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Abstract—Customer expectations will continue to drive com-
munication service developers to optimise their use of network
resources based on user satisfaction. Thus, network platforms
need to be remodelled from Quality of Service (QoS) centric
to Quality of Experience (QoE) aware platforms. The perceived
QoE for interactive web applications such as Google maps or
Openstreetmaps is dominated by waiting time, i.e. the perceived
time to render the page and map. Studies have explored waiting
time estimation for Web QoE applications (e.g. email, downloads,
web pages). Perceived waiting time for web mapping applica-
tions have been less comprehensively explored. The relationship
between perceived waiting time and network QoS is a key QoE
management factor to enable QoE aware networks. In this paper,
we review the principle of network QoE management and the
perception of waiting times. We present experimental design
and methodology that facilitate the identification of waiting time
thresholds for web applications, using web maps as a use case. We
outline our results along with a statistical analysis and discussion
interpreting the results and their applications. Finally, we discuss
follow-up experiments and how they could be developed and
applied in the network QoE management.

Index Terms—Web QoE, QoE Management, Waiting Time

I. INTRODUCTION

In computer networks, Quality of Service (QoS) has been
the primary basis for performance and policy optimisation
for the applications and services [1]. The network performs
optimisation based on common QoS metrics such as latency,
jitter, drops and throughput. QoS metrics measure the network
perspective in an objective manner but do not capture a
user’s perception of the quality. Quality of Experience (QoE)
considers user experience factors beyond the system, i.e.
context, user, content and system (Fig. 1). It can provide
further insights into the end user’s quality perception [1]
and user satisfaction. Mean opinion score (MOS) is common
QoE metric which measures the level of user satisfaction.
The International Telecommunication Union (ITU) defines
opinion score as the value on a predefined scale (e.g. Absolute
Category Rating (ACR) scale) that a subject assigns to his
opinion of the performance of a system. MOS is the average
of opinion scores across subjects [2].

Network QoE management is an emerging field where

networks are QoE aware and network dynamics are optimised
[1, 3, 4]. The link between network QoS and QoE is an
active area of research [5, 6, 7], particularly for multimedia
applications using video streaming or voice over IP. More
recently network based QoE management has sought to apply
the same principles of QoE for the other applications including
web applications (Web QoE) [6, 7, 8].

Fig. 1: Illustration of quality of experience influence factors
based on a web mapping application.

The term Web QoE refers to the quality of experience of
interactive applications that are based on the HTTP or HTTPS
protocols and are accessed using a web browser [9]. Web
applications follow a request-response paradigm in which the
user makes a request, the server processes the request, and
issues a response. The network transports the data between
the web server and the user’s browser. The HTTP request and
response processes result in a series of waiting times or Page
Loading Times (PLTs).

Results from earlier Web QoE studies demonstrate that
waiting time is a predominant impairment for web QoE, which
exhibits a logarithmic relationship with user’s satisfaction [6,
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10]. Waiting time influences a user’s patience, the longer that
a user waits beyond their expectations, the less satisfied the
user becomes. Waiting time correlates with user perception and
is a major metric in the network QoE management for web
applications. However, it is challenging to determine a proper
waiting time for interactive web applications (e.g. Google Map
and OpenStreetMaps) [6].

Waiting time is influenced by a variety of factors such as
the size of content data, the application and the network. A
user is not necessarily aware of, or interested in, the cause of
waiting times. They expect the web application response to
have a preconceived speed based on expectations that can be
set by their prior experiences.

Perception of time has long been known to be relative.
Perceived waiting time and actual waiting time are not as
tightly coupled as might be imagined for interactive web appli-
cations particularly due the the influence of user expectations.
A waiting time increase of one second over an expectation
of 50ms has a significant impact on QoE but the same one
second added to a longer expected waiting time of 20 seconds
could have a negligible effect on QoE [10]].

Therefore, with regard to Fig. 1, by fixing the context to
an interactive web mapping application and the content to a
sample map we formulate the hypothesis that the perceived
waiting time is a function of user’s expectation and the actual
waiting time.

