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Abstract 

A strong correlation exists between occupant behaviour and space heating energy use. In particular, the occupancy 

status (e.g., daytime absence) is known to have a significant influence on residential heating load profiles, as well as on 

cumulative heating energy consumption. In the literature, many occupancy models have been utilised to predict 

occupancy profiles of individual dwellings as part of the larger residential building stock. However, none of the existing 

models consider diversity associated with occupancy-integrated archetypes to generate high-temporal resolution heating 

load profiles. The current paper uses Time Use Survey (TUS) data to develop a high-temporal resolution residential 

building occupancy model. The key feature of the proposed model, implemented using MATLAB, is the ability generate 

stochastic occupancy time-series data for national population subgroups characterised by specific occupancy profiles. It 

is shown that the results are capable of closely approximating data available from TUS. The developed model can be 

applied to improve the quality of modelled high-temporal resolution heating load profiles for generic building stock 

characterised by population subgroups represented by different occupancy-integrated archetypes. A case study is 

performed on a building stock sample located in London, UK. The developed occupancy model has been implemented 

in MATLAB and is available for download 
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1. Introduction  

The residential sector is a significant consumer of energy in most developed countries, and therefore a focus for 

energy reduction efforts [1]. Energy consumption estimation in buildings is complex as it is usually affected by building 

physical properties, the outdoor environment, and occupant behaviour [2]. Research on scalable residential end-use 

energy demand models for large scale building stocks is relatively new, if compared to the research developed to predict 



energy and thermal performance of individual buildings [3]. Most of the modelling techniques which have been 

developed to simulate the energy demand from small to large scale have been collected by several reviews [3–9]. In these 

papers, the modelling techniques are separated into two main categories: top-down and bottom-up. The top-down 

approach is based on analysis of performance data of the entire building stock and does not distinguish individual end-

users. In contrast, the bottom-up approach is based on the estimation of the energy consumption of individual buildings 

representing the building stock. The bottom-up approach can be sub-grouped according to the data inputs [6, 10] and 

the methodology used  [7, 9]. Data input can be on the basis of a statistical approach or a building physics approach [6]. 

The statistical approach is based on the analysis of historical data, while the building physics approach is based on the 

thermodynamic relationships that define the energy consumption of the dwellings. The thermodynamic relationships 

which characterise the building physics approach can be modelled through the use of equivalent Resistance-Capacitance 

electric circuits (RC models) [11, 12] or simulation software [13], which rely on more complex thermodynamic equations. 

RC models are broadly used in large scale building energy simulations because they allow the simulation of the building 

physics, maintaining a higher computational efficiency than simulation software. In both cases, detailed building 

geometry as well as physical data, such as construction elements, U values, etc., and occupancy profiles, are required as 

inputs of the building model. However, a key challenge associated with large scale building modelling is the collection 

of the data related to individual buildings. For this reason, building stock modelling usually deploys representative 

building archetypes to obtain reliable results, thereby minimising the associated computational cost [4]. While 

traditionally researchers have explored the development of archetypes by considering physical characteristics of the 

buildings [8, 14 – 16], studies on integration of occupant behaviour inside archetypes are more recent. Occupancy-

integrated archetypes which include different deterministic occupancy profiles in the characterisation of archetypes are 

defined in [17]. This archetype definition overcomes the assumption that one profile fits all dwellings and allows to 

identify population subgroups characterised by similar occupancy profiles which can be different from the standard one. 

The use of occupancy-integrated archetypes produces more reliable results in the estimation of annual heating energy 

demand when compared to the adoption of standard occupancy schedules for residential building energy simulation 

provided by national guidelines (e.g., BREMEN [18] in UK and DEAP [19] in Ireland). However, the utilisation of 

deterministic occupancy profiles does not allow to consider the stochastic nature of occupancy profiles and the 

consequential diversity of the associated heating demand. The concept of diversity was introduced in [7] and it indicates 

the non-coincidence in energy use. The consideration of diversity is essential to generate high-temporal resolution 

heating load profiles. The inclusion of the diversity in large scale energy models is one of the main challenges in the 

energy modelling of large building stocks. In deterministic models, diversity is not modelled; in statistical models [20] 

the diversity is modelled through a pure mathematical procedure; in probabilistic empirical models the diversity is 

modelled based on the authors experience [21, 22]; and in models based on Time Use Survey (TUS) data [23 – 28] the 

diversity is modelled based on data available from the surveys. In a comprehensive review, Grandjean et al. observe that 

the most reliable probabilistic models are based on Time Use Survey (TUS) data [7].   



The integration of a high-temporal resolution residential building occupancy model based on TUS data within 

occupancy-integrated archetypes allows occupant diversity to be included in occupancy-integrated archetype models to 

obtain high-temporal resolution heating load profiles. Several occupancy models based on TUS data are already 

available. One of the first occupancy models based on TUS data is that developed in [23]. More recent models which 

include diversity are those developed in [26, 28 – 30]. The model developed by Richardson et al. [26], commonly known 

as the CREST model, is based on a Time Use Survey (TUS) conducted in the UK in 2000. The model uses a first-order 

Markov Chain Monte Carlo technique to generate statistical, high time-resolution occupancy profiles. This methodology 

produces occupancy profiles differentiated according to the household size and the day type (weekend or weekdays). In 

the model developed by Widén & Wäckelgård [29], Time Use Survey data collected by Statistics Sweden in 1996 are 

used. Similar to the Richardson model, the Widén model also uses a first-order Markov Chain Monte Carlo technique 

to produce statistical occupancy profiles having high time resolution. This model differentiates daily occupancy profiles 

according to the day type (weekday/weekend) and the type of house occupied by the household (detached or apartment). 

