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Abstract 19 

The Teager-Kaiser energy operator (TKEO), when applied to a signal gives an estimation of the 20 

instantaneous energy of that signal. It, therefore, accentuates both frequency and amplitude 21 

changes in a signal. To date, it has been primarily used in communications systems and most 22 

popularly in electromyographic signal analysis to detect bursts of muscle activity, however, it 23 

has the potential to be used in a number of applications including accelerometer and movement 24 

data.  25 

A new algorithm was developed which used the TKEO to detect contact times during a finger 26 

tapping task from accelerometer data recorded from the index finger. The accuracy of the 27 

algorithm was assessed in 7 healthy control subjects during continuous finger tapping across a 28 

range of frequencies from 0.5Hz to 2.5Hz. The algorithm proved to be sensitive, correctly 29 

identifying at least 99% of all contacts in each of the finger tapping conditions that were tested. 30 

The mean absolute error of the contact detection is 14.7 ± 6 ms, while the mean absolute error 31 

of the release detection is 36.5 ± 36.3 ms. The proposed algorithm provides a method for the 32 

automatic detection of the temporal occurrences of the events of the finger tapping task using 33 

only a tri-axial accelerometer. The approach presented provides a means for objective 34 

assessment of finger tapping tasks for evaluation of the fine dexterity of the upper limb 35 

Introduction 36 

Finger tapping is one of the tasks used in assessing motor function in a number of movement 37 

disorders including Parkinsons Disease and Huntingtons Disease [1]. At present, this task is 38 

assessed subjectively by a clinician to determine how the current disease state is affecting the 39 

fine motor skills of the respective patient. Due to the subjective nature of the movement 40 

disorders rating examinations, there is a potential for inter-rater variability in outcome ratings of 41 

the exam [2]. Hence, there is a current need for a low cost, objective measure to assess the 42 

function of the participants during the various tasks of the movement disorders rating scale 43 

examinations.  44 

Tri-axial accelerometers provide a low-cost, lightweight and portable solution to accurately 45 

measure the complex movements of a body. They are increasingly popular in studies of human 46 

movement analysis to study gait and other clinical tasks [3], [4]. 47 

A number of different sensor types have been used to assess the finger tapping task such as 48 

gyroscopes, hall-effects magnetic sensors, touch sensors and accelerometers [5]–[7]. These 49 

studies use characteristics of the recorded signals to infer features of the finger tapping task such 50 

as the temporal occurrences of contact and release of the index finger and the thumb as well as 51 
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quality of the movement during the task. None of these studies, however, validated the detection 52 

of these features using robust ground truth data.  53 

The Teager-Kaiser energy operator estimates the energy of a signal which is derived from the 54 

instantaneous amplitude and instantaneous frequency of the signal. Thus, it can be used to 55 

detect instantaneous changes in either amplitude or frequency in a given signal. Due to its 56 

abilities to enhance high amplitude and frequency changes in signals, the TKEO has been used 57 

to detect the onset of muscle activity in the electromyogram signal during various movement 58 

tasks [8], [9], to image contrast enhancement [10]. In this paper, we introduce a novel algorithm 59 

that uses the TKEO in conjunction with a variant of the discrete wavelet transform, the Maximal 60 

Overlap Discrete Wavelet Transform (MODWT), to find the temporal occurrences of the index 61 

finger and thumb contacts and releases during finger tapping. The performance of the proposed 62 

algorithm is assessed in healthy control subjects where contact times are recorded using touch 63 

sensors located on the contact surfaces of the index finger and thumb respectively.   64 
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Methods and Materials 65 

A. Participants  66 

7 healthy, young participants (2 female, age: 24.57 ± 1.51) gave their informed consent to 67 

participate in the study. Research ethics approval was obtained from the board of Research 68 

Ethics, University College Dublin before the commencement of the study. 69 

B. Experimental Protocol  70 

An aluminium splint was placed over the subjects index finger to restrict movement at the inter-71 

phalangeal joints. and secured with tape. A 3-axis digital accelerometer (Grove ADXL345, 72 

200Hz) was then secured to the lateral aspect of the splint using tape. Subjects were instructed 73 

to tap the distal phalanx of the index finger (or as close as possible) with their thumb while 74 

keeping their forearm and hand in the prone position (Fig. 1). For the purposes of validation of 75 

the algorithm, touch sensors were applied to the contact surfaces of the index finger and thumb 76 

to provide a ground truth measure that accurately determined the occurrences of contact 77 

between the index finger and thumb. The output of the contact sensors was then compared to the 78 

output of the proposed TKEO algorithm to assess the accuracy of the algorithm.  79 

