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Abstract 
Molecular mechanisms play key roles at a fundamental and processing level, in innovative             
taste systems, functional and nutritional ingredients, and integrated solutions for the food,            
beverage and pharmaceutical markets. Incorporating a multiscale understanding of such          
mechanisms  can provide greater insight into, and control of the relevant processes at play.  
Combining data from experiment, human panels and simulation through machine learning           
allows the construction of statistical models relating nano-scale properties to physiological           
outcomes and consumer tastes. This review will touch on several examples where advanced             
computer simulations at a molecular, meso- and multi-scale level can shed light into the              
mechanisms at play thereby facilitating their control. It includes a practical simulation            
toolbox for those new to in-silico modelling.  
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Introduction 
  
The food industry is faced with multiple challenges to meet demands for new food products               
that are safe, enjoyable, healthy, nutritious, and sustainable. These pose significant challenges            
to science, as an understanding of fundamental structure-function relationships of food           
components is a key to the design of new foods. A relatively recent approach to deal with the                  
complexity of food products is given by soft matter physics (Fig. 1) (Boire et al. 2019).                
Molecules assemble through biological or manufacturing processes into structures that give           
foods their particular properties. Oral processing and sensory stimulation followed by           
digestion lead to the disassembly of such macroscopic structures down to a molecular level,              

 



ultimately making them bioavailable to cells. All these processes can be studied using soft              
matter physics techniques. 

Multi-scale approach to modelling food assembly and       
disassembly 
A key aspect of this approach is the identification of corresponding length and time scales               
(Fig. 1). Small changes at the molecular level can induce dramatic structural changes with              
repercussions from the meso-scale to the macroscale. Consider ice cream as an example. It              
starts as an oil-in-water emulsion that is frozen while incorporating air to produce a final               
structure with water and sugar crystals dispersed in a mixed emulsion/foam structure. The             
folding and unfolding of proteins that happen in this process at the oil-water interface occur               
at nm scales, whereas the creation and cleavage of disulphide bonds entailed in protein              
adsorption at the surface occur on Ångstrom scales. Altering the protein state or solvent              
environment (e.g., pH or mineral content) can result in dramatic changes in protein             
conformation and folding at the emulsion interface. This in turn may lead to large changes in                
ice-cream macroscale appearance, stability, rheology, and mouthfeel. Another example         
relates to how aroma and taste compounds are perceived. There, one needs to consider the               
breakdown of meso and macroscopic food structural elements by mastication and how that             
controls nanoscale interaction between food tastant and neuroreceptors at the tongue surface.            
The digestion of the food bolus further down the gut is another example of a multi-scale                
phenomenon, from the physical breakdown of a macroscale bolus, to the mesoscale            
reorganisation of fat globules with bile salts or the protein hydrolysis by specific digestive              
enzymes, to the molecular scale transport of nutrients across the gut membrane. 
 
Although a solely multiscale simulation approach to predict the properties of food products             
with specific appearance, taste, and nutritive quality is feasible in principle, in practice the              
sheer complexity of food renders such an approach unrealistic. However, multiscale           
approaches combined with data from, for example, human tasters, and statistical and machine             
learning methods such as quantitative structure activity relationship/property relationships         
(QSAR/QSPR) can connect the molecular scale with physiological outcomes (Roy et al.,            
2015) and perceptions of taste (Kier, 1972; Shallenberger and Acree, 1967). Similar            
approaches are used in biomedical contexts, such as relating the multiscale properties of             
nanomaterials to physiological outcomes in toxicology (Kar and Leszczynski, 2019).  
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 Figure 1. Food science and particle-based simulation across length and time scales. 

In Silico Approaches 
 
Particle-based simulation of soft matter using supercomputers can be used to explore the             
phenomena and length scales of interest. In this context, the notion of a “particle” depends               
on the simulation method(s) and models appropriate to each length scale and process as              
follows.  
  

● Mesoscale properties of food colloids, such as sols, foams, emulsions and gels, can be              
explored using coarse-grained particle-based simulations, where each particle may         
represent a few atoms (such as each individual amino acid) to hundreds of amino              
acids (such as globular proteins treated as rigid bodies). Coarse grained (CG) models             
bring simulations closer to experimentally accessible temporal and spatial scales,          
provided the dimensionality reduction does not entail the loss of a key detail or              
underlying mechanism. In particular, food rheology and microstructure can be          
conveniently studied at the mesoscale level such as emulsions. Simulations can           
address, for example, coalescence of emulsion droplets and the influence of adsorbing            
amphiphilic molecules on these processes (Morris et al. 2013; Pink et al. 2014), phase              
behavior of microemulsions, and provide data on interfacial tension and morphology           
of the mesoscopic aggregates (Liu et al. 2015), and molecular adsorption at            
interfaces. 

 
● Molecular processes such as the unfolding or denaturation of proteins occurring in            

thermal processing, or the non-covalent binding of tastants to receptors in the tongue,             
can be explored using classical molecular dynamics (MD), where particles represent           
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individual atoms and the relevant length scales are Ångstroms (Schlick et al. 2002).             
For example, the binding of ligands to sweet or bitter taste receptors can trigger              
conformational changes and downstream chemical/molecular signaling that       
eventually lead to a taste perception. Molecular level modifications of the tastant can             
greatly affect such perceptions. 

 
● At even finer length scales the particles may be electrons, protons, and nuclei, and a               

paradigm shift of physical method is required as quantum mechanical (QM) effects            
may occur. These include, the creation and cleavage of covalent bonds in the             
hydrolysis of sugars, fats, and proteins, or the Maillard browning reaction between            
amino acids and reducing sugars that gives many foods their distinctive color and             
flavour. It can also be used to determine the protonation and deprotonation of             
titratable sites of proteins during food processing and digestion. Hybrid approaches           
are also possible, such as QM/MD (Bolnykh et al., 2019, Guest, 2012) or CG/MD, as               
we will see, which combine a fine scale level of description with a much coarser one. 