This model has a good ability to differentiate occupancy profiles that characterise a detached house from an apartment 

on the one hand, or a weekday from a weekend day on the other. The model developed by Wilke et al. [30] is based on 

a French Time Use Survey, realised between February 1998 and February 1999. The model adopts a higher-order 

Markov process to address the problems associated with the Markov Chain Monte Carlo, where the current state is only 

dependent on the previous state. This model is based on time-dependent probabilities to activate activities and their 

corresponding duration distributions. Aerts et al. [28] used the data from a Belgian Time Use Survey which was 

conducted in 2005. The model introduces the concept of ‘typical occupancy patterns’, which are identified through the 

application of a hierarchical clustering technique on individual occupancy profiles. Probabilistic occupancy profiles were 

obtained by applying the probability to transit from a certain state to another and the duration probability, which are 

both time dependent. The model is capable of producing individual occupancy profiles differentiated according to the 

‘typical occupancy patterns’. Additionally, the research presented by Aerts et al. has the merit of presenting a 

methodology to construct realistic yearly household occupancy sequences, considering consistency from day-to-day 

profiles.  

In order to generate high-temporal resolution heating load profiles which can be integrated in occupancy-integrated 

archetypes, stochastic occupancy models must be able to generate differentiated occupancy profiles for population 

subgroups characterised by specific occupancy profiles. Most of the models which are based on TUS data differentiate 

households according to the number of occupants [26, 29, 31]. This differentiation has the disadvantage of producing 

household categories containing large occupancy numbers, which in turn consist of households characterised by 

significantly different occupancy profiles. Although extremely useful as a categorisation approach, the associated models 

cannot be readily deployed in simulation of occupancy integrated archetypes. This is because the models generate 

occupancy profiles that are based on an unrepresentative composite of multiple combined occupancy profiles, which 

cannot reproduce the specific occupancy profiles of population subgroups associated with the occupancy-integrated 



archetypes. Moreover, they generate occupancy profiles valid for individual days, which can be aggregated later to obtain 

occupancy profiles for consecutive days. However, the multi-day occupancy profiles obtained in this way do not 

consider patterns of consistency from day to day [26]. Day to day profile consistency should recognise, for example, 

that the same household behaviour is likely to be repeated during the working days because of the daily working routine.  

Just the models introduced in [23, 28] can be successfully used to capture dwellings characterised by specific 

household occupancy profiles, thereby specifying occupancy-integrated archetypes. The model presented in [23] is the 

most complete model. However, this model is based on an extensive and detailed dataset which can be difficult to 

collect. The model presented by Aerts et al. [28] is capable of producing profiles which can be very diversified for 

different households. In addition, it is also computationally more efficient than other models. Moreover, the problem 

of the consistency of the multi-day simulations is addressed. Nevertheless, this methodology is based on the assumption 

that the household individual occupants act independently, which is unlikely [28]. With this approach, the relationships 

between the occupancy presence of the members of the same household are not considered.  

Based on this assessment and review, the arising challenge is the creation of a stochastic occupancy model which 

can be integrated with occupancy-integrated archetypes such that it is possible to capture the diversity provided by the 

stochastic behaviour of occupants to simulate high-temporal resolution heating load profiles of building stock 

characterised by different population subgroups. The development of this new model is thus the subject matter of the 

current paper. 

The proposed stochastic occupancy model is: (i) scalable, as it can produce occupancy profiles for building stocks 

of different sizes; (ii) adaptable, as it can be used to model building stocks characterised by occupants having completely 

different behaviour (i.e., in some building stocks most of dwellings could be unoccupied during the day, while in other 

building stocks dwellings could be constantly occupied); (iii)  representative of diversity of occupant profiles at large-

scale [5], as the stochasticity of the model allows the influence of occupant diversity on building stock energy demand 

to be considered. The key novelty of the model is its adaptability to building stock including population subgroups 

characterised by specific occupancy profiles. In addition, the model is capable of replicating similar behaviour for each 

household during weekdays, meaning that consistent multi-day occupancy profiles can be obtained. The model is 

deployable in any application where high-resolution occupancy profiles in building stock are required. An 

implementation of the model is available for download [32]. Because the heating demand is closely linked with the 

occupancy profiles of the households [2], the study of the application of such a model to obtain high-temporal resolution 

heating demand profiles is of particular interest. For this reason, in the current paper, the occupancy profiles are used 

as input in the occupancy-integrated archetype models to calculate the high-time resolution profiles of heating demand 

of a building stock. 

The paper is organised as follows. The development of the novel stochastic model is described in Section 2. In 

Section 3, the developed model is used to calculate the heating demand of a hypothetical building stock of 100 identical 

new apartments located in London. The aim is to demonstrate and elaborate on the usability of such a model in 



residential building stock modelling. Initially, the deterministic occupancy profiles, typical of integrated-occupancy 

archetypes are used to determine the building stock heating demand. Next, the building stock heating demand is re-

calculated considering the new stochastic occupancy model developed in Section 2. Additionally, the results are also 

compared to the ones which can be obtained using a well-established stochastic model (CREST model) [26]. The effect 

of use of the new stochastic occupancy model in the estimation of high-temporal resolution heating load profiles of 

occupancy-integrated archetypes is discussed in Section 4 of the paper.  Section 5 concludes the paper. 

 

2. Development of the stochastic occupancy model  

An overview of the methodology is given in Figure 1 and is outlined in detail in this section.  

Data which are used to develop the model are obtained from the Time Use Survey conducted in the UK in 2015 

(TUS 2015 UK) [33]. In this model, household diaries are categorised according to the day type and the daily occupancy 

profiles, following the same procedure adopted in the development of occupancy-integrated archetypes to allow the 

integration of the model with these archetypes [17](Step 1 – 2). Three significant household states are identified to 

describe the occupancy profiles: (i) all of the household occupants are at home and asleep (Non-Act), (ii) all of the 

occupants are absent (Abs), and (iii) at least one occupant is home and active (Act). This choice is reasonable because 

it has been shown that heating demand in residential buildings is mainly influenced in particular by the succession of 

occupied and unoccupied periods [16, 20]. As in most of the reviewed existing models, a first-order Markov–Chain 

technique is selected to predict the household states, which is proved to be the most appropriate in [34]. 

The concept of the first-order Markov–Chain technique is that each state is dependent only on the previous state 

together with the probabilities of the state changing. These probabilities are held in ‘‘transition probability matrices’’, 

which must be generated for each time step, to capture the time dependence of the process (Step 3). In order to represent 

the different behaviour of the categories, the “transition probability matrices’’ which define each category are different. 

