
thermore, when daily and weekly DR events are in-
cluded in the dataset, separate predictive models are
developed for predicting the cooling electrical power
demand.

A machine learning regression algorithm that maxi-
mizes the predictive accuracy without overfitting the
training data, is implemented for the SVM predictive
models. The kernel function selected is the polyno-
mial one, implemented when applying the SVM al-
gorithm in order to overcome the presence of non-
linearity relationships between input and output vari-
ables.

Moreover, ensemble models developed using boosting
are the ANN predictive models used in the context of
this research. A sequence of models is generated to
obtain more accurate predictions. Boosting produces
a succession of models, each of which is built on the
same training partition of the dataset. The input
variable measurements are weighted prior to building
each successive model, based on the residuals of the
previous model. Measurements with large residuals



are given relatively higher analysis weights, so that
the next model is focused on predicting better these
records. Additionally, the input to the output vari-
able are connected through the hidden layers using
the multilayer perceptron (MLP) structure and the
sigmoid activation function.

All predictive models were developed using the IBM
SPSS Modeler 14.2 software (IBM Corp., 2011) util-
ising a computer with an Intel Core i7-3630QM pro-
cessor and 8 GB of DDR3 RAM. The settings of the
ANN and the SVM models are selected automatically
from the software with the objective to enhance the
models accuracy. The ANN model structure can not
be extracted from the software when the boosting op-
tion is selected, while the details of the most accurate
SVM algorithm are as follows:

degree of complexity set to 4;

regression precision epsilon (€) equal to 0.1;
regularization parameter (C) equal to 10;
gamma () equal to 1, and;

bias parameter equal to 0.4.

Assessment of Machine Learning Algorithms

The accuracy of the data-driven predictive models is
assessed based on their performance compared to the
testing partition of the synthetic datasets. Two er-
ror indexes are used to calculate the overall accuracy
of each predictive model, the CV-RMSE, as given in
Equation 1 and the MAPE, as given in Equation 2.
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In Equations 1 and 2, y are the actual values, 3 are the
predicted values of the electrical power demand of the

testbed building, 4 is the mean of the actual values
and n is the total number of time-steps summed up
at the testing partition period.

In addition to the overall accuracy of the predic-
tive models, certain days of the testing dataset are
monitored, in order to assess whether the predictive
models capture the occurring DR events and sudden
changes to the electrical power demand of the build-
ing.

Results and Discussion

After the generation of the synthetic database, ANN
and SVM data-driven models are assessed regarding
their ability to predict the total and cooling electrical
power demand of the testbed building, with and with-
out DR events. Tables 2 and 3 summarise the over-
all results concerning the accuracy of the data-driven
models when predicting the total electrical power de-
mand and the cooling electrical power demand of the
testbed building, respectively. It is observed that
for all the scenarios examined, the accuracy achieved
from the ANN and SVM predictive models is main-
tained at the same level regardless of the existence or
not of DR event in the dataset. To provide more in-
sight regarding the developed predictive models their
accuracy during training, when predicting the cool-
ing electrical power demand of the testbed building,
is given in Table 4. It is noted that when compar-
ing the results of Tables 3 and 4, the models are
marginally over-fitted due to the slightly higher ac-
curacy achieved during training.

Opposite results regarding the most accurate machine
learning algorithm are obtained from the two error
indexes utilised, when predicting the total electrical
power demand, as seen in Table 2. Based on the CV-
RMSE, the ANN predictive models are more accurate
than the SVM models for all the scenarios under ex-
amination. On the contrary, when using the MAPE
as an error index, the SVM models are performing

Table 2: Accuracy of data-driven models predicting the total electrical power demand.

Error index Scenario ANN | SVM
Without DR event | 0.271 | 0.318

CV-RMSE Daily DR event 0.272 | 0.317
Weekly DR event | 0.267 | 0.316

Without DR event | 6.135 | 3.066

MAPE (%) Daily DR event 7.934 | 2.803
Weekly DR event | 7.271 | 3.028

Table 3: Accuracy of data-driven models predicting the cooling electrical power demand.

Error index Scenario ANN | SVM
Without DR event | 0.138 | 0.068

CV-RMSE Daily DR event 0.123 | 0.100
Weekly DR event | 0.146 | 0.087




Table 4: Accuracy of data-driven models for the training partition predicting the cooling electrical power demand.

Error index

CV-RMSE

Scenario ANN | SVM
Without DR event | 0.009 | 0.014
Daily DR event 0.010 | 0.028
Weekly DR event | 0.009 | 0.025

better compared to the ANN models. This paradox
could be caused due to the fact that the CV-RMSE
index is influenced by the existence of outliers as well
as the bias of the MAPE towards favouring underes-
timates (Tofallis, 2015). Thus, the SVM models are
generating, in general, predictions closer to the actual
total electrical power demand but at the same time
the forecasts from these models contain bigger out-
liers than the ANN models. The most accurate pre-
dictive models, for both ANN and SVM, based on the
CV-RMSE error index are the ones developed with
the dataset containing weekly DR events. Moreover,
based on the MAPE index, the most accurate ANN
model is the one developed without DR event present
in the dataset, while the most accurate SVM is the
one developed with daily DR events in the dataset.

Furthermore, when focusing on the prediction of the
cooling electrical power demand of the testbed build-
ing, results indicate that SVM models can achieve
higher accuracy in predictions for all the scenarios
examined, as illustrated in Table 3. The most accu-
rate SVM model is the one developed without DR

— Actual

Cooling electrical power demand (kW)

event present in the dataset, while the most accurate
ANN model is the one developed with the dataset
containing daily DR events. It is noted, that the pre-
dictive models forecasting the cooling electrical power
demand could not be evaluated based on the MAPE
index, because zero values of the cooling demand oc-
cur during the DR event period leading to a mathe-
matical indeterminacy.

