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ABSTRACT 

Metabolomics is the study of small molecules called metabolites in biological samples. 

Application of metabolomics to nutrition research has expanded in recent years with 

emerging literature supporting multiple applications. Examples of key examples include 

the application of metabolomics in the identification and development of objective 

biomarkers of dietary intake, the role of metabolomics in developing personalised 

nutrition strategies and application in large scale epidemiology studies to understand 

the link between diet and health. In this review, we provide an overview of the current 

applications and identify key challenges that need to be addressed for further 

development of the field.  Successful development of metabolomics for nutrition 

research has the potential to improve dietary assessment, help deliver personalised 

nutrition and enhance our understanding of the link between diet and health.  
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INTRODUCTION  

Since its emergence, metabolomics has enhanced prospects in the field of nutrition and 

food science. Since the term “metabolomics” was coined in late 90s, the continuous 

improvement of high-throughput analytical tools such as chromatography, nuclear 

magnetic resonance (NMR) and mass spectrometry (MS) has allowed advancement in 

applications. As the field developed, different terms have emerged in the literature 

essentially referring to the use of the same analytical approaches to measure 

metabolites. For instance, metabolomics, metabonomics or nutrimetabolomics have all 

been used as exchangeable terms. Likewise, metabolomic fingerprinting, metabolic or 

nutritional phenotyping and metabolic profiling have often been used to refer either 

untargeted approaches or targeted approaches. For the sake of clarity, we will use the 

term metabolomics throughout this review, but intend to encompass all aspect of 

measurement of metabolites in biological samples. Furthermore, we will use the term 

metabolome to refer to the full complement of metabolites.  

The main analytical approaches selected for screening and generation of metabolomic 

data in nutrition are NMR and mass spectrometry coupled to a chromatography 

technique. NMR-based metabolomics is a robust and reliable technique which requires 

minimal sample preparation (Gowda and Raftery 2017, Markley, et al. 2017). One-

dimensional (1D) 1H NMR has been the most widely used NMR approach in nutritional 

metabolomics. However, two dimensional (2D) NMR methods such as TOCSY, 1H J-RES 

and 1H - 13C HSQC can also be useful and in particular can aid the identification of 

metabolites (Brennan 2014, van Duynhoven and Jacobs 2016). Alternatively, mass 

spectrometry is based on the acquisition of spectral data in the form of a mass-to-charge 

ratio (m/z). Each molecule is defined by a different peak pattern and reflects a relative 

intensity. Direct mass spectrometry-based platforms such as direct injection/infusion 
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(DIMS) allow for high-throughput and fast metabolite screening. This is as a result of the 

minimum sample treatment without the need of previous chromatographic or 

electrophoretic separation, which permits reducing the times of analysis (Gonzalez-

Dominguez, et al. 2017, Khamis, et al. 2017). Nevertheless, most MS-based approaches 

require coupling with separation techniques prior to MS analysis. Although, DIMS 

analysis provides good metabolomic coverage, chemical isomers and small differences 

in monoisotopic masses can only be detected by using ultrahigh resolution instruments 

such as Orbitrap-MS. Liquid chromatography (LC), gas chromatography (GC) and 

capillary electrophoresis (CE) are often coupled with MS  (Scalbert, et al. 2009). The use 

of such approaches reduces the high complexity of the biological sample and optimises 

the MS analysis of different sets of molecules by reaching the detector at different times. 

Within these platforms a wide range of ionization and mass selection methods is 

available. However, electrospray ionization (ESI), electronic impact (EI) and atmospheric 

pressure chemical ionization (APCI) ion sources are the most employed techniques in 

nutrition and food MS analysis.  A common concern for both hyphenated techniques 

and DIMS are the occurrence of matrix effects and ion suppression, especially when 

using ESI sources. 

The potential and usefulness of metabolomics approaches have been widely 

demonstrated in the nutrition field. For example, a recent study carried out in the UK 

has been able to classify a free-living population into groups by dietary patterns using 

an NMR approach (Garcia-Perez, et al. 2017). NMR spectroscopy has also been 

successfully applied to discover food biomarkers and estimate intake of foods. Tartaric 

acid was used as a dose responsive urinary biomarker to quantify the intake of grape in 

a dietary intervention study (Garcia-Perez, et al. 2016); the quantification of proline 

betaine in a cross sectional study also allowed estimation of citrus intake (Garcia-Perez, 
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et al. 2016). Illustrating the usefulness of MS approaches, four biomarkers of milk intake 

were identified in a twin cohort and validated in independent populations (Pallister, et 

al. 2017). Metabolomics of urine and faecal samples has helped to ascertain the effects 

of breast-, formula feeding and bifidobacteria supplementation on neonates and infants 

(Bazanella, et al. 2017, Dessi, et al. 2016).  

It is worth noting that the selection of the appropriate platform is dependent on the 

research question and the types of metabolites to be measured. Each analytical platform 

has its own strengths and limitations. For example, NMR-based metabolomics provides 

high reproducibility and structural information which can be extremely useful in the 

identification of unknown metabolites. However, MS-based approaches offer greater 

sensitivity (Emwas 2015). Moreover, the broad nature of metabolites and their 

differences in dynamic range (from pico- up to millimolar) requires the use of different 

metabolomic platforms to ensure optimal coverage of the metabolome.  