The dominant methods in studies analysing time perception
are just noticeable difference (JND) and absolute threshold
identification. JND is the ratio of perceived time to actual
time, specifically the minimum difference between two stimuli
that a human can perceive 50 percent of the time. While
JND determines perceptible differences in stimulation levels,
absolute threshold identifies the smallest detectable level of
stimulation [11].

In this study, we used the paired comparison paradigm
common to JND and absolute threshold and used in time
perception studies to establish the perceptible change threshold
for five waiting times that correspond to perceived quality
levels for web pages from [6]. Thus, the change threshold can
be used to inform optimisation strategies for network QoE
management.

There are a number of assumptions which are present
necessary to support the purposed study. These assumptions
include:

• Map QoE will follow a pattern similar to web page QoE
(Fig. 2).

• The five base quality levels will illustrate the trends of
waiting time for mapping application QoE.

These lead to choosing 5 base waiting times that correspond
to the web page waiting time for MOS scores at level 1-5.

II. HUMAN TIME PERCEPTION AND WEB QOE
Human time perception was one of the earliest topics to be

explored in psychophysics and has been extensively studied
by researchers. Psychophysics is the scientific approach of
investigating relationship between perception and physical

stimuli. The perception of time in human is a major factor
when a person has to decide and judge the outcomes associated
with their actions [11, 12].

The human brain does not act as a linear measuring device
and estimates derived from a perception of duration cannot be
assumed to be the same as the actual duration. There is no
dominant mapping between external magnitudes and internal
sensations that can be explained by a simple mathematical
function.

In the area of Web QoE, numerous studies have attempted
to explore the roles of human time perception and physical
time from the QoE perspectives.

In [13], the authors present a platform for crowdsourcing
Web QoE measurements. The platform allows the researchers
to investigate how to measure web ”page load time“ (PLT)
in a way that captures human perception. Varvello et al.
demonstrate that objective measurement of PLT metrics fail
to represent the actual human perception of PLT.

Reichl et al. [10] and Egger et al. [6] demonstrated loga-
rithmic relationships between QoE and waiting/response times
and explained it on the basis of Weber-Fechner law (Fig. 2).
Egger et al. proposed a hypothesis which asserts that “the
relationship between Waiting time and its QoE evaluation
on a Linear Absolute Categorical Rating (ACR) scale is
Logarithmic” (WQL).

Fig. 2: Logarithmic relationship between waiting time and
Mean Opinion Score (MOS) [6].

In this paper we present a methodology and experimental
test platform to investigate the perceptual thresholds of waiting
time for interactive web applications. Based on the comparison
of a base waiting time for map A, is map B perceived as slower
or faster and thus have the potential to impact QoE?

Identification of waiting time thresholds for interactive web
applications will enable network QoE management that is
aware of the impact of small waiting time changes compared to
the QoS the network is providing, offering the opportunity for
realtime adaptation to improve QoE. The proposed experiment



Fig. 3: Subjective experiment process sequence. It can be seen that the waiting time associated with web mapping is applied
by utilising the two network interfaces and manipulating the network delay. The user feedback, whether the speed of loading
Map B in compare to Map A was: Definitely Slower, Slower, Not Sure, Faster or Definitely Faster.

will explore the waiting time thresholds and identify the
boundaries at which time they become perceptibly different.
The experiment will be carried out for a range of times
corresponding to user expectations, i.e. how are changes in
waiting time experienced for different MOS levels [2].

III. SUBJECTIVE TEST

The primary objective of this experiment is to investigate
perceived waiting time thresholds by exploring the relationship
between objectively measured waiting time and the perceived
waiting time for a given perceived quality level (MOS) in Web
QoE. The subjective test discussed in this paper is tailored
for web mapping applications. Web mapping applications use
raster image tiles to present a map view that can be zoomed
or panned. Each image tile is a PNG file. The PNG file format
allows a browser to first render the image with a lower quality
(blurred), followed by one or more iterations that refine it until
the final and full-resolution image is shown. This is known as
interlacing method. Interlacing is aesthetically pleasing when
compared to a sudden discontinuity step change from a solid
void to an image at the end of the image buffering time.