Once the transition probability matrices are obtained, they are used in the Markov–Chain Monte Carlo technique to 

obtain the household states in each time step. The sequence of household state during one day defines the household 

daily occupancy profile. The TUS 2015 UK data are collected with a ten-minute period resolution, and thus, in this case, 

the household daily occupancy profile comprises 144 integer numbers, which indicate the household states. If needed, 

the obtained daily occupancy profiles can also be aggregated in sequences to obtain consistent multi-day occupancy 

profiles (Step 4). 

 



 

Figure 1 Model flow chart 

2.1 Data Collection-Time Use Survey (Step 1)  

The presented model is based on data available from the Time Use Survey 2014-2015 (UK 2015 TUS) [33]. The 

UK 2015 TUS recorded the everyday routines of 10,208 UK citizens belonging to 4,733 households. One household is 

defined as a person or group of people who have specified the accommodation as their only or main residence and 

share the living accommodation. The routine of survey respondents is described in detailed 24-hour diaries (household 

diaries), completed at ten-minute intervals. In each time slot, occupants indicated their primary and secondary activities, 

the location of the activity and whom the survey respondent was with. Additionally, data describing the working hours 

during a whole week are also available. From this data, it is possible to see that working hours related to an individual 

person are likely to be the same for all the working days. This leads to the assumption that it is reasonable to adopt the 

same daily occupancy profiles for all the working days for a determined household.  



2.2 Data categorisation (Step 2) 

TUS data are categorised according to the day type (weekend or weekday) and the daily occupancy profile, by the 

application of the k-mode clustering technique [17]. The grouping of the household diaries according to the day type is 

straightforward. Indeed, the day in which the respondent routine is recorded is indicated in the TUS diaries. The 

grouping according to occupancy profiles is performed using a clustering methodology previously developed [35]. The 

clustering is applied only on weekday occupancy profiles because it is almost impossible to recognise household having 

similar occupancy profiles during the weekend days. In the end, through the data categorisation, 6 different data 

categories are identified: 5 categories for the weekdays, represented by the modes “wd1, wd2, wd3, wd4, wd5”, and 1 

category for the weekend days, represented by the mode “we”. 

The result of the data categorisation is shown in Figure 2. 

 

 

Figure 2 Occupancy categories for weekdays (a) and weekend (b) 

 

The weekday categories correspond to the characteristic occupancy schedule (OP) of the occupancy-integrated 

archetypes identified in [17], which are: OP1 Daily absence, OP2 Working hours absence, OP3 Lunchtime absence, 

OP4 Constant presence 1, OP5 Constant presence 2, (see Table 3).   

2.3 Transition probability matrices (Step 3) 

The transition probability matrices are generated for each category derived from the categorisation of TUS data.  In 

order to create daily household profiles, a transition probability matrix was created for each time step. In total, 6 x 144 

transition matrixes were created, where 6 are the categories and 144 the time step in each day.  

Transition probability matrices have dimensions of 3 x 3 because 3 are the possible household states (Abs, Act, 

Non-Act). In this model, the dimension of the transition matrixes is independent of the number of occupants in the 

house. This reduces the computational time compared to other models such as [26], but this also reduces the obtained 



information because the number of occupants in each time step is lost. Nevertheless, the heating demand is not a 

function of the number of occupants in the house, but it is mainly dependent to the succession of occupied and 

unoccupied periods, which can be accurately modelled for different occupancy-integrated archetypes as a result of the 

development of this model. An example of transition probability matrixes is shown in Table 1, where each of its entries 

is a non-negative real number representing a probability for the household to transitioning between two states from the 

time step “t” to time step “t+1”. Probabilities of the transition probability matrixes are estimated from TUS data. The 

probability to pass from state i to state j is calculates as 

𝑝𝑖𝑗 =  
𝑂𝑖𝑗

∑ 𝑂𝑖𝑘
𝑚
𝑘=1

 (1) 

𝑂𝑖𝑗 is the number of observed transitions from state i to state j, 𝑂𝑖𝑘  is the number of observed transitions from 

state i to state k, m is the number of possible state (m = 3 in this case). This process identifies the maximum likelihood 

estimators of the transition matrixes [36]. 

 

Table 1 Example transition probability matrix 

  Time step “t+1” 

 Household state Active Non-Active Absent 

T
im

e
 s

te
p

 “
t”

 

Active 𝑃𝑎𝑐𝑡,𝑎𝑐𝑡 𝑃𝑎𝑐𝑡,𝑛𝑜𝑛−𝑎𝑐𝑡 𝑃𝑎𝑐𝑡,𝑎𝑏𝑠 

Non-Active 𝑃𝑛𝑜𝑛−𝑎𝑐𝑡,𝑎𝑐𝑡 𝑃𝑛𝑜𝑛−𝑎𝑐𝑡,𝑛𝑜𝑛−𝑎𝑐𝑡 𝑃𝑛𝑜𝑛−𝑎𝑐𝑡,𝑎𝑏𝑠 

Absent 𝑃𝑎𝑏𝑠,𝑎𝑐𝑡 𝑃𝑎𝑏𝑠,𝑛𝑜𝑛−𝑎𝑐𝑡 𝑃𝑎𝑏𝑠,𝑎𝑏𝑠 

 

2.4 Generation occupancy profiles (Step 4) 

2.4.1 Daily occupancy profiles 

The generation of daily occupancy profiles is obtained using the Markov– Chain Monte Carlo technique [37].  

The first step of the technique is the generation of the start state, which is the household state at 00:00. This is 

randomly determined considering the probabilities found in the original TUS 2015 UK data. After the start state is 

established, the following household states must be determined. In order to generate the following synthetic data, a 

random number “r” is generated in the interval [0,1] at each time step, using a flat distribution random number generator. 