In short, metabolomics studies can be achieved with 2 broad strategies: I) Untargeted 

approaches that aim for the simultaneous measurement of hundreds/thousands of 

small molecules, whose profile constitutes a unique and specific hallmark of 

health/nutritional status; and II) Targeted approaches which aim to detect and measure 

a predefined set of metabolites (Cajka and Fiehn 2016). Importantly, both metabolomic 

strategies are able to reflect the response to a diversity of stimuli such as diets or foods 

in the composition of biofluids and tissues. However, in recent years the trend has been 

the application of these strategies simultaneously or in sequence since the results are 

complementary (Figure 1). Whereas untargeted approaches can help uncover new 

metabolites and new hypotheses, targeted approaches support well-defined 

hypotheses and allow the accurate detection and quantification/semi-quantification of 

predefined metabolites. The data analysis and processing steps in each approach allow 



6 

for multiple options and may differ substantially among platforms (e.g. Fiehn 2016, 

Gorrochategui, et al. 2016, Misra, et al. 2017, Pontes, et al. 2017). Although significant 

progress has been achieved in computational techniques, advances in the processing of 

metabolomics raw data, development of databases and repositories for identification of 

metabolites are a permanent hot topic in the field (Barupal, et al. 2018, Tsugawa 2018). 

A brief description of the workflow for each strategy is summarized in Figure 1.  

Applications of metabolomics in nutrition related research are continuing to grow and 

it is without a doubt making a positive impact on the field. Consequently, the objective 

of this review is to present current trends in the application of metabolomics in nutrition 

research and identify a number of key challenges that need attention for the further 

progression of the field.  A detailed review of the analytical techniques and data analysis 

strategies is beyond the scope of this review and the readers are referred to a number 

of recent reviews on these topics (Barupal, et al. 2018, Brennan 2014, Covington, et al. 

2017, Emwas, et al. 2018, Fan and Lane 2016, German, et al. 2007, Gorrochategui, et al. 

2016, Guo, et al. 2012, Markley, et al. 2017, Rangel-Huerta and Gil 2016). 

APPLICATION OF METABOLOMICS IN NUTRITION INTERVENTION STUDIES  

The application of metabolomic studies or the inclusion of metabolomic approaches as 

part of nutrition intervention studies have increased over recent years. In general terms, 

nutrition intervention studies provide insights into the link between nutrition and 

health/disease. A dietary intervention can involve whole diets, specific foods or 

extracted substances such as micronutrient or phytochemicals. The evaluation of the 

effects of nutrition interventions are complex due to the fact that many of the 

perturbations are subtle and often difficult to detect. Nevertheless, application of 
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metabolomics can aid our understanding of the potential effects of a dietary 

intervention.  

After a thorough literature review on nutrition studies applying metabolomics, 46 key 

studies representative of the broad spectrum of possibilities in the nutrition field were 

selected and grouped in 8 categories according to the type of foods or nutrient source 

evaluated  (Table 1). Scientific papers where the main objective was the identification 

of dietary biomarkers or dietary pattern biomarkers are included in section 3. 

The evaluation of the effects of acute, medium and long term dietary interventions has 

become one of the most widespread application of metabolomics in nutrition research. 

These studies included exploration of effects in healthy populations, effects in disease 

conditions and effects through different stages of life. An overview of key studies is given 

in Table 1. In an effort to highlight the different applications some pertinent examples 

are described below.   

A number of studies focused on early nutrition, including newborn and infants which 

have employed metabolomics have emerged in the literature in recent years. Cesare 

Marincola, et al. (2016) reported the use of NMR based metabolomics for examining the 

influence of milk feeding types on newborns. The urinary profiles stimulated by two 

types of formula milk, either or not enriched with functional ingredients, were explored 

over four months of life and compared with the effect of breast-feeding. The results 

demonstrated similar characteristics for the growth with the three milk types, while 

prominent quantitative differences were detected for specific metabolites such as e.g. 

pantothenic acid, choline, threonate, tartrate, cis-acotinate, and lactate, between 

formula feeding and the human lactation. The usefulness of these studies lie in the 

possibilities of optimising infant formulas by minimizing the gap in composition and 
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outcomes with human milk. Bazanella, et al. (2017) designed a double-blind, 

randomized, placebo-controlled study to evaluate the impact of bifidobacteria 

supplementation on the microbiome during the first years of life. The study included 

metabolic profiling and analysis of short-chain fatty acids in faecal samples by LC-MS 

approaches, in addition to 16S ribosomal RNA gene amplicon sequencing to explore the 

diversity of faecal microbiota. The combination of metabolite and microbiota data 

showed differences between breast-fed and formula-fed infants at month 1, showing a 

decreased in Bacteroides and Blautia spp. associated with changes in lipids and unknown 

metabolites. However, colonization of the supplemented Bifidobacterium strains was 

not detected in long term (24 months) identifying the need to perform further work to 

see the long term impact. 