In this paper, we define waiting time for the web mapping
application as the amount of time taken for a tiled map to load
all required tiles fulfilling a single user action.

The proposed subjective experiment was reviewed and
approved by University College Dublin Office of Research
Ethics.

Fig. 4: Experimental platform for studying perceived waiting
time. The platform simulated a real network environment and
consisted of 2 node servers, a web server and three network
transport NICs as described in section III-C.

A. Design and Methodology

The experiment is designed on the basis of ITU-T Rec.
P.1501 [14] and uses conventional psychophysical approach
for studying time perception [11, 12] for a web mapping appli-
cation. Time perception is a prothetic dimension meaning that
sensory analysis establishes the quantity rather than the quality
of the stimulation [15]. Pair comparison is a known approach
in conventional psychophysical studies in which, two time
intervals are presented on each trial: a base with fixed value
across trials, and a comparison with varying duration [11]. The
observer indicates which interval was longer (or shorter), the



responses are used to estimate the relationship between the
human time perception for a given stimuli and the physical
time [11]. Thus, the pair comparison method facilitates the
establishment of time perception thresholds.

In this experiment (Fig. 3, we present two web maps in
each iteration: a base case that has a fixed waiting time across
a group of iterations (based on the quality level), and com-
parison cases, with varying waiting times. The presentation
sequence between base and comparison cases are randomised
to minimise bias. The map shown in the first sequence is
labelled Map A and the second sequence is labelled Map
B. The participants then compare the loading of Map B
versus Map A and feedback whether Map B was perceived
as: Definitely Faster, Faster, Not Sure, Slower or Definitely
Slower

Participants are given training before the actual experiment
to familiarise themselves with the platform as well as the
sample range of waiting times in the test. The main objective
of the training phase is to encourage the participants to use
the full range of the feedback scale.

It is explained to the participants that if you have not
perceived any difference between loading of Map B vs Map
A, they should choose the Not Sure option. When they felt
the difference but not very confident, they may select Faster
or Slower. They should choose Definitely Faster or Definitely
Slower when they were confident about their judgement. From
this feedback, we expect to measure the participantss internal
“perceptual scale” for the waiting time associated with the
loading of the map for different quality levels.

B. Experimental Parameters and Scales

Ten volunteers (mean age = 28 years, range 23–35 years),
took part in our preliminary experiments (The number of
participants will be increased in our future studies). All partic-
ipants had normal or corrected to normal vision. The duration
of this experiment was 18 to 20 minutes per participant.
Iterations are divided into five distinct quality groups (Shown
in TABLE I).

MOS Base Value (ms) Comparison Values (ms)
5 33 85 90 145 195 244 283 289 324 344 463
4 2109 2181 2482 2623 2941 3131 3247 3397 3627

4096 4180
3 3569 4707 5036 5599 6057 6404 6321 7076 8300

10142 10256
2 9113 10640 11072 11912 13056 13446 14350

14835 15324 16085 17270
1 16174 17454 17667 18709 19231 21765 22034

23479 25249 26057 30110

TABLE I: The base time values are chosen with reference
to the web applications from [6] reproduced in Fig. 2. The
comparison numbers were chosen to be a roughly linear
increment for 10 samples across the desired range.

Based on our initial assumptions, each quality group corre-
sponds to a base case waiting time for a MOS quality level.
At each group, there are 10 unique values for comparison
and a single base value. Each pair of comparison and base

is presented twice but in different sequences. This allows
us to understand whether the order of presenting base and
comparison impacts user’s perception or not. The base waiting
time value for each quality level is assumed to be similar as
web page loading time (Fig. 2) and obtained from the previous
Web QoE study conducted by Egger et al. [6].