● As one might expect, as particle size is reduced, the number of particles needed to               
simulate a complex system increases dramatically, as does the computational cost of            
the simulation. Consider the ubiquitous example of pH regulation of protein           
aggregation. As pH changes, protons transfer from solvent to acidic or basic titratable             
sites - but this can also allow proteins to fold. Thus, many different length scales may                
be involved. Quantum mechanics is in principle relevant, but often approximations           
are necessary. MD is much more suited to modeling protein folding, and, for large              
protein complexes, mesoscale modeling is often more useful. At the densities typical            
of food complexes, MD is usually the most efficient means to perform realistic             
simulations. An MD simulation involves numerically integrating Newton's equation         
of motion over typically millions to billions of small time steps. For this, the forces on                
the particles (typically atoms) of the system must be known. In biology (and therefore              
food-science) the most frequently used models for interatomic forces, called force           
fields (FFs), include CHARMM (MacKerell et al., 1998, 2004) and Amber (Ponder            
and Case, 2003). Depending on the system, Monte Carlo (MC) methods (Binder,            
1997; Frenkel et al., 2001) can often provide a more efficient means to simulate              
equilibrium properties of biophysical systems, particularly when water can be treated           
implicitly. Unlike MD, MC simulation only requires total energies of a system, and is              
free to move particles in ways that may appear unphysical, provided they are             
consistent with the system’s thermodynamic constraints.  

● The food scientist armed with suitable simulation methods also has to address the             
issue of time scales. This issue can be appreciated using the example of the folding or                
unfolding of food proteins which may take place during drying or hydration of food,              
for which classical MD is appropriate. In this case the smallest time scale, associated              
with the vibrations of bonds involving hydrogen, is of the order of femtoseconds, and              
determines the size of the simulation integrating time step. However, the time scales             
associated with folding or complex formation can be of the order of milliseconds or              
even seconds. A host of statistical sampling techniques known as rare-event methods            
exist to address problems involving such different time scales- whether the simulation            
method used is quantum, classical, or mesoscale. They surmount the rare-event           
problem through the application of biasing forces or energies to place the system in              
configurations where such events are likely, and then correct mathematically for the            
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effects of the bias. This requires a set of order parameters which determine the              
locations of such events. When the number of order parameters is no more than about               
three, a variety of statistical techniques can be used to build the corresponding free              
energy surface. One such technique is well-tempered metadynamics (Barducci et al.,           
2008). When the number of order parameters is large, a method known as             
Temperature Accelerated Molecular Dynamics (TAMD) (Abrams et al., 2010) may be           
appropriate. This method couples the order parameters to a hot thermostat to pull the              
system out of free energy wells where it might otherwise be stuck. Another approach              
which can be combined with experimental data having molecular resolution, such as            
NMR, is steered MD, which dynamically guides the system to the regions which need              
to be sampled. A number of sophisticated algorithms such as the String Method             
(Maragliano et al., 2006; Vanden-Eihnden and Venturoli, 2009) also exist to find the             
most likely reaction path of thermodynamic processes. An important and          
complementary methodology comes from computer science: machine learning that is          
increasingly being combined with particle-based simulation at all of the above length            
scales. Not only is it facilitating the modeling of complex phenomena themselves, but             
in some cases, allows particle-based properties to be related to physiological           
outcomes such as toxicity, or perception of taste as expressed by panels of human              
tasters.  

Quantitative Structure/Activity Relationships and physiological 
models for predicting complex functionalities 
 
The molecular-level interactions that determine food components complexation, transport,         
and absorption at long time scales are complex and difficult to model in full detail. An                
increasingly viable alternative is to relate molecular features to the specific functionality,            
such as taste, using Quantitative Structure/Activity Relationships, or QSARs. QSARs are           
analytical expressions representing correlations between the activity of a substance and           
quantitative chemical attributes representing the molecular features of the substance (Roy et            
al., 2015). The term Quantitative Structure/Property Relationships, or QSPRs, is also used.            
QSARs and QSPRs are often developed using statistical techniques, with some modern            
QSARs/QSPRs being derived using Machine Learning methods. The features that can serve            
as inputs to QSAR/QSPR models range from very simple “0D” features, such as those based               
on the empirical chemical formula (e.g. number of atoms, number of bonds, molecular             
weight), all the way to “7D” features involving real target-based receptor model data (Kar              
and Leszczynski, 2019; Roy et al., 2015). The increasing feature dimensionality is a measure              
of complexity of data required (see Fig. 2). For example, “1D” features involve information              
based on the chemical fragments that make up the molecule (similar to classical             
group-contribution methods), “2D” features include information based on the molecular          
connectivity, “3D” methods use information based on the three-dimensional structure of the            
molecule, and descriptors beyond 3D use more complex information such as sets of             
molecular conformations, solvation, protonation states, and even models containing         
information about the biological targets involved. Other descriptors used in describing           
molecule reactivity, adsorption on solid surfaces or interfaces include the electronic           
properties (highest occupied/lowest unoccupied molecular orbitals - HOMO/LUMO,        
polarizability), charge, or van der Waals (VDW) surface energy, or binding energies of             
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selected sets of representative molecule fragments. These have been used to predict            
nanoparticle cell uptake and toxicity (Kamath et al., 2015; Liu et al., 2015; Xia et al., 2011).  
This article is intended as an overview of the possibilities of particle based simulation and its                
combination with QSAR/QSPRs to address problems in food science. We review the            
simulation toolbox for the food scientist, where particle simulation methods are briefly            
described together with the most popular and potent open-source, freely available software            
packages. These methodologies are illustrated with representative cutting edge examples. We           
conclude our discussion by surveying some of the current challenges for particle-based            
simulation in food science.  
 

 
Figure 2. A schematic showing some of the types of molecular descriptors that can be used to 
fit a QSAR/QSPR model to make predictions. 