Examination of the publications relating to fruit and vegetable consumption (Table 1) 

reveals that the majority of the studies selected are focused on the characterization of 

the metabolic response to different types of diets. An example of such a study by Larmo 

and colleagues (Larmo, et al. 2013) addressed the effects of consumption of berries and 

their fractions on the serum metabolome of overweight women. The intervention 

demonstrated significant modifications on NMR profiles of the four berry diets (P<0.001-

0.003). As example, dried sea buckthorn berries (SBs), modified the levels of triglycerides 

in small HDL particles as well as in serum creatinine and phenylalanine, whereas sea 

buckthorn oil (SBo) produced a decrease in serum-free cholesterol, albumin, and lactate 

concentrations, among other modifications. Changes induced by berries differed 

between women who had higher and lower cardiometabolic risk baseline, being 

favourable pronounced for individuals at higher cardiometabolic risk.  

Application of metabolomics to study the effect of fibre and grain sources on glycemic 

and weight loss management has advanced our knowledge of their potential health 
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benefits. For example, Rasmussen and colleagues examined the influence of low-calorie 

diets assigned to a high-GI or low-GI in a long-term dietary study (Rasmussen, et al. 

2012). The study was performed as a parallel intervention trial with five different diets. 

After following an 8-week low-calorie diet, the overweight subjects defined their diets 

following the supermarket model for food consumption. The urine was collected after 

1, 3 and 6 months and the NMR metabolite profiling was performed. Changes in the 

metabolites formate and hippurate were identified and linked to the intervention. 

Lankinen et al. (2011), focused on the modification induced in plasma following intake 

of high-fiber rye bread (RB). Lipidomics (UPLC-MS) and GCxGC-TOF/MS analysis were 

performed in postmenopausal women with elevated total cholesterol and BMI (20–33 

kg/m2). Ribitol, ribonic acid and indoleacetic acid (P<0.001) were found increased, while 

ribonic acid and tryptophan were positively correlated (r =0.40; P =0.003). The results 

suggested a positive effect of rye bread on satiety and weight maintenance. Other key-

studies included examining the effects of proteins from fish, meat or supplements in 

different populations and their influence on human metabotypes; key results are 

highlighted in Table 1.  Metabolomics has also played a key role in progressing our 

understanding of the metabolic effects of dairy, probiotics and different lipid loads 

(Table 1).   

Examination of these studies together has revealed that blood and urine were used for 

the majority of studies.  The use of urine was predominantly used when examining the 

metabolism or transformation of food/diets, while blood was employed for studying 

alterations in the metabolism of endogenous compounds. Metabolomic analysis of 

faecal samples appears as a current trend to study the implication and modifications of 

gut microbiota.  Examination of the metabolites can reveal important functional 

information and has played a role in linking altered microbiota to various metabolic 
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conditions. Overall, application of metabolomics to nutrition intervention studies has 

enhanced our understanding of the role of various diets and dietary components in 

health promotion.  

USE OF METABOLOMICS IN THE IDENTIFICATION OF DIETARY BIOMARKERS  

Traditional methods for assessment of dietary intake rely on self-reported tools such as 

24-h recalls, food diaries, and food-frequency questionnaires. There are a number of 

well-defined limitations associated with such methods (Gibbons, et al. 2015, Kipnis, et 

al. 2002). Recall errors, energy underreporting and difficulties in the estimation of 

portion size are inherent issues that affect the results and their interpretations. These 

errors can be the origin of misclassification of subjects, reduction of statistical 

significance and subsequently attenuation of the potential diet-disease relationships 

(Jenab, et al. 2009, Prentice, et al. 2011).  

In recent years, the concept of dietary biomarkers as objective measures of food intake 

has emerged. Metabolomics has played a key role in the identification of potential new 

dietary biomarkers and a number of pioneering studies have emerged which clearly 

demonstrate the potential of such biomarkers in the quantification of food intake. 

García-Perez et al (2016) described an analytical approach to identify and further 

quantify dietary biomarkers. The metabolite tartaric acid was initially identified using 

NMR spectroscopy, as a potential biomarker of grape intake in an acute grape challenge 

dietary intervention study. The grape marker was subsequently validated by 

demonstrating the possibility to estimate the amount of grape consumed in a dose-

response randomized controlled trial. In this case, the excretion of tartaric acid in urine 

had a strong relationship with the amount of grape consumed in the controlled 

environment (r2 = 0.90 after 24 h). Recent studies led by our group have also shown 
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successful results. Gibbons et al. (2017), measured proline betaine in urine samples 

following various amounts of citrus intake.  A clear dose response was observed and 

calibration curves were constructed to allow estimation of intake from the biomarker 

level.  Of particular note, a correlation of 0.92 was reported between actual intake and 

predicted intake highlighting excellent agreement between biomarker level and actual 

intake. Importantly, the ability of the biomarker to estimate intake was examined in an 

independent cross sectional study of 560 individuals. The results demonstrated that 

there was excellent agreement between the self-reported intake (estimated from a 4 

day semi-weighed food diary) and the estimated intake from the biomarker. Together 

these examples demonstrate clearly the potential of urinary biomarkers to estimate 

intake and lay the foundations for future studies.  