Comparing the number with the probabilities indicated in the transition probability matrix linked to that specific 

category at a given the time step. An effective way to visualise the resulting household daily occupancy profiles is through 



the spectrum  of occupancy profiles shown in Figure 3 for each category. The x-axis of all subplots in Figure 3 indicates 

the households, while the y-axis corresponds to the time of the day, which is based from 00:00 to 00:00 of the successive 

day. The colours indicate the household state related to a single household in a defined time of the day. It is possible to 

see that the profiles obtained for each category are similar to the corresponding modes shown in Figure 2, though not 

identical. The stochastic profiles obtained for the different categories can be applied directly to the model of the 

associated occupancy-integrated archetypes. Thanks to the use of these stochastic profiles in the model of occupancy-

integrated archetypes, it is possible to consider the diversity of occupant behaviour in the estimation of high-temporal 

resolution heating load profiles. 

 

 

Figure 3 Spectrum of the occupancy profiles for the following categories: (a) wd1, (b) wd2, (c) wd3, (d)  wd4, (e) 
wd5, (f) we. 

2.4.2 Multi-day occupancy profiles  

The creation of individual household daily occupancy profiles is not sufficient when realistic monthly or annual 

occupancy profiles are required. In this case, patterns of consistency from day to day must be reproduced to simulate 

the daily routine which is likely to exist in multiday household occupancy profiles [28].  

This issue is already addressed in the development of occupancy-integrated archetypes as the same deterministic 

occupancy profiles are used during weekdays to incorporate the likelihood that the same household behaviour is 

repeated during the working days because of daily working routines. This is a realistic assumption [17] because working 

hours are often fixed. Similar but not identical occupancy profiles during working days are obtained using the same 



transition matrices in the Markov-Chain process to produce the stochastic profiles during weekdays.  Additionally, a 

different transition matrix is used for weekend days, so that the occupancy profiles obtained for non-working days are 

likely to be different from the one obtained for working days.  

Weekly household occupancy profiles can be obtained combining 7 consecutive daily household occupancy profiles 

(Figure 4- Figure 8). From these figures, it is possible to see that the model works as expected: similar daily household 

occupancy profiles are generated for working days, and also, the household daily occupancy profiles generated by the 

model are very similar to characteristic modes of each category.   

As the 5 categories for the weekdays correspond to the 5 occupancy schedules (OP) which are used in the 

identification of occupancy-integrated archetypes, it is easy to associate these weekly occupancy profiles to the 

occupancy integrated archetypes.  

 

Figure 4 Weekly occupancy profiles associated with the category OP1. 

 

Figure 5 Weekly occupancy profiles associated with the category OP2. 

 

Figure 6 Weekly occupancy profiles associated with the category OP3. 

 



 

Figure 7 Weekly occupancy profiles associated with the category OP4. 

 

 

Figure 8 Weekly occupancy profiles associated with the category OP5. 

 

2.4.3 Verification of aggregate behaviour 

A comparison of the aggregated model output against TUS data for each category is shown in Figure 9. This shows 

the percentage of active households in each time step for each category as obtained from TUS data (real profile), 

compared to the average proportion of active households as generated by the model for the same category (synthetic 

profile). In order to obtain the synthetic profile, initially the percentage of active households in a sample of 1000 

households is calculated. Then, this step is repeated 1000 times in order to obtain a reliable value of the average 

proportion of active households generated through the application of the presented stochastic occupancy model. The 

95% confidence interval of the obtained synthetic profile  is also shown in Figure 9 to indicate the reliability of the data 

shown for the considered sample. However, this interval is almost invisible in this case as the sample size considered is 

very large. Figure 10 shows the 95% confidence interval obtained when the average value of a household sample of 100 

households is calculated 10 times. Comparing Figure 9 and Figure 10, it is possible to see that as expected, the confidence 

interval is bigger when the sample size is smaller, although it is still acceptable even when the sample is small.  

The close correlation between the model output and the TUS data is quantified considering 3 metrics, namely Mean 

Absolute Error (MAE) (Equation 1), Root Mean Squared Error (RMSE) (Equation 2) and Coefficient of Variation (CV) 

(Equation 3). The MAE, the RMSE and the CV are obtained using Equation 1, 2 and 3, respectively, where 𝐴𝐻𝑃𝑝(𝑖) 

is the predicted active household percentage at repetition i, 𝐴𝐻𝑃𝑟 is the reference active household percentage (from 



TUS data), and N is the total number of repetitions, which is equal to 1000 in this case. 𝐴𝐻𝑃𝑝
̅̅ ̅̅ ̅̅ ̅is the average value of the 

𝐴𝐻𝑃𝑝 obtained for the total number of repetitions.  

𝑀𝐴𝐸 =  
∑ |𝐴𝐻𝑃𝑝(𝑖) − 𝐴𝐻𝑃𝑟|𝑁

𝑖=1

𝑁
 (1) 

𝑅𝑀𝑆𝐸 =  √∑ (𝐴𝐻𝑃𝑝(𝑖) − 𝐴𝐻𝑃𝑟)
2𝑁

𝑖=1

𝑁
 

(2) 

𝐶𝑉 =
𝑅𝑀𝑆𝐸

𝐴𝐻𝑃𝑝
̅̅ ̅̅ ̅̅ ̅

 (3) 

 The resulting values obtained for the different time steps of the day for all the different categories are reported in 

Figure 11. From this figure, it is possible to see that the MAE, RMSE and CV values are always approximately equal to 

zero, meaning that the result produced by the presented stochastic model are very close to the data obtained from TUS. 

The average value of these metrics over one day is reported in Table 2. In this table, the Pearson coefficient (ρ) is also 

reported. This is approximately equal to 1 for all categories, confirming that there is a close correlation between the 

profiles obtained from the stochastic occupancy model and the reference result obtained from the TUS data. 

 

Table 2: Pearson coefficient, MAE, RMSE and CV error metrics for different categories  

 Categories 

 Wd 1 Wd 2 Wd 3 Wd 4 Wd 5 We 

ρ 1 1 1 1 1 0.9996 

MAE 0.00896 0.00864 0.00928 0.00908 0.00854 0.01047 

RMSE 0.00781 0.00762 0.00731 0.00962 0.00790 0.00828 

CV 0.00056 0.00048 0.00030 0.00026 0.00039 0.00029 



 

Figure 9 Comparison of real and synthetic profiles of the percentage of aggregated active occupancy for 
the following categories: (a) wd1, (b) wd2, (c) wd3, (d)  wd4, (e) wd5, (f) we. Sample: 1000 households. 
1000 repetitions.   