Molecular Simulation toolbox for food scientists 
 
The previous discussion has summarized how different simulation methods can help to            
address problems within food science involving different length and time scales, and how             
they can be augmented/complemented by QSAR/QSPRs. In practice, simulating systems          
consisting of hundreds, thousands, or even millions of particles for a billion time steps is               
daunting. While the brave may choose to develop their own in-house simulation engines,             
most users and indeed developers rely on free, community developed software packages            
which are becoming increasingly user friendly and adaptable, including GROMACS          
(Berendsen et al., 1995; Pronk et al., 2013), Amber (Case et al., 2005; Salomon-Ferrer et al.,                
2013), OpenMM (Eastman et al., 2017), NAMD (Phillips et al., 2005), and LAMMPS             
(Plimpton, 1995). All of these can run on hardware ranging from good laptops to massively               
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parallel supercomputers. The first four engines are used primarily for biosystems and include             
tools to facilitate bio-system preparation, simulation, and analysis. The latter, although           
capable of simulating bio-systems, is more often used for advanced materials, and recently             
even quantum problems in the context of machine learning. All are capable of simulating              
both thermodynamic equilibrium properties (i.e. free energy properties) and         
dynamical/kinetic properties. Most of the MD engines mentioned above are also capable of             
running CG and MC simulations. In addition there are several other engines which have been               
built specifically for CG and multiscale/hybrid simulations, including Espresso (Weik et al.,            
2019) and DL-MESO. Hybrid molecular CG schemes have also been developed (Krekeler et             
al., 2018; Tarenzi et al., 2019), where critically important fine scale details are treated              
atomistically, with all other features treated at a CG or even continuum level. Many MD               
engines include rare-event software, and can be interfaced with software developed           
specifically for rare-event methods, a very versatile one being PLUMED (Bonomi et al.,             
2009). In addition to their use for characterising thermodynamic equilibrium properties, a            
second area of application of rare-event methods is kinetics such as reaction and nucleation              
rates, where suitable software is also available (Casasnovas et al., 2017; Swenson et al.,              
2019). 
 
The power of simulation to investigate molecular and mesoscale mechanisms taking place in             
food materials is best shown through practical example. As a first example, consider the case               
of pH-controlled immobilisation and release of biomolecules.  

pH controlled immobilisation and release of biomolecules in 
WPI based microgels  
 
Whey protein isolate (WPI) can be formed into microgels used as matrices to immobilise and               
release a variety of bioactives. These mesoscale structures can function as smart delivery             
systems in which uptake and release of bioactives is facilitated by environmental pH changes              
(Egan et al. 2014). A semi-empirical analytical model to predict the conditions of attractive              
and repulsive interactions between the constituents of the microgel-bioactives complex can           
be made based on the electrostatic charge expected for each constituent given their pKa              
values and the solution pH. While the uptake by these microgels of single amino acids               
(histidine, arginine and lysine) was shown to be described adequately by this simple model,              
interactions with either cationic KHIQK or anionic WENGE peptides were only partially            
described. In particular, while the maximum experimental interaction is well predicted, some            
attractive interaction is observed when both WPI microgel and peptide carry a similar net              
charge, in sharp contradiction with Coulomb’s law. This attraction “on the wrong side of pI”               
has been reported for other experimental systems, such as quinoa proteins–carrageenan           
(Montellano Duran et al., 2018). 

Simulations can improve our ability to control and release bioactives from microgels, or any              
microencapsulation process, in several ways. First, predicting the pKa of large proteins can             
be extremely difficult experimentally, particularly if they can fold/unfold as solution           
conditions change. Second, important interactions take place through different electrostatic          
mechanisms, such as charge fluctuation (Barroso Da Silva et al, 2006, 2009, 2014; Jönsson et               
al., 2007), and dipole interactions (Barroso da Silva et al., 2016), that are difficult to elucidate                
experimentally. Conversely, molecular simulation methods that incorporate pH effects can          
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address these problems, including the puzzle of complexation “on the wrong side of pI”              
(Barroso da Silva et al., 2017,  2019; Chen et al., 2014), in good agreement with experiment. 

The first few steps of simulation 
 
The first step of a simulation is preparing its initial conditions. For simulations, at the CG,                
molecular levels, the best initial structures are usually experimentally determined, either by            
X-ray or NMR, readily accessible in the Protein Data Bank (PDB) (Berman et al., 2014).               
When experimental structural information is lacking, estimates can often be obtained using            
bioinformatics, usually through homology modelling (Leach, 1996) or machine learning          
applied to PDB libraries to statistically predict likely structures employing software/servers           
such as I-TASSER (Yang et al., 2014), SWISS-MODEL (Biasini et al., 2014) and INTFOLD              
(McGuffin et al., 2019). Large proteins and protein adducts are generally too complex to              
predict using bioinformatics in isolation, but they can often be built from smaller ones              
predicted from bioinformatics. These are then stitched (i.e. bonded) together using homology            
tools such as modeller (https://salilab.org/modeller/), although the task of determining the           
native structure can be very complex. For example, beta-lactoglobulin (𝛃lac), a milk protein,             
consists of 160 amino acids, each comprising some 20 atoms, and is already too complex to                
be realistically simulated from arbitrary initial configurations.  
 
The second step involves adjusting components of the complex, such as the inclusion of              
counterions, solvation, and protonation/deprotonation of titratable sites (constant-charge or         
CpH approaches (Barroso da Silva and Dias, 2017)). Also needed is the possible creation of               
bonds that may exist within and between proteins, such as between cysteine residues in the               
case of WPI microgels, or between glycans and proteins. While it is often difficult to know                
which titratable sites should be protonated or deprotonated - or where bonds should be              
created or broken, powerful user friendly software tools to make such changes are available              
for constant-charge simulations, including propKa (Olsson et al., 2011) and/or the           
charmm-gui (Jo et al., 2008).  
 
The third step is the actual simulation of the complex. Molecular simulations require             
interaction energy models (FFs), as mentioned earlier, (see also Gunsteren and Berendsen,            
1990; Leach, 1996; Schlick, 2010), and suitable molecular simulation software. In some            
instances, stages 2 and 3 can be intertwined, as illustrated below. 