Examination of the literature revealed that there are a number of putative biomarkers 

for various foods which are summarised in Table 2. A full review of each food is beyond 

the scope of this review, however, some key examples are highlighted here. A number 

of studies have examined investigated biomarkers of meat intake.  Stella et al. (2016) 

found marked differences in the metabolic signature of volunteers consuming a high-

meat diet vs a vegetarian and low meat diets. Pattern recognition analysis performed in 

urine samples analysed by 1H NMR spectroscopy revealed increased levels of the urinary 

creatinine, creatine, TMAO, taurine, and 1- and 3-methylhistidine in the group 

consuming a higher amount of meat. More recent studies have confirmed that 3-

methylhistidine is more specific for white meat intake (Cheung, et al. 2017). 

In recent years a number of studies have identified biomarkers of coffee intake. An 

intervention study applying NMR analysis suggested 2-furoylglycine as a novel candidate 

for the consumption of coffee (Heinzmann, et al. 2015). 2-furoylglycine was found, 

among other previously reported potential biomarkers such as N-methylpyridinium, in 
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the urine of coffee drinkers after a 6-day controlled study. Its excretion profile was 

characterized in a further coffee challenge with 5 volunteers whose diet, except for 

coffee consumption, was not restricted. The maximal excretion of 2-furoylglycine was 

registered after 2 h consumption (p=0.0002) returning to the baseline after 24h. The 

authors proposed this new marker as highly specific to coffee consumption since its 

formation is produced during the roasting of coffee beans (Heinzmann, et al. 2015). 

Despite the number of putative biomarkers of foods described in the literature it is also 

worth noting that are still very few well documented and validated dietary intake 

biomarkers. In the case of dietary biomarkers a recent publication has highlighted 

guidelines for evaluation of the quality of candidate food intake biomarkers (Dragsted, 

et al. 2018). The scheme includes assessment of the plausibility, dose-response, time-

response, robustness, reliability, stability, analytical performance, and inter-laboratory 

reproducibility. It is evident that further work is needed to validate these putative 

biomarkers in order to advance the field.  

Furthermore, interactions with the broader Food Science community and in particular 

application of metabolomics directly to the foods has great potential. The area of 

FoodOmics has expanded in recent years and detailed analysis of the metabolite 

composition of foods has the potential to inform the development of new dietary 

biomarkers. Biological plausibility was identified as one of the key criteria for biomarker 

assessment and application of metabolomic profiling of the foods can aid in this aspect 

by demonstrating the presence of certain metabolites or precursors in the foods of 

interest. Future collaboration between both fields of research should yield significant 

advancements in the nutrition field.  
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Increasingly, evidence is emerging that the overall pattern of dietary intake is more 

important to understand relationships with health and disease (Corella, et al. 2018, 

Cunha, et al. 2018, Pistollato, et al. 2018). As a consequence the use of multiple 

biomarkers to track/monitor dietary patterns is of growing importance. Garcia-Perez 

and colleagues built multivariate models to classify people into a dietary pattern based 

on the NMR urinary metabolomics data from a controlled intervention study (Garcia-

Perez, et al. 2017). The four diets used were designed to have a step variance in the 

WHO healthy eating guidelines. The classification model was confirmed in independent 

studies and revealed that individuals were classified into patterns with a higher or lower 

non-communicable disease risk. 

Other work has demonstrated the use of metabolomics to monitor adherence to a new 

Nordic diet (NND) or the Average Danish Diet (ADD) (Khakimov, et al. 2016). Such 

examples demonstrate the potential in terms of adherence to certain diets which may 

play a role in intervention monitoring.  Work in our own laboratory has developed a 

multivariate model based on urinary metabolomic data to classify subjects into either a 

healthy dietary pattern or an unhealthy dietary pattern (Gibbons, et al. 2017). The 

classification into dietary patterns was supported by assessment of dietary intake and 

blood nutrient parameters. Further refinement and development of the models should 

allow for rapid and objective classification of individuals into certain dietary patterns. 

This in turn could feed into the delivery of personalised dietary advice and into large 

epidemiological studies examining the associations between dietary patterns and health 

parameters.  

Finally, organising the appearance of these new biomarkers, a consensual classification 

for the correct ontology and flexible grouping of biomarkers in the area of nutrition has 

been also published (Gao, et al. 2017). The classification proposed is based on the most 
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likely use of the biomarker and the following subclasses were proposed: “food 

compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), 

dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect 

biomarkers, physiological or health state biomarkers”. Furthermore, as the number of 

identified food biomarkers expands and is expected to increase in the coming year there 

is a need for joint collaboration in the field. In this sense, the Food Biomarkers Alliance 

(FoodBAll) is directed to identify and validate food intake biomarkers gathering the 

expertise in food metabolomics of thirteen European countries (Brouwer-Brolsma, et al. 

2017). FoodBall also contributes to the development of databases to support this work. 