 



 

Figure 10 Comparison of real and synthetic profiles of the percentage of aggregated active occupancy for 
the following categories: (a) wd1, (b) wd2, (c) wd3, (d)  wd4, (e) wd5, (f) we. Sample: 100 households. 10 
repetitions.   

  

 

 



 

Figure 11 ME/RMSE values for the following categories: (a) wd1, (b) wd2, (c) wd3, (d) wd4, (e) wd5, (f) 
we. Sample: 1000 households. 1000 repetitions.   

 

2.4.4 Verification of transitions 

The verification of transitions is obtained using a bootstrap method as suggested in [36]. This method consists of 

computing the maximum likelihood estimators from the samples obtained from the application of the stochastic 

occupancy model presented in this paper and comparing them with the maximum likelihood estimators obtained from 

the original TUS. The maximum likelihood estimators obtained from the original TUS correspond to the transition 

matrices presented in Section 2.3. The maximum likelihood estimators must be obtained for each time step and for each 

category. The total number is thus equal to 6 x 144. An effective way to visualise the maximum likelihood estimators is 

by the use of heatmaps. Figure 12 and Figure 13 show the maximum likelihood estimators obtained from TUS data and 

sample data, respectively. The maximum likelihood estimators obtained for different time steps are underlined by a 

thick vertical line.  Each row in each time step indicates a household state, as well as each column. In order to maintain 

clarity, only a limited amount of time steps is shown. Comparing Figure 12 and Figure 13, it is possible to see that the 

values of maximum likelihood estimator are very similar. Their percentage difference is computed as 
|𝑝𝑖𝑗−𝑝𝑖𝑗̂|

𝑝𝑖𝑗
 x 100, 

where 𝑝𝑖𝑗̂ indicates the maximum likelihood estimator obtained from the sample. The results of the percentage 

difference are shown in Figure 14. In general, the values of the percentage difference between the maximum likelihood 

estimators are lower than 10%, except for some exceptions which are evident when 𝑝𝑖𝑗 is very small. In particular, for 

the time steps presented in Figure 14, the percentage difference between the maximum likelihood estimators reached 



100% in the category “we” (weekend).  Although this value can appear to be very high, it is justifiable by the fact that 

in these cases both  𝑝𝑖𝑗 and 𝑝𝑖𝑗̂ are approximately equal to zero.    

 

 

Figure 12 Maximum likelihood estimators from TUS data for categories: (a) wd1, (b) wd2, (c) wd3, (d) 
wd4, (e) wd5, (f) we. 

 



 

Figure 13 Maximum likelihood estimators from sample data for categories: (a) wd1, (b) wd2, (c) wd3, (d) 
wd4, (e) wd5, (f) we. 

 

 

Figure 14 Percentage difference between maximum likelihood estimators from TUS and sample data for 
categories: (a) wd1, (b) wd2, (c) wd3, (d)  wd4, (e) wd5, (f) we.  



2.4.5 Downloadable model  

An example implementation of the model has been made available for download [32]. It is capable of creating multi-

day occupancy profiles for building stock of different sizes and characterised by different shares of households 

belonging to different categories. The source code may be readily adapted for specific applications, with due 

acknowledgement to the authors. 

 

3. Application of the model  

The aim of the paper is to develop a new stochastic occupancy model which can be integrated with the occupancy-

integrated archetypes described in [17], so that it can be used to accurately simulate high-temporal resolution heating 

load profiles of residential building stocks. The result of the integration is an archetype-based stochastic building stock 

model, which is schematised in Figure 15.  

 

 

Figure 15 Scheme of the archetype-based stochastic building stock model 

 

Given the characteristics of the building stock, each building of the stock is associated with an occupancy-integrated 

archetype having the most similar characteristics. The occupancy integrated archetypes in UK are classified according 

to the parameters presented in Table 3. The occupancy profiles correspond to those presented in Section 2.2. Once 



each building has been associated to an occupancy-integrated archetype, the occupancy profiles are generated by the 

high-temporal resolution residential building occupancy model presented in Section 2 of the paper. Such occupancy 

profiles are then used as inputs in the RC models of the occupancy-integrated archetypes representative of the building 

stock to obtain heating demand profiles. The building stock demand is obtained through the aggregation of the demand 

of the individual buildings. 

 

Table 3 Archetype segmentation developed in [17] 

Dwelling type Construction year Occupancy profiles Climate zone 

1.  Flat 1.  Pre-1918 1.  Daily absence (OP1) 1. London 

2.  Bungalow 2.  1919-1964 2.  Working hours absence (OP2) 2. Birmingham 

3.  Detached 3.  1965-1980 3.  Lunch time absence (OP3) 3. Newcastle 

4.  Semi-detached 4.  1981-1990 4.  Constant presence 1 (OP4) 4. Glasgow 

5.  Terrace 5.  Post 1991 5.  Constant presence 2 (OP5)  

 

In order to demonstrate the benefits of the application of the presented stochastic occupancy model to obtain high-

temporal resolution heating load profiles, a hypothetical building stock of 100 identical new flats located in London is 

modelled. Firstly, deterministic occupancy profiles, corresponding to the modes of the occupancy categories (Figure 2), 

are used in the building stock model. Secondly, the stochastic profiles obtained from the high-temporal resolution 

residential building occupancy model developed in Section 2 are used to model the heating demand of the building 

stock. The difference between the two approaches is evaluated. In this case study, the scenario where the buildings are 

not associated with any specific occupancy profiles is also considered. In this case, it is possible to use the CREST model 

[26] to obtain the stochastic occupancy profiles to use as inputs in the archetype models. The comparison between the 

data obtained by the developed stochastic model and the CREST model is useful, as the CREST model is one of the 

most commonly used occupancy models in literature.  Similar to the presented model, the CREST model is also based 

on the first-order Markov Chain Monte Carlo method, but the CREST model does not allow differentiated occupancy 

profiles for population subgroups characterised by different behaviours to be generated. The comparison of the results 

obtained using the presented stochastic models and the CREST model highlight the benefits of the application of the 

novel archetype-based stochastic model developed in the current research. The decision not to consider different 

archetypes from a structural point of view (e.g., older flats, houses) allows for isolation of the impact of occupant 

behaviour on building stock heating load demand to be examined. 