Subjects were instructed to tap their index finger to their thumb in time with a metronome for a 80 

30 second period. The metronome was set to five different frequencies (0.5, 0.625, 0.833, 1.25, 81 

2.5 Hz). A final sixth trial consisted of un-queued tapping where subjects were instructed to tap 82 

as fast as possible without a metronome beat to follow. 83 

C. Contact Time Detection Algorithm  84 

To calculate the temporal occurrences of the contact and release events of the index finger and 85 

thumb during the finger tapping task, a combination of high-pass filtering using the MODWT 86 

and MRA as well as the detection of simultaneous changes in frequency and amplitude of the 87 

signal using the TKEO algorithm were implemented in a novel algorithm.  88 

1) The raw accelerometer signal from the major axis of motion was filtered using a 89 

maximal overlap discrete wavelet transformation with a Haar mother wavelet. The Haar 90 

wavelet was chosen for its ability to accentuate high frequency and amplitude changes 91 

in a signal.  92 

2) Following the wavelet transform, a multi-resolution analysis was performed to ensure 93 

zero-phase filtering of the processed signal as it is imperative to retain temporal 94 

resolution for this application. The MODWT acts as a series of zero-phase filters over 95 

the signal [11]. One very useful property of the MODWT is that it can be used to form a 96 
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multi-resolution analysis (MRA). A multi-resolution analysis allows for the 97 

reconstruction of the original time series signal into a sum of several new series, each of 98 

which is related to variations in the original signal at a given scale. 99 

3) The first level (highest-frequency level) of the multiresolution analysis was then 100 

processed using the TKEO to further accentuate the high-frequency changes in the 101 

signal which corresponded to the contacts of the index finger and the thumb. The 102 

following formula [12] is used to compute a symmetric discrete time estimation of the 103 

TKEO where Ts is the sampling period and n is the sample number:  104 

 105 

4) To smoothen the signal before using a peak-finding algorithm to determine the 106 

contact-times, a moving maximum window followed by a moving mean window were 107 

used.  108 

5) A peak-detection algorithm was then employed to find peaks in the smoothened and 109 

processed signal which correspond to the contact events between the index finger and 110 

the thumb.  111 

6) Once the contacts were identified, a further peak finding algorithm was used to 112 

search between the peaks marking the contacts between the index finger and thumb to 113 

find the point of release of the index finger and the thumb. 114 

D. Data Analysis  115 

The data recorded from the participants were analysed using MATLAB (The Mathworks Inc., 116 

Natick, MA, USA). Since the major axis of motion during the task was along the Y-axis of the 117 

accelerometer (Fig. 1), the data from this axis was used to detect the events of the finger tapping 118 

task. 119 

E. Validation  120 

The contact times detected by the touch sensor were then compared to the times compared to the 121 

algorithm by calculating the mean error, sensitivity, specificity and accuracy. The mean 122 

absolute error can be calculated as follows:  123 
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 124 

where N is the total number of contacts between the index finger and thumb in the given 125 

recording, actual indicates the contact as determined by the touch sensor and detected indicates 126 

the contact as determined by the algorithm.  127 

 128 

Sensitivity was calculated as in (3). True positives (TP) were contacts that were identified by 129 

both the detection algorithm and by the touch sensors. False negatives (FN) were contacts that 130 

were not detected by the algorithm but were detected by the touch sensors. 131 

Results  132 

The mean absolute error and its standard deviation for both the contact and release times as well 133 

as the sensitivity of the detection algorithm are displayed in the following table.  134 

TABLE I MEAN ABSOLUTE ERROR AND SENSITIVITY VALUES FOR THE CONTACT 135 

AND RELEASE TIMES AS DETECTED BY THE TKEO ALGORITHM RELATIVE TO 136 

THE TOUCH SENSOR DATA. 137 

 138 

The results show that the algorithm is extremely sensitive to the finger tapping action as the 139 

sensitivity of the algorithm is greater than 99% for all conditions, with the lower tapping 140 

frequency conditions being the most sensitive. The mean absolute error of the algorithm is 141 

similar for all conditions which would suggest an inherent offset in the algorithms detection of 142 

the contacts.  143 

For the release times however, the accuracy of the algorithm was lower. This is most likely a 144 

result of using the first level multi-resolution analysis signal. The first level MRA signal acts as 145 

a high-pass filter to the raw EMG signal, passing only the high frequency components. Since the 146 
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opening action of the index finger and thumb is a relatively low frequency action, it may be 147 

more desirable to use a higher level of the MRA analysis to detect these more accurately. 148 