Examples of the databases includes: FoodDB (http://foodb.ca/), FoodComeEx 

(http://foodcomex.org/), PhytoHub (http://phytohub.eu/) and Phenol-Explorer 

(http://phenol-explorer.eu/). Collectively these databases are useful in connecting 

metabolites to the foods but also to their metabolism in humans.  Finally, more work is 

needed in developing joint efforts for the identification of the many unknown features 

that appear in the metabolomics datasets.  

ROLE OF METABOLIC PHENOTYPING IN PERSONALISED NUTRITION  

Metabolic phenotyping has grown as a strategy to reflect the interplay between 

environmental factors such as diet, physical activity and genotype. Use of metabolomics 

in metabolic phenotyping has opened up the possibility for the delivery of optimum 

individualised dietary advice and personalised healthcare solutions. In parallel to this 

goal, the stratification of the population for epidemiological studies according to their 

metabotypes (metabolic phenotypes) is an option to reach larger segments of the 

population (Nicholson 2006). It seems affordable that the current medical checkouts 

targeting usual individual markers or food habits will be replaced by more complex and 

informative analysis. These analysis will reveal individual metabolic signatures by means 
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of high-throughput screening and thus, provide a more complete view of nutritional and 

health status.  

Recently, metabolomics has emerged as a tool for determining metabotypes: this is a 

process where combinations of specific metabolites are used to classify individuals into 

groups or clusters based on a similar metabolic phenotype. From a nutrition perspective 

metabolic phenotyping or metabotyping offers the possibility of examining responses to 

dietary interventions and the potential of delivering tailored dietary advice to a specific 

metabotype.  

Our previous work endeavoured to support the development of a metabotyping 

approach for the delivery of targeted or personalised nutrition. Initially, using four 

metabolic parameters we developed the concept and identified four metabotypes in an 

Irish cross-sectional population (O'Donovan, et al. 2015). For each of these clusters 

algorithms were developed to enable the delivery of targeted dietary advice based on 

cluster membership. Importantly comparison of the targeted advice with individualised 

dietary advice revealed good agreement: a mean match of 89.1 % was observed for a 

random selection of 99 individuals. Further development of this concept was performed 

in a pan-European study where a more expansive set of metabolites was used to 

perform the metabotyping. The use of algorithms based on the metabotype to deliver 

targeted dietary advice resulted in delivery of advice that agreed with a personalised 

approach (O'Donovan, et al. 2017). The results from both these studies indicate that the 

metabotyping framework may be a useful approach to deliver dietary advice at a 

population level. However, further work is need to decipher if such an approach would 

lead to improved dietary intake and alter disease risk parameters.  
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In recent years, the importance of individual responses to dietary interventions has 

become evident. Understanding and identifying profiles that can predict response is 

important for the building of an evidence base for the further development of 

personalised nutrition. Application of a metabotyping approach to characterise 

differential responses to dietary interventions is important. Work from our laboratory 

demonstrated the use of the metabotype approach in identifying a positive response to 

a vitamin D intervention. A metabotype characterised by low concentrations of vitamin 

D and higher concentrations of adipokines was responsive to vitamin D supplementation 

(O'Sullivan, et al. 2011). In a separate study using a similar concept, we identified 

differential responses to an oral glucose tolerance test.  In total four distinct metabolic 

responses were identified and at “risk” metabolic group was highlighted through the 

approach (Morris, et al. 2013). Work from other groups has also employed a similar 

approach to identify groups responsive to certain dietary interventions. Vazquez-Fresno 

and colleagues identified four metabolic phenotypes in a population of high 

cardiovascular risk individuals undergoing a randomised controlled study (Vazquez-

Fresno, et al. 2016). Through the metabotyping approach they identified a red wine 

polyphenol responsive metabotype. Wang and colleagues identified metabotypes in a 

carotenoid cross-over intervention (Wang, et al. 2013). Using a k-means cluster analysis 

approach a total of five metabotypes were identified with differential response to the 

dietary carotenoids.  

Finally, the metabotyping approach has played a role in the identification of metabolic 

phenotypes in diet related diseases. For example, Amato, et al. (2016) identified two 

metabotypes in a type 2 diabetes population using incretin levels. Similarly, others have 

identified different sub types of obesity, metabolic syndrome and pre-diabetes based 



17 

on statistical analysis of metabolic and phenotypic parameters (Arguelles, et al. 2015, 

Zak, et al. 2014). 

Overall, the application of metabotying in nutrition is still in its infancy. However, the 

results to date demonstrate great potential and in particular offer potential for delivery 

of tailored dietary advice. Further work is needed to develop the concepts and to 

demonstrate that implementation of such an approach can improve metabolic risk 

parameters.  

CONTRIBUTION OF METABOLOMICS DATA TOWARD SYSTEM BIOLOGY APPROACHES  

Systems biology is the most complex level of integrative biological data currently 

available. It progresses with the aim to explain biological properties, processes and 

functions at a system level. Modelling at the systems level carries theoretical advances 

for all scientific and medical disciplines, providing also a solid framework for the 

nutritional research and the progression toward personalised nutrition. The nutri-(gen-

protein-metabolite)–omics technologies and the study of their fluxes, have played a 

significant role in the development of nutrition science in the last 10 years. Through 

applications of such technologies we have gained insight into the role of certain diets, 

dietary patterns and dietary components.  Furthermore, our understanding of diet-

disease relationships has also been enhanced.  