Two different methods can be used to apply variation
in waiting times: instrumenting application or by applying
network distortions. We use network distortion to increase
the waiting time and keep the aesthetics factor intact. This
allows us to investigate the perceived waiting time based on a
realistic experience for the end user. In order to ensure that the
experience associated with the waiting time for map loading
was similar to the real-life web mapping experience (e.g. the
same tile loading experience that a user would be familiar
when navigating with Google maps), a simple browser only
based experimental setup was insufficient. While we could
instrument the web mapping application using a JavaScript
function and load each tile after x amount of time, a sudden
discontinuity step change image load would occur. Over a
high speed and congestion free network connection, PNG
interlacing mechanism is not perceptible. We performed an
experiment observing that when a grey box turns into a high
resolution map tile, it biases user’s perception. Therefore, con-
trolling waiting time through instrumenting the web mapping
application excludes perception of PNG interlacing mecha-
nism, thus, impacting contribution of the web site aesthetics
on QoE [16].

By changing network delays we achieve the expected wait-
ing time for the base and comparison map loads. Expected
waiting time and actual waiting time are monitored for each
test. Due to the system and resource constraint (e.g. operating
system background processes, I/O buffers and memory), there
is a slight variation for the targeted base and comparison
values. Any collected records with base values that differ more
than 10% from the expected value are discarded.

C. Technical Implementation

The platform (Fig. 4) is utilising virtual box hypervisor
installed on Dell OPTIFLEX 5040 With Intel(R) Core(TM) i7-
6700 CPU @ 3.40 GHz and 16.0 GB of RAM. It is composed
of two components: WebQoE Virtual Machine (VM) and a
Windows Desktop Machine as a client (The same host as the
VM hypervisor).

The WebQoE VM is an Ubuntu 12.04 X86 64 bits with
one CPU, 4.0 GB of RAM and three network interfaces: Base,
Comparison and Control transport interfaces. A unique block
of IP addresses is assigned to the each network interface. The
reason behind having three different interfaces is that during
the experiment, the network delay on the base and comparison
transport interfaces gets manipulated, but the existence of
control transport interface keeps the communication between
the client’s browser, the web server and the controller intact.

The WebQoE VM hosts three web servers:
1) Web Mapping: Developed using NodeJS. The service is

listening over both base and comparison network interfaces.



Web mapping service provides a map of the world that con-
tains a tiled map. Tiled maps are downloaded as several tiles.
Each tile is an image but different in size and usually square.
Tile images are placed side-by-side to construct the maps.
Web mapping service receives HTML request that includes
the latitude, longitude and zoom level of the location then;
it builds the specific tiled map from its local database and
transfers it back to the client’s browser.

Fig. 5: Relationship between network delay and waiting time
associated with map loading.

2) Controller: The controller is a NodeJS-based applica-
tion, which listens over the control transport interface. In a
previous study [17] we demonstrated a strong relationship be-
tween map loading time and the network delay. Therefore, we
manipulate network delay to achieve the targeted waiting time
associated with the loading of the maps. The corresponding
values of network delays (Fig. 5) for the targeted waiting times
are derived from an automated version of the same platform
(the sudden increase on waiting time at 2000ms of network
delay is due to the TCP re-transmission timeout (RTO)). For
each iteration, the controller changes the network delay of
both base and comparison transport interfaces to achieve the
targeted waiting time for the base and comparison maps. The
controller also receives users feedback and stores it in a CSV
file.

3) Website: It is bounded to the control transport network
interface. It hosts the HTML pages of the Web QoE exper-
iment website. The main HTML page of this experiment is
developed using Leaflet, AJAX and JavaScript. It has some
essential features: 1)The base and comparison maps load using
two distinct transport paths. 2)Once the user submits HTML
request (e.g. Load Map A), HTML elements can load without
refreshing the page. 3)A combined AJAX and JavaScript func-
tion captures the map loading time, user’s feedback and passes
the information to the controller using a control transport
path. 4)Each iteration is done with two mouse clicks without
moving the mouse cursor (time perception studies show that
time judgements are influenced by a secondary tasks [18]).