Constant-pH simulation methods for food proteins 
 
Predicting molecular-level changes to protein complexes or other macromolecules occurring          
as pH and salt concentration change can be extremely difficult, both from an experimental or               
simulation/theoretical perspective, as the binding/unbinding and transport of protons between          
titratable sites is fundamentally a quantum effect. Even assuming that these effects can be              
adequately modeled considering only the quantum ground state, a realistic quantum           
simulation can handle at most a tiny peptide consisting of 1-3 residue(s) together with water               
and relevant ions (such as Na+, K+, Cl-). Since proteins of interest are generally far larger, a                 
wide variety of approximate simulation methods have been developed over the last two             
decades to describe their molecular properties, and the conditions that control their            
aggregation as complexes. A great variety of CpH simulations methods are available to study              
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biomolecular phenomena (Barroso da Silva and MacKernan, 2017; Barroso da Silva et al.,             
2019; Barroso da Silva and Dias, 2017; Bennett et al., 2013; Chen and Roux, 2015; Delboni                
and Barroso da Silva, 2016; Donnini et al., 2016, 2011). Here, we describe two methods that                
involve different CG levels. In both methods, each titratable site is either an acid or a base. In                  
the absence of interactions between sites, the probability of a site being deprotonated or              
protonated is entirely determined by the pKa value of the isolated site and the pH of the                 
solvent. In reality, titratable sites interact primarily through Coulomb interactions, being           
affected by all other charges. In the first approach, a mesoscale semi-empirical description,             
account is taken of several physico-chemical features, including the empirical pKa values of             
the isolated sites (usually pKa values of the free amino acid in solution), the charges due to                 
possible transfers of protons to/from sites, the location of sites, the salt concentration (treated              
implicitly), the temperature, and, as a phenomenological parameter, the solution pH (Barroso            
da Silva et al., 2006; Srivastava et al., 2017; Teixeira et al., 2010). The second approach,                
known as CpH MD simulations, uses a finer level of description where account is taken of                
the partial charges and dynamical/instantaneous positions of each atom. The approach uses an             
atomistic representation of water, added salt, protons and counterions ensuring that the            
system remains overall charge neutral (Donnini et al., 2016, 2011).  

Although the two approaches have certain similarities, in practice they are very different. The              
statistics for the first approach are generated through MC sampling and, unlike the second,              
cannot account for structural changes such as protein folding/unfolding, due to the use of a               
fixed protein structure. However, it has three distinct advantages. First, empirical data can be              
easily incorporated; second, the system size that can be investigated is very large; and third,               
the convergence rate of sampling can be rapid, enabling the calculation of interaction free              
energies at different experimental conditions (Srivastava et al., 2017). Moreover,          
notwithstanding its simplicity, it turns out to be surprisingly accurate for several (but not all)               
proteins, RNA, and DNA systems (Barroso da Silva and MacKernan, 2017; Barroso da Silva              
et al., 2017). 

The second approach has a distinct advantage over the first when working with flexible              
macromolecules. An example is the implementation of a CpH MD (Donnini et al., 2011,              
Donnini et al., 2016) based on the lambda-dynamics approach (Kong and III, 1996; Lee et al.,                
2004). The protonation coordinate (𝜆) is a continuous degree of freedom, varying between 0              
(protonated site) and 1 (deprotonated site). 𝜆 can be imagined as a particle which is               
incorporated in the interaction potential of the system, and fluctuates between the protonation             
states of a site. The pH-dependency of protonation/deprotonation is included in the potential             
function using a phenomenological description dependent on the experimentally determined          

of the isolated sites. At each step during the simulation, the force acting on 𝜆 ispKa 
                  

computed as for other particles in the system. The coupling of sites is directly accounted for                
through the potential energy of the system.  

In this approach, protons are not modelled explicitly. Therefore, when the protonation state of              
a site changes, the total charge of the system (protein and solvent) changes as well, and the                 
system is no longer neutral. Since this may lead to artifacts in MD simulations (Hub et al.,                 
2014), protonation of a site on the protein is usually coupled to deprotonation of a counterion                
in solution (Chen et al., 2013; Chen and Roux, 2015; Dobrev et al., 2017). Such an approach                 
becomes laborious when the number of titratable sites is large. In proteins with many sites,               
however, the fluctuation of the overall protein charge is typically much smaller than the              
number of titratable sites. Therefore, a small proton buffer can be introduced such that a               
change in the total number of protons of the protein is compensated by an opposite change in                 
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the number of protons in the buffer. This reduces the computational effort, without affecting              
the relative free energies of the different charge states. Successful examples of applications             
can be found in (Bennett et al., 2013; Donnini et al., 2016).  

Taste Receptors and Glycophores  
The key molecular event contributing to consumers likes and dislikes of foods is the              
interaction between tastants and their target receptors in the tongue. Taste, combined with             
other senses of sight, hearing, and touch (texture) provides an overall sensory evaluation of              
food. In particular, bitter taste receptors have also been found elsewhere, for example in the               
palate, brain, upper esophagus and larynx, and are associated with a variety of diseases              
(Alfonso-Prieto et al., 2019). The five basic tastes salty, sweet, bitter, sour, and umami are               
sensed through different receptors. Ion channels are responsible for the perception of            
saltiness, while the nature of receptors target of sour tastants is object of debate. G-coupled               
protein receptors (GPCRs) detect sweet, bitter, and umami. GPCRs are transmembrane           
proteins, consisting of three domains: the extracellular domain (ECD), lying outside the cell             
(ligands such as tastants or odorants bind to it), the transverse membrane domain (TMD), and               
the intracellular domain (ICD), to which cognate G-proteins are attached. Agonist ligands            
(e.g. tastants) binding to the receptor result in conformational changes which may lead to              
release from the ICD of parts of the G-protein and a complex set of downstream intra-cellular                
signaling. As GPCRs function at a molecular level, simulation can be used in principle to               
reveal aspects of structure and function, and facilitate the development of new tastants.  
 
The main preparatory steps required for such a simulation are the same as described for WPI                
microgels. However, additional steps are often required to prepare a detailed taste-receptor            
system, as accurate information regarding the 3-D structure for most human GPCRs            
(hGPCRs) is unfortunately lacking. This is in particular the case of some 400 receptors              
involved in chemical sensing, representing about half of all hGPCRs, and include those             
devoted to taste and smell sensing. Bioinformatics predictions are poor here because of the              
lack of good templates, as applying X-ray crystallography to transmembrane proteins is            
challenging (Fierro et al 2017).  
 