Metabolomics can act as an interface for the phenotype within systems biology 

approaches by implementing phenotypic data related to metabolic networks into 

biological models. More precisely, the integration of metabolomics data obtained from 

nutritional interventions into more complex models is extremely useful to elucidate how 

food impacts health, differentiate dietary responses according to groups of individuals 

as well as to point out nutrients or bioactive substances responsible for the 
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modifications that could become targets in future nutritional intervention (Badimon, et 

al. 2017). Metabolomics can also bring a systems approach to epidemiology and can 

enable the study of underlying mechanisms.   

The latest trends in nutritional system biology use the computational fusion of omics-

data obtained by genomics, transcriptomics, proteomics and metabolomics approaches 

into comprehensive models with diagnosis and predictive capacity. These models also 

permit the inclusion of data and control of confounding data related to the omics 

datasets but obtained from more classical approaches. Such is the case when medical 

parameters e.g. glucose, HOMA-IR, enzyme activities or blood pressure records are 

associated with omics approaches (Drenos 2017, Kim, et al. 2017, Sperisen, et al. 2015, 

Yu and Zeng 2018). Lampe et al. (2013) categorised and illustrated integrative analysis 

in the field of nutrition within three levels of complexity: I) concordance analysis 

methods in which two different omics datasets are correlated and provide information 

about components that interact between them e.g. gene expression and proteomics; II) 

sequential integration methods, whose models incorporate multiple omics dataset with 

the purpose to discover biomarkers or elucidate biological mechanism and; III) 

concurrent integrations methods, which are built as sequential integration methods but 

incorporate activity of biological pathways and emerging data. This usually evidences 

how a merged model improves its value compared to a single source of data. 

Accordingly, the complexity of the tools applied for processing and treatment of 

multiple data sets also increases at each level. While the first level is usually sorted out 

with multivariate statistical methods, the second and third levels require more complex 

tools such as metabolite set enrichment analysis, pathways analysis or network based 

methods whose outputs are not always easy to interpret (Barupal, et al. 2018, Lampe, 

et al. 2013).   
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At the moment, enrichment statistics have become a complementary, more consistent 

and informative tool for system biology approaches. An overview of the bioinformatics 

tools currently available for enrichment analysis of metabolomics data is presented in 

recent work by Marco-Ramell et al. (2018). Enrichment analysis tests most often 

reported fit with the following two types ‘Hypergeometric or Fisher Exact tests’ or 

‘Kolmogorov-Smirnov test’. Their purpose is to bridge biological insights to groups of 

metabolites (Barupal, et al. 2018). In a further step, pathways analysis and metabolic 

networks can be represented using nodal architecture and pathway map diagrams with 

different levels of complexity. For these functions a number of platforms is available 

such as e.g. pathway collages, MetaCyc —https://metacyc.org/pathway-collage-info; 

MetaboAnalyst —http://www.metaboanalyst.ca MetScape—

http://metscape.ncibi.org/; MetExplore—http://metscape.ncibi.org/; CytoScape—

http://www.cytoscape.org/ (Chong, et al. 2018, Cottret, et al. 2010, Karnovsky, et al. 

2012, Paley, et al. 2016).  Alternatives to biochemical pathway mapping have been also 

proposed such as that based on chemical similarity (ChemRICH—

http://chemrich.fiehnlab.ucdavis.edu/ (Barupal and Fiehn 2017). Additionally, 

computational text mining approaches can help to extract literature related to the 

compounds of interest. For example, the NutriChem database (—

http://sbb.hku.hk/services/NutriChem-2.0/) was developed with the aim to explore the 

effect of plant-based foods on human health (Ni, et al. 2017). 

The number of studies in nutrition and food sciences has grown exponentially during the 

last years. In 2009, the Annual Review of Nutrition published an interesting review 

compiling nutritional studies at systems level (Panagiotou and Nielsen 2009). The paper 

highlighted the value of systems biology using as illustration the studies on yeast that 

link nutrition, genome and phenotype. Moreover, examples integrating the results from 

https://metacyc.org/pathway-collage-info
http://metscape.ncibi.org/
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different approaches such as e.g. dietary preferences, plasma metabolites, urine 

metabolites and gut microbial metabolites; fusion of metabolites in plasma with hepatic 

fat and proteome; or transcriptome and proteome analysis were introduced. More 

recent trends have been also presented in two reviews; the first, by Badimon et al. 

(2017) emphasising the application and integration of omics technologies and focusing 

on the role of diet, functional foods and bioactive compounds in diseases related to 

oxidative damage; while the second by van Ommen et al. (2017), centred on the 

advances of system biology towards personalised nutrition.  Other interesting works 

performing data fusion are the published by Lacroix et al. (2015) and Kim et al. (2017), 

where systems biology approaches have been used to evaluate the response to 

nutritional interventions such as e.g. caloric restriction or polyphenols on aging, and for 

the identification of prognostic metabolites for prediction of responses against oxidative 

stress and inflammation. These studies appear as illustrators for the feasibility of new 

avenues for the integration of nutritional metabolomics studies in system biology 

approaches. It opens promising new perspectives for the nutrition research. 