IV. RESULTS AND DISCUSSION

In this subjective experiment we collected 419 valid data
points with approximately 41 data points for each participant.
For these repeated-measures, that are not normally distributed,
we have used a Generalised Linear Mixed Model (GLMM) in
which the data are permitted to exhibit correlated and non-
constant variability.

A. Validating the Methodology

As a pre-requisite and validating the described methodology,
we are investigating whether a relationship exist between the
actual difference in map load times and the perceived load
times as defined by the user’s feedback (e.g. Definitely Slower,
Slower, Not Sure, Faster or Definitely Faster). This helps us to
validate whether the feedback choices are properly reflecting
the users perception or not.

The hypothesis is: there is a relationship between the actual
load time difference of map A and map B and the perceived
difference as indicated by the users feedback scores.

To validate this while accounting for the random effects
of subject, and the categorical nature of the feedback scores,
we tested to see if there was a significant difference be-
tween the feedback scores in terms of the associated load
time difference between Map A and Map B: F (9, 419) =
.49; p > .05; η2p = .01. Following the F notation from the
result, the first number in parentheses refers to the numerator
degrees of freedom and the second number corresponds to the
denominator (error) degrees of freedom. There are p-values for
each effect and the partial η2 refers to the effect size of the
test. The result show that participant specific random effects
were not significant (e.g. The fact that different participants
did different amounts of trials didn’t bias the results) and
also feedback categories significantly differed in terms of the
difference scores: F (4, 419) = 33.917; p < .0001; η2p = 0.25.

Multiple pairwise comparisons demonstrated that these
feedback categories differed in terms of their difference scores
in the expected direction (e.g. getting slower or faster), where
the feedback category Definitely Slower was significantly
slower than all other feedback categories. The Slower feed-
back category was significantly faster than the Definitely
Slower category and slower than all other categories. However,
there was no significant difference between the Faster and the
Definitely Faster categories in terms of the difference scores.

B. Analysis of accuracy of waiting time perception indepen-
dent of quality level

The waiting times used in the experiment were guided
by the relationship between waiting time and MOS for web
applications in Fig. 2. We wish to verify for all data in
general, whether the user perception of waiting time changes is
consistent when the map loading time is getting slower versus
faster.

The hypothesis is: For all waiting time lengths a user can
better discriminate the difference in waiting time when the
second map has a lower waiting time.



Fig. 6: Estimated Marginal Means of
Difference in Loading Time of Map A
versus Map B Independent of Quality
Level.

Fig. 7: Estimated Marginal Means of
Difference in Loading Time of Map A
versus Map B Dependent of Quality
Level.

Fig. 8: Perceptible Change Thresholds
and Estimated Marginal Means of Differ-
ence in Loading Time of Map A versus
Map B Dependent of Quality Level.

In order to validate the above hypothesis, we have calculated
estimated marginal means of difference in map loading times
regardless of MOS levels and plotted versus the feedback
score. The Estimated Marginal Means tells us the mean
response for each factor (difference in loading time), adjusted
for any other variables in the model (feedback).

As shown in Fig. 6, the slope of the line between Faster
and Definitely Faster is not as steep as between Slower and
Definitely Slower, suggesting that the test subjects were found
it more difficult to distinguish the difference when the load
time decreased. This demonstrates an asymmetry in waiting
time perception and that users have a stronger ability to
perceive differences when the loading time increases than
when it decreases.

C. Analysis of accuracy of waiting time perception dependent
of quality level

We wished to establish whether the user perception of
waiting time changed when the map loading time is getting
slower versus faster and whether this was consistent across
MOS levels.

The hypothesis is: the relationship between the perceived
difference in map loading time is dependent on the quality
category of the load times.

This model repeats the previous test but it also includes the
effect of the interaction between feedback and quality levels.
The result shows that participant specific random effects were
not significant: F (9, 399) = 1.11; p > .05; η2p = .024 and
also feedback categories were significantly associated with the
difference scores: F (4, 399) = 48.05; p < .0001; η2p = 0.33.