A receptor model may be built by “stitching” together the ECD, TMD and ICD using               
homology modeling software such as modeller, with individual domains extracted from either            
PDB, or using bioinformatics tools mentioned above (see Figs. 3 and 4 for illustrations).              
Second, while some G-coupled protein taste receptors function as monomers (e.g. for            
bitterness), others may function as dimers, and for such cases (Hiller et al., 2013), the               
corresponding GPCR pair may need to be suitable placed flanking each other. Next, the              
membrane-GPCR complex needs to be built. The membrane is usually modelled as a lipid              
bilayer created using hundreds of lipid molecules which must be appropriately placed about             
the part of the GPCR dimer (or oligomer) lying within it. Various packages are available to                
build protein membrane complexes, for example, Membrane Builder (Wu et al., 2014). Third,             
water and salt at physiological levels are added and the protonation state of each residue is                
suitably adjusted using for example the PROPKA server (Rostkowski et al., 2011). After             
these steps, the receptor complex typically contains some 500 residues, a lipid bilayer, water,              
and salts, amounting to over 200,000 atoms.  
 

9 
 



The next step is usually determining the equilibrium structure(s) of the GPCR complex,             
which is often very challenging, requiring sophisticated sampling methods and significant           
computational resources. We should mention, however, that there are ingenious ways to            
sometimes avoid some or all of the above tasks. One example is based on the fact that the                  
general structure of GPCR proteins is known, and the intracellular domains are not thought to               
vary greatly within each GPCR family. Therefore it can be argued that only ECD needs to be                 
known accurately, as it provides the binding sites for ligands, and is typically much more               
variable than the other domains. Following this logic, one can use bioinformatics and             
multiscale simulation  to predict the pose of bitter taste receptors' agonists.  
 

Figure 3. Illustration of a multiscale hybrid molecular mechanics/coarse grained simulation           
approach for hGPCR where a fine level of detail is retained of the binding region on the ECD                  
of the receptor and a coarser level of detail is used for the rest of  the system 
 
Alternatively, a multiscale, hybrid molecular mechanics/coarse-grained (MM/CG) simulation        
approach tailored for GPCRs can be used (Sandal et al, 2015; Alfonso-Prieto et al., 2019),               
which describes explicitly the ligand, its binding site, and a solvation sphere as illustrated in               
Fig. 3. The rest of the protein and the bulk solvent are included using a simplified CG                 
representation (Tarenzi et al., 2019, 2017). The method allows for sampling of longer             
timescales, crucial for GPCR homology models with low sequence identity with the template             
(Rayan, 2010). 

Probing the structure of G-Protein Coupled Receptors Close to 
Equilibrium  
As discussed earlier, rare-event methods can be used to explore relevant conformations of the              
GPCR complex close to and at equilibrium through application of artificial biasing forces,             
provided suitable order parameters are known. As an example, consider a complex consisting             
of two 𝛃lac molecules in water and salt. Depending on the solvent conditions, the pair may                
bind together or may dissociate. The simplest order parameter to characterize this would be              
the distance between the centers of mass of the proteins, but others describing, for instance,               
the solvent structure in the vicinity of the pair may be needed to fully characterize the                
dissociation process. Identifying suitable order parameters for GPCR proteins is more           
difficult, as illustrated by a representative and important example, GPL-1R (see Fig. 4),             
which is involved in the control of blood sugar via secretion of insulin. Patients with type 2                 
diabetes have a reduced ability to produce GLP-1, and its administration to patients is not               
practical due to its very short half-life in the body. GLP-1 analogs with much longer lifetimes                
are currently used in treatment, but there are concerns that most effective ones may be               
carcinogenic. Interestingly, experimental findings from food and health sciences indicate that           
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certain milk peptides may also act as GLP-1 analogs, but to be exploitable further              
confirmatory evidence is needed at a molecular level.  
 
To acquire confirmatory evidence, representative structures of the receptor close to           
equilibrium were needed, which first entailed building the GPCR complex as described            
earlier.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 4 The cartoon representation of the GLP-1R. The loops “temperature accelerated” by             
TAMD are colored red. In addition to the loops, the mass center of the ECD is accelerated                 
(yellow region), The ICD is the lower part of the protein in the vicinity and including loops 2                  
and 4, and the TMD lies between the ECD and ICD. The lipid membrane, water and salt ions                  
are not rendered for clarity. 
 
As these are expected to be associated with very flexible regions of the receptor, we used                
TAMD applied to the most flexible regions (mass centers of 5 loops and the ECD) of the                 
receptor (see Fig. 4), and a schedule of heating and cooling of the TAMD temperature to                
drive the receptor to low energy conformations (Lucid et al., 2013), and collect a very large                
number of representative snapshots of the complex. This data in turn allowed us to perform a                
principal component analysis (DPCA) of the motion of dihedral angles of the protein             
backbone to extract the dominant (slowest) modes of DPCA, which were in turn used to               
estimate the corresponding free energy surface, and the slowest dynamical modes of the             
receptor. 

Glycophores and sweet taste. 
 
A useful QSAR to study taste perception is the glycophore theory. The perception of              
sweetness involves complex molecular interactions between foods and taste receptors in the            
tongue. Nevertheless, there are known chemical motifs that lead to sweet taste, or             
glycophores. In 1967, Shallenberger and Acree (Shallenberger and Acree, 1967), introduced           
the “AH-B” theory of sweetness, an early QSAR positing that sweet taste results from a basic                
structural unit common to all sweet molecules. The unit consists of two electronegative             
atoms, A and B, one of which (A) has a hydrogen atom attached to it. AH is therefore a                   
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proton donor and B a proton acceptor. This theory was later refined by Kier (Kier, 1972),                
who observed that a third, polarizable moiety X should also be present to produce a sweet                
taste. Glycophores provide a quick but powerful route to assess sweetness at the molecular              
scale without the need for dealing explicitly with taste receptors, and can be used in               
combination with enhanced sampling and machine learning techniques to discover new           
sweeteners. In the language of descriptor dimensionality discussed earlier, this would be an             
example of a 3D descriptor. 
 