FUTURE CHALLENGES  

Although some important obstacles such as the acquisition of large datasets for the 

holistic approach of metabolomics have been overcome, several challenges have yet to 

be sorted out at multiple stages of the nutritional metabolomics workflow.  

With respect to food intake biomarkers there is an urgent need to advance the field so 

that reliable biomarkers can be used in epidemiological studies. Examples of the work 

needed includes the following: I) Performing studies for the validation and confirmation 

of putative biomarkers; II) Developing studies to evaluate the capacity of those markers 

to estimate intake through dose-response studies and evaluation in ethic diverse 
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population groups; and III) Exploring the composition of foods by novel high-throughput 

technologies to search for new metabolites and metabolite associations that may be 

particular for the food eaten and could be distinctively associated with food intake in 

further steps. In a boarder sense, the investigation of how nutrient and food excesses, 

deficiencies and specific substances modify homeostasis and affects health status is a 

complex challenge that metabolomics can help decipher. In the long term, this research 

will help to define the effects and influence of diet under pathological circumstances.  

In addition to the challenges associated to each specific branch of nutrition research, 

there are challenges regarding analytical and computational features to be considered. 

From this operational viewpoint we have highlighted a few key challenges. Elucidating 

the chemical structure and the origin of unknown significant compounds detected by 

untargeted approaches, remains a bottleneck in the step for identification of 

metabolites. Action is needed to address the design of agile and standardized 

procedures to establish either data processing or analytical pipelines that clarify the 

nature and provenance of the unknown entities. Sharing of authentic standards is 

essential and cross laboratory interactions should enhance this field. The current 

metabolomics workflows generates large amounts of data and the handling of such data 

raises new questions about data analysis, treatment and their integration. There is a 

multiplicity of options to treat the datasets before applying statistical analysis. However, 

different types of filtration, transformation and imputation of missing value strategies 

can bring divergent results from the same data and render data incomparable. As a 

result there is a need for unifying the workflow criteria to treat different types of 

datasets by means of agile platforms allowing the communication of the latest advances 

to the scientific community efficiently. Moreover, differences in data structures and 

formats of datasets as well as differences in timescales and dynamic ranges between 
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data from metabolomics alone or in conjunction with other data sources, are a cause of 

discussion. These issues can be a limitation for the use of data in further integrative 

analysis and thus require actions to move the field towards standardisation. In order, to 

maximise data sharing, the deposition of data in a uniform manner into databases is 

encouraged. An example of a suitable platform is the Phenotype Database: this platform 

was designed for the storage and sharing of nutrition related data and has modules for 

metabolomics data sharing (https://dashin.eu/interventionstudies/).   

Despite the challenges the future of nutritional metabolomics is bright. It has the 

potential to play an important role in many aspects of nutrition science. Addressing the 

above challenges will help pave the way forward and enable the full potential of 

metabolomics in nutrition research.   

SUMMARY POINTS 

1. Metabolomics has the potential to enhance our understanding of the link 

between diet and health. 

2. Objective food intake biomarkers can estimate the intake of certain foods and 

studies have demonstrated excellent agreement with actual intake and self-

reported intake. 

3. Metabolomic biomarkers can aid in the classification of individuals into dietary 

patterns. 

4. Metabotyping has great potential in the delivery of targeted nutrition to large 

population groups. 
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FIGURE CAPTIONS 

Figure 1. Overview of the metabolomic workflow  

The metabolomic workflow for untargeted and targeted approaches can be summarized 

in five consecutive steps. Each of these steps has multiple options and each step is 

usually tailored to study design and research question. Application of an untargeted 

approach can often lead to subsequent targeted analysis of specific metabolites.    
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Table 1.   Compilation of intervention nutritional studies applying targeted and untargeted metabolomics  

TYPE OF INTERVENTION 
(FOOD/DIET TESTED) 

MAIN OBJECTIVE 
STUDY DESIGN 

DURATION/NUMBER 
OF PARTICIPANTS 

SAMPLE ANALYTICAL 
PLATFORM OBSERVATION 

INFANT & CHILDREN NUTRITION      
Low-protein/low caloric density formula 
with probiotics  vs. high-protein formula  
and breast feeding 
 

(Martin, et al. 2014) 

Metabolic response to protein content of 
infant formula on infants body weight gain  

RCT parallel  
12 m / Infants from 
overweight and obese 
mothers (n=300) 

Urine 
Faeces 
 
 

1H NMR  Metabolic differences between breast and formula feeding:  
– Carbohydrate metabolism: ↑ lactate and  milk oligosaccharides (stool) 
– Energy metabolism: different Krebs cycle and NAD/NADP metabolic pathways 
– Growth and development: ↑ IGF-1 
– Protein metabolism: ↑ protein-derived SCFAs (stool), ↑ Urea cycle and nitrogen balance  