On top of the assessment of the overall accuracy of
the predictive models, specific days of the testing par-
tition of the dataset are plotted, in order to visualise
and evaluate the ability of the predictive models to
capture the occurring DR events at the testbed build-
ing. The days selected for each scenario are the 20"
of July, when no DR event is included in the dataset
and the 26" of July, when daily and weekly DR event
are included. As a result of the large magnitude of the
total electrical power demand of the building (in the
order of 800kW, as shown in Figure 2), it is hard to
capture the effect of the DR event when plotting the
profile of the total electrical demand. Hence, only the
cooling electrical power demand is utilised to perform
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Figure 3: Prediction of cooling electrical power demand without DR event, on July 20t".



this evaluation of the predictive models.

Figure 3 presents the performance of the ANN and
SVM predictive models for the scenario without DR
event. Some useful observations can be made based
on the visualisation of the prediction of the data-
driven models. Initially, it is noted that overall both
ANN and SVM models are generating predictions
quite closely to the actual cooling electrical power
demand of the testbed building. During the early
morning hours both predictive models are overesti-
mating the cooling demand of the buildings, while
the ANN is overestimating the demand more than
the SVM model. The predictions are following accu-
rately the actual demand profile from 08:00 to 14:00.
A slight underestimation period of the actual demand
from both models is noticed from 14:00 to 16:00 and
a second overestimation of the cooling demand is ob-
served during the early evening hours (from 17:00 to
18:00). Subsequently, the predictions are once again
following accurately the actual demand profile until
the end of the day. In regard to the evening overesti-
mation period, both predictive models are again fore-
casting higher cooling demand than the actual values
and the ANN is the model with the biggest overesti-
mation. These forecasts, where the ANN predictive
model overestimate the cooling load with higher pre-
dictions than the SVM model, are the ones that lead
the overall CV-RMSE of the SVM to be better that
the ANN one.

The performance of the predictive models for the sce-

nario when a DR event is occurring daily, is illus-
trated in Figure 4. As mentioned in the methodol-
ogy, the DR event is targeting to reduce the chiller
load by changing the CW'T setpoint in order to cur-
tail the morning peak of the electrical power demand
of the building. The DR event is set to commence
at 06:00 and last for one hour and it is noticed that
both ANN and SVM models manage to capture the
reduction of the cooling electrical power demand. It
is noted, that during the event the predictions of the
ANN model are really close to the actual values of
the cooling electrical power demand compared with
the ones from the SVM model. Moreover, both pre-
dictive models attempt to capture the rebound effect
caused to the cooling demand due to the DR event,
but both underestimate the magnitude of the effect.
For the reminder of the day it is observed that the
ANN model overestimates the actual cooling electri-
cal power demand of the building from 10:00 in the
morning until 16:00 in the afternoon. In addition, it
is detected that the SVM models is underestimating
the actual cooling demand from 15:00 until the end
of the day.

Concerning the scenario when a DR event is occur-
ring weekly, the performance of the predictive models
is depicted in Figure 5. Once again, it is noticed that
both predictive models realise that there is a decrease
at the cooling electrical power demand of the build-
ing during the DR event, but the SVM model does
not manage to fully capture this reduction of the de-
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Figure 4:

Prediction of cooling electrical power demand with daily DR event, on July 26" .
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Figure 5: Prediction of cooling electrical power demand with weekly DR event, on July 26'".

mand. On the contrary, the ANN model once more
is generating quite accurate predictions compared to
the actual values of the cooling electrical power de-
mand during the DR event. After the end of the DR
event none of the predictive models is able to capture
the rebound effect that follows. This is an indica-
tion that with the presence of only few DR events
in the training dataset, it is possible that the predic-
tive models either will not be able to fully capture
the reduction on the cooling demand during the DR
event, or entirely miss the existence of a rebound ef-
fect after the event. Furthermore, the ANN model is
overestimating the cooling electrical power demand
of the building from 09:00 in the morning until the
end of the day with the exemption of few more accu-
rate instances. On the other hand, the SVM model
is forecasting accurately the actual cooling demand
of the building, after the rebound effect of the DR
event, for the reminder of the day, with an exception
of an overestimation period between 14:00 and 16:00
in the afternoon.

Conclusions

To summarise, the results of this research work high-
light that both ANN and SVM models can generate
accurate predictions of the total and cooling electri-
cal power demand of the building, when none or daily
DR events are included in the training and testing
datasets. However, when including weekly DR events
in the datasets, the SVM model cannot accurately

capture the reduction of the cooling demand during
the event, and both predictive models are not accu-
rate in forecasting the electrical demand during the
rebound effect.

Overall, it is illustrated that machine learning al-
gorithms are able to capture the DR potential of a
commercial building provided that DR events are in-
cluded into the training and testing datasets. More-
over, it is shown that ANN and SVM algorithms could
have a great potential for use in real time control of
HVAC systems commercial buildings participating in
DR schemes with regular DR events.

Future research work includes the evaluation of other
machine learning algorithms regarding their ability to
capture DR events. Additionally, the application of
the methodology presented in this paper with differ-
ent types of DR strategies, such as changing the air
temperature setpoints or shutting down fans in unoc-
cupied rooms, will be examined. The implementation
of the machine learning algorithms in the context of
a real time control will also be investigated. Finally,
through this future research work, it will be examined
whether the conclusions drawn herein can be gener-
alised, as well as the reasoning for the performance of
the predictive models.
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