The glycophore theory has been a powerful tool to understand sweet taste behavior, even in 
complex systems. A recent example is the work of Chopade et al. (Chopade et al., 2015) 
investigating the unusual behavior of the steviol glycoside rebaudioside-A (Reb-A), a high 
potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. Reb-A 
exhibits a nonmonotonic dependence of sweetness with temperature, with maximum 
sweetness close to 0 ºC, and minimum around 40 ºC, beyond which sweetness increases 
again. The work combined 2D NMR techniques and steered MD simulations, in conjunction 
with the glycophore theory, to show that changes in intramolecular hydrogen bonding 
patterns with temperature result in different numbers of AH-B-X motifs being presented by 
Reb-A in solution, following the same trend observed in taste panels with temperature (Fig. 
5). This illustrates the power of combining molecular simulation, QSPR models, and 
experiments, to link taste perception to the molecular physics of sweet molecules. 

 

 
Figure 5. Snapshots from MD simulations of rebaudioside-A, highlighting AH-B-X motifs 

presented at different temperatures. Motif (1) only appears at low temperature, whereas (2) is 
present at low and high temperatures, but not at the sweetness minimum. 

Protein-interface interactions and nanoparticle uptake  
Liquid and gel-like foods as well as pharmaceutical products use protein-based emulsions            
(Ubbink, 2012), where proteins provide a biocompatible, stabilizing coating and the core can             
be used to encapsulate bioactive components. The behaviour of these systems is determined             
in part by the properties of the stabilizing interfacial film. Understanding protein structure at              
liquid interfaces is key for controlling emulsion formation (He et al., 2013) and stabilization              
of the dispersed phase against flocculation and coalescence. In food processing, molecular            
adsorption and fouling on equipment can cause major problems, particularly in the dairy             
industry (Wilson, 2018). Due to its ability to access length scales characterising interfacial             
systems, mesoscale simulation is ideally suited to the study of essential food components at              
interfaces.  

Molecular dynamics investigation of protein behaviour at liquid interfaces 
 
The conformations that proteins adopt at liquid interfaces are a key factor determining the              
behaviour of protein-based emulsions. Adsorption on interfaces affects the conformation, as           
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hydrophobic amino acids normally residing in the protein core partition into the hydrophobic             
medium. The resulting protein conformations determine their interfacial aggregation and          
assembly. To test the ability of molecular simulation to investigate protein structure at liquids              
interfaces, recent work studied the conformations of two peptides derived from myoglobin            
(pdb entry 1MBN) at the air-water interface (Cheung, 2016). Previous experimental work            
(Poon et al., 1999) showed that one of these, consisting of the first 55 residues of myoglobin,                 
was an effective emulsifier, while the other (residues 56-131) was less effective. MD             
simulation with Gromacs, using replica exchange and solute tempering to enhance           
conformational sampling, in pure water at 25 ºC showed that these two peptides adopt various               
different conformations at the air-water interface. Peptide 1-55 preferentially adopts extended           
conformations, allowing it to form a well-defined monolayer at the interface. Conversely,            
peptide 56-131 predominantly adopts compact conformations, which results in a less strongly            
bound interfacial layer, explaining its lower emulsification ability. Simulations of the           
globular proteins alpha-lactalbumin and lysozyme showed similar results (Cheung, 2017),          
with alpha-lactalbumin (the more effective emulsifier) more frequently adopting extended          
states.  
 
Another factor determining the behaviour of proteins at interfaces is their interfacial            
adsorption strength. Simulation has been used to determine the adsorption strengths of the             
hydrophobins HFBI and HFBII at water-octane interfaces (Cheung, 2012). The adsorption           
free energy for the hydrophobins was calculated using steered molecular dynamics with            
LAMMPS (Plimpton, 1995). This showed that the adsorption free energy was of the order of               
102-103 kJ/mol, indicating essentially irreversible adsorption. These proteins have similar          
sequences and solution structures but show different characters (HFBII being slightly           
hydrophilic and HFBI slightly hydrophobic). Like most hydrophobins, these proteins have a            
large hydrophobic patch on their surface. To determine the effect of this patch on their               
interfacial behaviour, simulations of HFBII pseudo-proteins with identical interactions (either          
hydrophilic, hydrophobic, or average) between all protein residues and both solvents were            
performed. Uniformly hydrophilic and hydrophobic pseudo proteins preferentially resided in          
the water and octane phases, respectively. The average protein, however, was surface active,             
but slightly hydrophobic, contrary to the native protein. 
 

Protein-Solid surface interactions 
 
In protein-fouled heating equipment, adsorbed proteins create an insulating layer between the            
heater and the bulk material, reducing heating efficiency. This leads to inefficient sterilization             
and pasteurization. Additionally, in filtration processes, protein aggregates gathering on the           
surface of the filter can block the flow of the bulk material, greatly reducing filter efficiency.                
To enable control over these processes, a quantitative understanding of interactions between            
biomolecules and materials used in food processing is necessary.  
 
Due to their large molecular size and surface charge, the electrostatic and VDW interactions              
of proteins with solid surfaces are very strong, with typical adhesion energies of 102-103              
kJ/mol (Power et al., 2019), thus making the adsorption process practically irreversible.            
Moreover, the amount and diversity of adsorbed material in realistic conditions prohibits its             
direct atomistic simulation. In these conditions, the size, shape, dipole and charge distribution             
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on the protein are the most important parameters determining its ability to stick to the surface.                
Protein conformations, in contrast, are not expected to strongly affect the binding process. 
  