3.1 Building stock characteristics 

In the current study, a hypothetical building stock of 100 new flats located in London is modelled.  It is assumed 

that these can be assimilated to the occupancy-integrated archetypes “Flat built after 1991” developed in [17]. The flats 

in the building stock can be characterised by OP 2 and 5 only. This means that the weekly days of the considered 

archetypes are associated to the categories represented by modes wd2 and wd5 identified in Section 2. This choice is 

due to the fact that the two categories together represent more than 50% of UK household occupancy profiles during 

weekdays (Figure 2(a)). In particular, the following cases are analysed: 100% households are associated with OP 5; 75% 

of households are associated with OP 5, 25% with OP 2; 50% of households are associated with OP 5, 50% with OP 

2; 25% of households are associated with OP 5, 75% with OP 2; 100% households are associated with OP 2. As in 

Chapter 4, it is assumed that every flat is occupied by two adults. 

3.2 Building model 

The use of stochastic occupancy profiles obtained from the application of the presented model to the different 

categories allows to capture the diversity given by the stochastic behaviour of occupants. In order to take into account 

multiple stochastic occupancy profiles, multiple building simulations are necessary. Dynamic building equivalent 

Resistance-Capacitance (RC) models are used to simulate the archetypes in the current work resulting in reduced 

computational overhead associated with detailed simulation software models. Additionally, RC models are needed in 

building-to grid models [39]. In particular, the 10R7C heterogeneous RC model developed by Cabrera [38] for the 

apartment archetype is adopted in this paper. A calibration algorithm is used to calibrate the RC thermal network 

parameters [39]. Archetype energy models developed using the EnergyPlus simulation environment are used to generate 

reference synthetic data [17]. The RC model is calibrated by varying the values of the thermal resistances and 

capacitances of the RC model in order to minimise the discrepancy between the building internal temperature given by 

EnergyPlus and the RC model.   

This yields a linear approximation of the thermal dynamics of the buildings 

𝑋𝑡+1 = 𝐴𝑋𝑡 + 𝐵𝑈𝑡 + 𝐵ℎ𝑒𝑎𝑡𝑄ℎ𝑒𝑎𝑡
𝑡  (4) 

where 𝑋 is the vector of state variables (i.e., temperature at the nodes of the RC model). The vectors 𝑈 and 𝑄ℎ𝑒𝑎𝑡 

are the disturbance (e.g., weather) parameters and input heat gains at each node for time step 𝑡, respectively. The matrices 

[𝐴]𝑛×𝑛, [𝐵]𝑛×𝑚 and [𝐵ℎ𝑒𝑎𝑡]𝑛×𝑛 are state, disturbance and heat input coefficient matrices, respectively, where 𝑛 is the 

number of nodes and 𝑚 is the number of disturbance parameters. The RC network parameters used in the model are 

derived with the technique presented in [38]. 



This study is based on the assumption that the heating periods are coincident with the actively occupied periods. 

This assumption is adequate for modelling modern houses that are well insulated and for lightweight construction [40]. 

Heating desired average temperature is assumed to be 21 °C during the actively occupied hours, based on the 

observations presented in [41]. All the inputs required for the model (e.g., weather data, internal heat gains) are obtained 

as in [17]. As data from TUS 2015 UK are collected every 10 minutes, the time step used in the model is 10 minutes. In 

the model, it is assumed the heat produced by the heating unit is added directly to the indoor environment, such as the 

case with direct electric resistance heating systems. In particular, it is assumed that direct electric resistance heating 

systems of 3 kW are used in the modelled flats.  

3.3 Resulting heating demand 

3.3.1 Annual heating energy demand 

Figure 16 compares the distribution of annual heating energy demand required by the building stock considering 

different building stock compositions. Building annual heating energy demand obtained using deterministic profiles as 

input in the model is observed to assume two values, depending on the associated household occupancy profiles. When 

stochastic profiles are used in the model, it is possible to observe that different combinations of occupancy integrated 

archetypes leads to different distributions of annual building stock energy heating demands, as the increase of the 

number of buildings characterised by OP5 leads to an increase of building characterised by a higher annual heating 

energy demand. Although the distribution of annual heating energy demand obtained using deterministic and stochastic 

profiles are significantly different, the difference between the annual average heating energy demand calculated with the 

stochastic profiles (𝐸𝑠𝑡) and the deterministic profiles (𝐸𝑑𝑒𝑡), calculated as 
|𝐸𝑠𝑡−𝐸det |

𝐸𝑠𝑡
 𝑥 100, is always less than 3%. 

Being aware that the distribution of annual heating demand across the building stock is not simulated when deterministic 

occupancy profiles are used, the use of the deterministic profiles for the model of the annual average heating energy 

demand of building stock is acceptable as the error that is introduced is negligible. The use of the CREST model does 

not allow different distributions of the households characterised by different occupancy profiles to be considered. Figure 

16 shows that the proposed stochastic occupancy model could more accurately represent and estimate building stock 

annual heating energy consumption for building stocks characterised by certain occupancy profiles compared to the 

CREST model. 



 

 

Figure 16 Distribution of annual heating energy consumption of the modelled building stock for the 
following cases: (a) 100% OP2; (b) 75% OP2 – 25% OP5; (c) 50% OP2 – 50% OP5; (d) 25% OP2 – 75% OP5; 
(e) 100% OP5. 

 

3.3.2 Monthly heating energy demand 

Since the environmental conditions change every month, the simulated heating energy demand could be affected. 