It should be noted that the effect of feedback significantly
interacted with MOS levels meaning the relationship between
feedback and the difference in the load time, is related to the
quality level: F (20, 399) = 7.139; p < .0001; η2p = 0.2.

In Fig. 7, the estimated marginal mean of difference in
loading time is plotted per MOS level against the feedback
categories. The slope of lines in Fig. 7 show that, the higher

the MOS quality level, the more sensitive the user becomes to
the changes in load time. Minimal changes in the load time are
more likely to be perceptible by users. Interestingly, when the
application quality is high (MOS level 4 or 5), the subjects
showed better discrimination when the load time increased
over when it decreased.

D. Towards QoE Management

Fig. 8 presents the estimated marginal means of difference
in loading time of Map A versus Map B based on the
quality level (MOS). By visualising the data broken down
by user feedback category (excluding Not Sure) we can see
the potential to establish threshold waiting time changes to
maintain or elevate MOS for a given quality level. In Fig. 8,
consider quality level of MOS 4, from Fig. 2 we can see
that MOS 4 corresponds to a waiting time of approximately
2.5 seconds. From Fig. 8 it can be seen that the mean
difference in loading time changes by approximately 900 ms
as user experience changes from Faster to Definitely Faster.
Additionally we see that the mean difference in loading time
changes by approximately 300 ms as user experience changes
from Slower to Definitely Slower. The time gaps between the
user feedback categories have been shaded in the figure and
change by the quality level. If, through further experiment,
these can be accurately measured and validated they could
potentially be used to inform the network orchestrator whether
expending network resources to alter a user’s waiting time by
a given amount would have a Definitely Faster impact on their
QoE. Conversely, resources could be saved if they do not shift
the experience to be Definitely Slower.

V. CONCLUSION AND FUTURE WORK

Interactive web applications such as online gaming, map-
ping applications, real-time equipment management manufac-
turing and health applications incur waiting times for their
users. Waiting times associated with such applications are on
different timescales, e.g. for a video to start; for the web



form to become updated; for the game to react to one’s
input. Waiting time is a key metric for QoE/QoS correla-
tion in the network QoE management for such applications.
However, the perceived waiting time does not correspond
directly with measured waiting time. For effective network
QoE management where the network is aware of the influence
small changes in delay can have on the Web QoE for an end
user and can adapt the service accordingly, it is important
to establish the thresholds associated with the waiting time
and their relationship with QoE. The methodology and results
presented in this paper facilitates the identification of waiting
time thresholds for web mapping applications. We plan to use
the proposed method and experimental framework to further
experiment:

1) Using a slider option for the a continuous scale feedback
to identify waiting time thresholds for the web mapping
applications.

2) Explore the influence of content on QoE and waiting time
using different map building density.

3) Repeat the map with an adapted test setup using a single
map to rate QoE on ACR scale. This will allow the results
of the experiment to be compared to other web apps
experiments that using a MOS scale.

We anticipate that through providing waiting time thresholds
and a perception model, networks could be developed where
unnecessary optimisation is minimised and polices are devel-
oped to either noticeably impact the end users perception or
to reduce the allocated resources for a particular application
without impacting the end user’s QoE.
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[16] S. Baraković and L. Skorin-Kapov, “Modelling the re-
lationship between design/performance factors and per-
ceptual features contributing to quality of experience for
mobile web browsing,” Computers in Human Behavior,
vol. 74, pp. 311–329, 2017.

[17] H. Z. Jahromi, A. Hines, and D. T. Delaney, “Towards
application-aware networking: ML-based end-to-end ap-
plication KPI/QoE metrics characterization in SDN,” in
2018 Tenth International Conference on Ubiquitous and
Future Networks (ICUFN). IEEE, 2018, pp. 126–131.

[18] S. W. Brown, “Attentional resources in timing: Inter-
ference effects in concurrent temporal and nontemporal
working memory tasks,” Perception & psychophysics,
vol. 59, no. 7, pp. 1118–1140, 1997.