A wide variety of models have been proposed to describe competitive adsorption of proteins              
at solid interfaces (Bellion et al., 2008; Rabe et al., 2011; Vilaseca et al., 2013; Lopez et al.,                  
2015; Oberle et al., 2015; Vilanova et al., 2016). The simplest models treat proteins as single                
spherical beads with sizes reflecting their hydrodynamic radius. Such models cannot provide            
any information on the preferred orientation of the molecule at the surface. Studying             
preferred orientations requires more detailed CG protein models. To achieve higher           
resolution without making the model too complex, one can use the fact that all proteins               
contain multiple copies of the same amino acids (AA), and multiple lipids contain the same               
alkyl groups. In this approach, one can pre-calculate the interactions of each repeat unit with               
the surface and quickly evaluate the potential energy for the entire protein as a sum of                
energies of non-bonded (VDW + excluded volume) and electrostatic interactions between the            
AA and segments of the surface. The outer layer on the solid surface is directly in contact                 
with the solvent, and the interactions with the protein residues must include both solvent              
effects and the chemical composition, charge, and hydrophilicity/hydrophobicity of the          
substrate. Therefore, the interaction of each residue with the nearest part of the surface should               
include these details (Brandt et al., 2015). The remaining part of the interaction, from the               
parts not in direct contact, can be evaluated using colloidal approaches (Power et al., 2019).  
  
While strong assumptions such as pairwise additivity of the AA-surface potentials may affect             
the absolute adsorption energies, they are still robust in relative terms and allow for screening               
thousands of molecules, ranking them based on how strongly they attach to the specific              
surface. This ranking constitutes a unique fingerprint of the materials surface, which can be              
related to its activity towards food components. Using the same bottom-up approach, one can              
engineer an ultra-coarse-grained model (united AA, or UAA) that closely reproduces the total             
protein-protein interaction energy profiles obtained in the UA model (Power et al., 2019).             
The UAA model typically requires 5 to 30 UAAs to capture the geometry and reproduce the                
adsorption characteristics of the original protein. This second coarse-graining can be based on             
the mass distribution in the complete protein and then be optimized by tuning the protein               
diffusion coefficients to those obtained using UA model. The interaction potentials with the             
surface can be derived from the UA interaction map by least squares minimization of the               
deviations between the UA and UAA models. The UAA model is then suitable for modelling               
competitive protein adsorption and formation of protein corona. An example of the all-atom,             
UA and UAA models for the same protein is shown in Fig. 6. 
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Figure 6 All-atom (left), united-atom (middle) and united-amino acid (right) representations           
of bovine 𝛃lac A (PDB:1CJ5). 
 
Recent studies using this technique have found mean adsorption free energies of the order of               
102-103 kJ/mol (Power et al., 2019) for common globular proteins, and were in agreement              
with the Vroman effect – the replacement of small and abundant proteins on the surface by                
larger ones during the competitive adsorption process (Vroman et al., 1969). 

Nanotechnology in Food 
 
Various nanoscale technologies are used to process, package, and enhance food materials            
(Chellaram et al., 2014; Flora-Glad Ekezie, 2016). Nanoparticle (NP) additives can be in the              
form of nanoemulsions for enhanced delivery of nutrients or nanoemulsions to serve as             
excipients (stabilizers) for longer shelf-life and preserving color, texture, and flavor. One of             
the primary factors in the design of NP's for food applications is the oral bioavailability of                
bioactive compounds in food. There is a need to better understand the fate of bioactive               
compounds during their passage through the gastrointestinal tract (GIT) in order to formulate             
optimal excipient foods to enhance their oral bioavailability. The science behind NP transport             
through GIT is a multiscale problem. An integrated approach to describe the transport             
mechanism is to account for the main factors limiting the oral bioavailability (BA) of              
bioactive compounds (He and Hwang, 2016; Salvia-Trujillo et al., 2016) can be expressed             
qualitatively through the equation BA=B* A* T*. Here, BA is the oral bioavailability of a               
particular bioactive compound, B* is the bioaccessibility, A* is the absorption and T* is the               
molecular transformation. Thus, in order to maximize the oral bioavailability of a determined             
molecule, one has the fraction that will be bioaccessible, absorbed and in an active state after                
any changes in the molecular structure that might have occurred during digestion. Factors             
determining B*, A*, and T* are governed by the fundamental mechanisms by which NP's              
interact with human physiology. The mechanisms involve: (1) overcoming transport barriers           
such as through mucus layer, tight junctions between epithelial cells, and bilayer membranes             
of cells; (2) interaction of NP's with active transporters and cellular efflux pumps; (3) The               
transformation of bioactive compounds into more or less active forms due to biochemical or              
metabolic mechanisms. Analogous multiscale considerations in vascular transport of NP's for           
drug delivery have been discussed under the umbrella of pharmacokinetic/pharmacodynamic          
(PK/PD) models (Ayyaswamy et al., 2013; Li et al., 2010). As shown in other fields such as                 
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drug delivery (Blanco et al., 2015), multiscale modeling (Farokhirad et al., 2017) can serve as               
a quantitative platform for mechanistic models accounting for BA and help guide rational             
design of NP's in food nanotechnology. Finally, a clearer view of the potential hazards              
associated with the functionality and applicability of NP's in food is imminently needed in              
order to establish regulatory policies on the safety of food nanotechnology (Dimitrijevic et             
al., 2015; Gallocchio et al., 2015). The progress in these can be achieved based on knowledge                
of relationships between structure and activity of the NP's. 

Protein-sugar interactions 
 
Two general types of interactions can occur between proteins and saccharides corresponding 
to the reducing and non-reducing nature of the sugar respectively. The former, essentially 
the Maillard reaction, starts with a carbonyl (possibly from an aldo or keto sugar) interacting 
with a primary amine (often from a protein).  This covalent interaction starts a cascade of 
reactions producing aroma compounds, reducing compounds, pigments, and others. 
Conversely, non-covalent interactions between non-reducing sugars and proteins are involved 
in phenomena such as those that preserve protein structure under conditions of low water 
content. In this section, we discuss recent studies on dry heating of dairy proteins, where even 
residual amounts of reducing sugars can lead to dramatic changes in protein functionality. We 
then present MD studies exploring non-covalent protein-sugar interactions (specifically 
trehalose). 