Comparison on a monthly basis provides a better resolution of how different building stock compositions affect building 

stock heating energy consumption for the various seasons. As expected, the difference between the total energy required 

by building stocks characterised by different occupancy profile compositions is higher for colder months (January, 

February, November, December), when the heating energy required is higher (Figure 17). 



 

Figure 17 Building stock Heating Energy Demand for different months (Light coloured bars indicate the results 
obtained using deterministic profiles). 

 

From the analysis of Figure 17, it is also possible to see that the use of deterministic profiles does not have a strong 

effect on the estimation of the monthly average heating energy demand (indicated by the light coloured bars). This 

means that also in the case in which the aim of the simulation is to calculate the monthly heating energy demand of the 

building stocks, the use of deterministic profile is sufficient.  

The percentage difference between the monthly energy consumption obtained using the CREST model and the 

proposed stochastic model is calculated as 
|𝐸𝑠𝑡,𝑚−𝐸CREST,m|

𝐸𝑠𝑡
 𝑥 100, where 𝐸CREST,m is the monthly annual heating energy 

modelled using occupancy profiles generated by the CREST model as input (Figure 17). The differences between the 

results obtained by the two models are larger during colder months. Additionally, the difference between the results 

obtained using the presented stochastic model and the CREST model decreases when the percentage of archetype 

represented by OP 5 increases, as the transition matrixes used for the category wd5 are similar to the one used in the 

CREST model. 

Figure 19 shows the distribution of monthly energy demand for the month of January, considering the different 

share of occupancy profile across the building stock. The behaviour is very similar to that observed for the annual 

heating demand distributions as shown in Figure 16, thus the same considerations are applicable as well in this case. 



 

 

 

Figure 18 Percentage difference between results obtained using the proposed stochastic occupancy model and 
the CREST model 

 

 

Figure 19 Distribution of monthly heating energy consumption of the modelled building stock for the month of 
January for the following cases: (a) 100% OP2; (b) 75% OP2 – 25% OP5; (c) 50% OP2 – 50% OP5; (d) 25% OP2 – 75% 
OP5; (e) 100% OP5. 



3.3.3 Multi-day heating power load 

One of the advantages of the proposed stochastic model is the possibility to consider patterns of consistency from 

day to day, as shown in Section 2.4.2. The use of multi-day occupancy profiles in the archetype models leads to the 

production of consistent multi-day heating power loads for a single household. 

 Figure 20 shows the multi-day heating power load of individual archetypes associated with different occupancy 

profiles. The results are shown from Jan 9th to Jan 15th 2012. This period has been selected to illustrate the different 

high-resolution heating load profiles in a generic winter week for archetypes characterised by different occupancy 

profiles. It is possible to see that for archetypes associated with OP 2 (Figure 20 (a)), the heating demand is usually 

required only in the morning and in the evening during weekdays, while it is required at any time of the working days 

for an archetype associated with OP 5 (Figure 20 (b)). This reflects that general behaviour of archetypes associated with 

OP 2, which are usually uninhabited during the day, while the archetypes associated with OP 5 are occupied the whole 

day. Figure 20 (c) also shows the multi-day heating power load of archetypes which are not associated with any particular 

occupancy profile. In this case, the occupancy profiles are obtained using the CREST model. It is possible to see that 

in this case it is not possible to recognise any consistent pattern from day to day, as already pointed out in [26]. 

 

 

Figure 20 Multi-day heating power load of individual archetypes from Jan 9 th to Jan 15th 2012 for the following 
cases: (a) archetype characterised by OP2; (b) archetype characterised by OP5; (c) no OP. 

 



Figure 21 shows multi-day heating power load of the building stock from Jan 9th to Jan 15th 2012 for the following 

cases: (a) 100% OP 2; (b) 75% OP2 – 25% OP5; (c) 50% OP 2 – 50% OP5; (d) 25% OP2 – 75% OP5; (e) 100% OP5. 

Examining the results more closely, it is possible to see that building stock characterised by different occupancy 

compositions have different heating power demand profiles during the working days, while the power profiles during 

the weekend are similar for all the different cases. The results obtained using the profiles generated by the CREST 

model do not take into account the possible differences in composition of the occupancy profiles in the building stock.  

Thus, it can produce heating power loads which do not reflect the behaviour of the occupants of the building stock. 

This is particularly evident in Figure 21(a), where the power load in the case all the archetypes can be associated with 

OP 2 is shown. In this case, the heating demand is almost zero during the midday periods, and this behaviour cannot 

be replicated unless the data categorisation introduced in Session 2.2 is performed. 

Additionally, Figure 21 also shows that when the aim of the model is to obtain high-resolution profiles of heating 

energy demand, the use of deterministic profiles produces unrealistic peak power demands due to the fact that all 

buildings with the same occupancy profile require the heating to be on at the same time. Thus, in this case, the use of 

stochastic occupancy profiles is recommended to simulate the diversity of occupant behaviour.  

 

 

Figure 21 Multi-day heating power load of the building stock (100 archetypes) from Jan 9th to Jan 15th 2012 for the 
following cases: (a) 100% OP2; (b) 75% OP2 – 25% OP5; (c) 50% OP2 – 50% OP5; (d) 25% OP2 – 75% OP5; (e) 100% 
OP5. 

 



3.3.4 Daily average heating power load 

Figure 22 shows the average daily heating energy demand of the building stock for the month of January, considering 

different building stock compositions. In Figure 22 (a-e), the average heating demand obtained considering all the 

working days for different building stock compositions is shown, while in Figure 22 (f) the average heating demand 

obtained as average heating demand of all the non-working days is presented. This is not differentiated according to the 

different building stock compositions, as the transition matrices used to obtain the stochastic occupancy profiles of the 

non-working days do not change when different weekly occupancy profiles are considered. 

Once again, for the working days, different building stock compositions give rise to different results, although the 

trend is similar. The heating energy demand is lowest during the night, followed by an initial peak at breakfast time. 

Then, the demand decreases during the day, until the late afternoon, when it rises towards an evening peak after which 

it drops again during the night. The magnitude of the required heating demand is different when different building stock 

occupancy compositions are considered.  