Depending on the frequency of the tapping action however, the particular MRA level that will 149 

detect the release action will change in an unpredictable manner making the accurate detection 150 

of the release events rather difficult. 151 

Fig. 3 displays histograms that show the time shift of the detected contacts relative to the actual 152 

contacts as determined by the touch sensors. It is clear to see that for all conditions, most of the 153 

contacts were identified within 50ms of their actual occurrence. 154 

 155 

  156 
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Discussion 157 

The finger tapping task is a common component of examinations of motor function in various 158 

motor disorders [2], [13]. It provides an estimation of the patients’ capabilities of fine dexterity 159 

movements, which are often some of the first symptoms to appear in movement disorders such 160 

as Parkinson’s Disease [14].  161 

Instrumentation of the finger tapping task using inexpensive tri-axial accelerometers will 162 

increase the potential for the finger tapping assessment as it will allow for an in-depth analysis 163 

that is not possible using only a visual assessment. It will also provide objective results that will 164 

remove interrater variability that is inherently introduced by the current subjective visual 165 

examinations [2], [15]. 166 

During the finger tapping task, the contact instance of the index finger with the thumb is 167 

represented by a simultaneous increase in the instantaneous amplitude and frequency of the 168 

acceleration signal recorded from the tip of the index finger. Using this knowledge, it is possible 169 

to make use of the Teager-Kaiser energy operator along with the maximal overlap discrete 170 

wavelet transform as a form of high-pass filter to accurately detect the temporal occurrences of 171 

the contact events. Although the TKEO has previously been used in a number of applications 172 

[8]–[10], its use in conjunction with the MODWT for the detection of finger tapping events 173 

from an accelerometer signal has not been previously explored. 174 

A novel algorithm was developed that uses MODWT in conjunction with the TKEO to detect 175 

the temporal events of the finger tapping task. The algorithm was validated using ground truth 176 

data recorded from touch sensors placed on the contact surfaces of the index finger and the 177 

thumb. The performance of the algorithm was evaluated using the mean absolute difference, its 178 

standard deviation and the sensitivity measure for both the contact and release times. The results 179 

of the evaluation show that the algorithm was able to positively identify at least 99% of the 180 

contacts between the index finger and the thumb under each of the finger tapping conditions that 181 

were tested.  182 

The mean absolute difference of the contact times were 14.7 ± 6 ms over all of the finger 183 

tapping conditions examined. The mean absolute difference for the release times however, were 184 

less accurate (36.5 ± 36.3 ms) for a number of reasons.The filtering process using the MODWT 185 

decomposes the signal into a number of “levels”, each level effectively acting as a band-pass 186 

filter with decreasing centre frequencies on the signal. The first level therefore contains the 187 

highest frequencies in the signal. As the release action of the finger tapping task is a relatively 188 

low frequency event compared to the contact action, it may be represented more accurately by a 189 
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higher level decomposition of the MODWT. Due to the changing frequency of tapping in the 190 

various conditions that were tested, it is difficult to choose an appropriate level that consistently 191 

contains the release events. 192 

Further analysis involving both older healthy and older populations affected by movement 193 

disorders will be required to validate the use of this algorithm during episodes of tremor, chorea 194 

or other unintentional movements. The results of the validation of this algorithm suggest that it 195 

is possible to identify the temporal events of the finger tapping task in an inexpensive, objective 196 

and accurate manner using only a tri-axial accelerometer. 197 

 198 

 199 

  200 
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 251 

Figures 252 

 253 

Fig 1: Illustration of the experimental set-up. A splint is attached to the subject’s index finger. 254 

An accelerometer is then attached to the lateral aspect of the splint. Touch sensors were placed 255 

on the contact surfaces of the index finger and thumb to provide ground truth data for the 256 

contact times.   257 

http://doi.wiley.com/10.1002/mds.10011
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 258 

Fig 2: Processing steps of the raw accelerometer signal to the final TeagerKaiser Energy signal 259 

that is used to determine the contact instances during the finger tapping task.  260 

 261 
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 262 

Fig 3: Histograms showing the distribution of the difference in detected contact times vs the 263 

actual contact times as determined by the touch sensors. 264 
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 265 

Fig 4: Histograms showing the distribution of the difference in detected release times vs the 266 

actual release times as determined by the touch sensor s.267 
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