Reducing sugar-protein interactions 
As recently reviewed by Guyomarc’h et al (2015), studies have shown that dry heat induced               
denaturation/aggregation of whey proteins results in extensive protein aggregation, with the           
quality of the final protein ingredient depending on both the extent and size of protein               
aggregates formed during heat treatment, itself highly sensitive to the physicochemical           
conditions of the medium and potentially the protein ingredient history. For example, the             
extent of heat treatment (time and temperature, Norton et al, 2017), the water activity and the                
pH of the powder (Gulzar et al, 2011) all seem to dramatically affect the reaction rate and end                  
products. In this context, the impact of residual sugars found in protein ingredients, has been               
scarcely investigated. While industrial WPI have highly variable lactose contents, with most            
powders containing 2% lactose or less, most concentrates have lactose contents above 3.5%,             
with few having up to 10%, and questions remain on the impact of these sugars on the protein                  
aggregation mechanism (Norton et al 2017, Gulzar & Jacquier, 2018). Although dry heating             
results in extensive protein aggregation, and the size and stability of aggregates depends on              
the sugar content and covalent crosslinks (X-X) other than disulfide bonds (S-S), the exact              
nature of these interactions is not known. This is illustrated in figure 7. 

The bond creation and cleavage associated with reducing sugar-protein interactions are           
quantum mechanical in nature, yet the computational cost of a quantum simulation of entire              
sugar-protein complexes are prohibitive. Fortunately, indirect treatments are increasingly         
possible, and include mixed quantum mechanics/molecular mechanics approaches (Lu et al.,           
2016), where only a small region where quantum effects are important is treated at a quantum                
level, and the others are treated in the same way as a standard MD. 
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Figure 7. Illustration of the impact of residual sugars on dry heat-induced            
denaturation/aggregation of whey proteins. 
 

MD simulations using neural network-based potentials can also simulate large quantum           
systems (Singraber et al., 2019), but are currently limited to systems having no more than               
four different atomic species, precluding its use for the Maillard reaction. However, this             
limitation may soon be overcome. It is also possible to glycolate specific residues within a               
protein using software such as the CHARMM-GUI (Jo et al., 2008), and then explore the               
properties of the resulting system. Such a pragmatic approach is reasonable when one knows              
which residues are glycosylated.  

The protective effects for proteins of non-reducing disaccharides  
When proteins are embedded in highly concentrated solutions or glassy matrices of            
non-reducing disaccharides such as sucrose and in particular trehalose, they are preserved            
from damage due to freezing, heating (Ohtake and Wang, 2011) or dehydration, resulting in              
the preservation of coloration and aroma in related products. As a consequence, trehalose is              
increasingly used in the food industry, pharmaceutics, and medicine.  

Trehalose effectiveness has been related to its high glass transition temperature (Green and             
Angell, 1989) or to specific interactions with biomolecules involving a substitution or            
modification of their hydration layers (e.g. water replacement (Carpenter and Crowe, 1989)            
or entrapment (Belton and Gil, 1994) hypotheses). Furthermore, the high viscosity of sugar             
matrices would inhibit large scale protein motions leading to structural damages, inactivation,            
and denaturation (Sampedro and Uribe, 2004). The above mechanisms are not mutually            
exclusive, and have been deduced from experimental observations on concentrated solutions           
or glassy host matrices containing trehalose, sucrose, maltose, and mono- and           
polysaccharides at different hydration, temperature and composition (Cordone et al., 2015;           
Giuffrida et al., 2018). Kinetics and thermodynamics aspects have also been addressed            
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(Semeraro et al., 2017), with the goal of understanding the preserving mechanisms from             
atomistic, to supra-molecular and macroscopic level. 

 

The steps involved in simulating non-reducing sugar-protein complexes in solution are the            
same as those described in earlier sections. MD simulations have to date provided hints on               
the effects of trehalose on protein internal dynamics, indicating a key role of residual water               
on local flexibility. The analysis of solvent partitioning and hydrogen bond (HB) patterns at              
the protein/solvent interface (Cottone, 2007) suggested that preservation effectiveness is          
mostly due to the sugar’s ability to anchor a thin water layer at the protein surface, preserving                 
the native solvation. Here, water molecules bridge protein and matrix dynamics, reducing            
protein non-harmonic motions, which results in stabilization of the protein conformation           
compared to water-solvated systems. Few direct protein-trehalose HBs were however also           
detected at very low hydration, allowing to visualize the interchange between water            
entrapment and water replacement models, depending on hydration. To this end, standard            
sampling state-of-the-art MD simulations have proven adequate, provided a careful choice of            
FFs for all the components (Weng et al., 2018). 

  

Conclusion and Outlook  
 
The power of particle-based simulation to elucidate molecular processes taking place in            
food, from processing and storage to taste, bioavailability, and digestion has grown            
dramatically, due to improvements in molecular and coarse grained FFs; rare-event           
methods; mesoscale and multiscale representations; software and methods for system          
preparation; fast simulation engines scaling extremely well with increasing numbers of           
computing cores/threads; and inexpensive massively parallel computers. A tremendous         
promise is related to the emerging hybrid approaches combining physics-based multiscale           
materials modelling with statistical modelling (QSARs), connecting the advanced molecular          
descriptors to the functionalities and action, and thus extending the reach of the traditional              
schemes. In this context, the role of machine learning is pervasive, ranging from             
improvements in FFs to the capability to relate atomic or molecular features to physiological              
effects. Notwithstanding this progress, a number of challenges remain: 
 

● Obtaining equilibrium structures remains very challenging for large proteins when 
NMR, X-ray or cryoEM cannot help. 

● Mesoscale simulations of systems where conformational changes take place and 
hydrogen bonding effects are important remain difficult.  

● Simulations at constant pH are still challenging, particularly where conformational 
changes occur. 

● Estimating kinetic properties from simulations longer than a millisecond is still 
challenging, although tremendous progress has been made in the field. 

● Simulations of systems far from equilibrium (e.g. systems subject to flow) are difficult 
to justify theoretically, yet important for processing. 
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● Simulating quantum effects for large bio-systems relevant to food science (involving 
hundreds of amino acids) remains a major challenge. 

● Organic/inorganic interactions (e.g. protein-metal) are difficult when good FFs are not 
available. 

● Machine learning applications in soft matter are in their infancy, and more work is 
needed, including systematic dimensionality reduction, a problem shared with order 
parameters and rare-event methods.  

● Simulation is very powerful when combined with sophisticated sampling methods, but 
these are still very much the domain of experts - much needs to be done to make 
them accessible to non-experts. 
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