It is clearly visible that when high-resolution profiles of heating energy demand are required, the use of deterministic 

profiles produces unrealistic power peak demand profiles, as a consequence of multiple requests of heating power at 

the same time. Thus, the use of deterministic occupancy profiles is not recommended when high-temporal resolution 

heating load profiles need to be obtained from the energy model of the building stock. The results obtained using the 

profiles generated the CREST model do not take into account the possible differences in composition of the occupancy 

profiles in the building stock.  Thus, the adoption of occupancy profiles generated by the CREST model can produce 

heating power loads which do not reflect the behaviour of the occupants of the building stock. As anticipated by Figure 

21, this difference is remarkable especially when all the archetypes can be associated with OP 2 (Figure 22 (a)). In this 

case, the behaviour of occupants is completely different from the one simulated using the CREST model. This shows 

the importance of using the proposed stochastic model in the case where the building stock is characterised by 

households which can be associated with occupancy profiles which are different from the national average.  

While the shape of the average daily heating power loads is very similar for different months, the magnitude is 

different, as some months are colder than others. This is also reflected in the results of monthly heating energy demand 

obtained in Section 3.3.2. The results obtained using the occupancy profiles generated by the presented stochastic model 

are also compared to the results obtained using real occupancy profiles extracted from TUS data for each category. 

Because the occupancy profiles are very similar (Figure 9), the resulting high-temporal resolution heating load profiles 

are very similar. Also in this case, the Pearson coefficient is approximately equal to one in all cases. The 95% confidence 

interval of the results obtained using the occupancy profiles generated by the stochastic occupancy model presented in 

Section 2 is also shown in Figure 22.   



 

Figure 22 Building stock average daily heating energy demand in January: (a) Weekday 100% OP2, (b)  Weekday 
75% OP2\25%OP5, (c)  Weekday 50% OP2\50%OP5, (d)  Weekday 25% OP2\75%OP5, (e)  Weekday 100%OP5, (f)  
Weekend 

 

 



4 Discussion 

This study proposes a new stochastic occupancy model which can be integrated with occupancy-integrated 

archetypes in order to produce accurate high-temporal resolution heating load profiles. The resulting model is 

characterised by 3 fundamental properties which are: (i) scalability; (ii) adaptability; (iii) representative of diversity.  

The model is scalable as it can be applied to building stocks of different size, provided that each building of the 

considered building stock can be associated with one of the archetypes identified at national scale. Additionally, thanks 

to the use of occupancy-integrated archetypes, the model can be also applied to building stocks characterised by 

occupancy profiles which do not correspond to the national average. This assures the adaptability of the model to 

different building stock. These characteristics can be obtained also using occupancy-integrated archetypes with 

deterministic occupancy profiles. However, if deterministic profiles are used, only accurate average monthly and annual 

heating energy demand estimates can be obtained, as evident from the results presented in Section 3.3.1 and 3.3.2. The 

use of deterministic occupancy profiles does not allow the diversity of occupant behaviour to be taken into account 

when high-temporal resolution heating load profiles must be simulated. The use of deterministic profiles in this context 

produces unrealistic peak demands (Figure 22).  

On the other end, the use of the well-established CREST model allows the diversity of occupant behaviour in 

building stock to be modelled, but it does not facilitate households to be characterised by specific occupancy profiles. 

Thus, if occupancy profiles generated by the CREST model are integrated into the archetypes, it is no longer possible 

to adapt the model to building stock having specific occupancy profile compositions, thereby lacking adaptability. The 

developed stochastic occupancy model allows to take into account the diversity of occupant behaviour within the model, 

maintaining the characteristics of scalability and adaptability already introduced thanks to the development of 

occupancy-integrated archetypes. It is important to emphasise that the CREST model is still valuable when the building 

stock is characterised by occupancy profiles which correspond to the national average. Also, the use of the deterministic 

occupancy profiles is still preferred in the case where the aim of the building stock model is to obtain the average daily 

or annual heating energy demand, as it is the simplest solution to adopt and the results are not far from the results which 

are obtained using the statistical model (Figure 16 and Figure 17). 

Finally, the current work is based on the assumption that heating hours are coincident with occupied hours and that 

the heat produced by the heating emitter is added directly to the indoor environment. However, these assumptions are 

not always realistic when different dwelling types and heating systems are considered. Further possibilities will be 

explored in future work, extending the presented approach to different heating systems and different dwellings. 



5. Conclusions 

The current paper develops a new stochastic occupancy model which can be applied to occupancy-integrated 

archetypes to obtain high-temporal resolution heating load profiles.  The proposed model is capable of modelling 

building stocks at different scales and characterised by different occupancy profiles, taking into account the diversity of 

occupant behaviour. The model, verified against data contained in the UK TUS, shows acceptable accuracy. The Mean 

Absolute Error, Root Mean Square Error and Coefficient of Variations calculated from the comparison of the results 

obtained from the stochastic model and the data available from TUS are all approximately zero. In addition, the 

comparison of the transitions between two different household states in each time step shows that the accuracy of the 

model is high. 

An implementation of the model is available for download and may be adopted and adapted for any application in 

which the simulation of occupancy profiles for population subgroups characterised by specific occupancy profiles is 

required.  

In this paper, by means of a case study, the stochastic model is applied to calculate the heating demand of a 

hypothetical building stock of 100 new flats located in London, and the results are compared to the ones that can be 

obtained using deterministic profiles and the CREST model. From the analysis of the results, it is possible to see how 

the stochasticity of the occupancy profiles allows the diversity of the occupant behaviour in the generation of high-

temporal resolution heating load profiles to be considered. Compared to the CREST model, this model offers the 

possibility to create multiple alternative occupancy schedules based on the association of the occupancy-integrated 

archetype to a specific occupancy profile.  

Therefore, the methodology can be used to obtain high-temporal resolution heating power loads of building stocks 

characterised by occupants having a different behaviour than the national average. In this way, more accurate models 

can be obtained, which can be used as a basis to provide more meaningful policy recommendations thanks to a more 

accurate estimation of potential energy and cost savings.  
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