Lipid metabolism: ↑ β-oxidation (carnitine) ↑ ketogenesis (lipids and ketogenic AAs)  
Formula milk enriched with functional 
ingredients vs. standard formula and 
human milk  

(Cesare Marincola, et al. 2016) 

Effects of postnatal nutrition milk formulas 
characterising the urinary metabolome 

RCT 
130 d / Newborn 
(n=60) 

Urine 1H NMR  Formula milks vs human milk:  
– ↑ choline, ↑ tartrate, ↓ citrate, ↑ threonic acid , ↓ fucosyl moieties, ↓ n-acetylated 

compounds, ↑ pantothenic acid, ↑ lactate, ↓ formate   

Breastfed milk vs. formula milk  
 

 
(Dessi, et al. 2016) 

Effect of different diet regimens in  urine 
metabolite profiles of IUGR, AGA and LGA 
neonates 

CT 
7 d / Neonates (n=35) 

Urine GC–MS Differences in the metabolite excretion profile of neonates: 
– Formula milk: ↑ glucose, galactose, glycine and myo-inositol in urine 
– Breast milk: aconitic acid, aminomalonic acid and adipic acid  
– At 7 days: neonates fed with formula milk shared ↑ pseudouridine with IUGR and LGA at birth. 

Breastfed neonates shared ↑ pyroglutamic acid, citric acid, and homoserine, with AGA at birth 
Standard whey-based formula containing 
Bifidobacterium bifidum,  B. breve, B. longum 
, B. longum subspecies infantis vs. controls 
(placebo and breastfed) 

(Bazanella, et al. 2017) 

Impact of infant formula supplemented with 
Bifidubacterium on structural and functional 
changes in the gut from birth through the 
first year of life and after 2 years 

RCT 
12 m / Newborn infants 
(n = 117) 

Faeces UHPLC–
qTOF/MS 

– Supplementation associated with ↓ detection of bacteroides fragilis and blautia species   
– Fucosylated hmos correlated with the occurrence of bifidobacteria  
– Faecal metabolites discriminating between b, f+, and f2: sterol lipids, glycerophospholipids and 

fatty acids 
– Exogenous bifidobacteria failed to colonize the infant gut 

Skimmed milk and low-fat meat 
supplements 

(Bertram, et al. 2007) 

Capability of NMR-metabonomics.  
Effects of animal proteins in prepubertal 
children  

CT 
7 d / 8-y boys (n=30) 

Urine 
Serum  

1H NMR – Milk diet: ↓ urinary excretion of hippurate —alterations in gut microflora 
– Meat diet: ↑ urinary excretion of creatine 
– Other discriminating metabolites: TMAO (meat), ↑ in intensities of lipid signals (CH3, (CH2)n, 

CH ¼ CH-CH2 and CH2-CO) (milk) 
Functional meat product, containing 
0.02% rosemary extract, 0.001% vitamin 
E and 0.3% PUFAs 

(Balderas, et al. 2010) 

Capabilitiy of CE-UV detecting differences in 
urine of diabetic children. 
Effect of designed meat products in children 

CT 
12 m / 6-11-y children 
(n=49) 

Urine CE–UV – Diabetic children: ↑ nitrites, citrate, phenyllactate, glutamate, creatinine and urea; ↓ 
glutarate, guanidine, phospho-L-serine, benzoate, urate, and glycerate   

– TD/H after 12 months of receiving the extract: ↑ nitrite, citrate, ketoglutarate aminoadipate, 
phenyllactate, glutamate, creatinine, phospho-L-serine pyroglutamate; ↓ urea and p-
hydroxyphenyllactate  

FRUIT AND VEGETABLE      

Normal diet (ND) and low-
phytochemical diet (LPD) vs. standard 
phytochemical diet  

(Walsh, et al. 2007) 

Role of dietary phytochemicals on human 
urinary metabolomic profiles 

CT 
6 d / Healthy  (n=21) 

Urine LC–MS  
1H NMR 

Discriminating metabolites between the LPD and the ND: 
–  1H NMR: ↑ hippurate in the ND samples and ↑ creatinine and methyl histidine in LPD samples  
– LC-MS: m/z 180.068, 105.028 (both corresponding to hippurate), 312.217, 197.07, and 169.036 

(unidentified) associated with ND samples. m/z 180.068, 105.028 (relating to hippurate), 
413.045, 312.217, and 169.036 (unidentified) peak intensities associated with SPD samples 

Basal, low-phytochemical diet, devoid of 
fruit and vegetables, vs. basal diet 
supplemented with cruciferous 
vegetables, soy foods, and citrus fruits 

(May, et al. 2013) 

Urinary metabolomic pattern 
characterization in response to a high-
phytochemical diet 
 

RCT crossover 
2 wk / Overweight- 
obese women (n=10) 
 

Urine LC–MS/MS 
(LTQ-FT)  
 

– Proline-betaine, sulforaphane, and several isoflavones biomarkers of citrus, crucifers and soy 
intake, respectively 

– ↑ in urinary excretion of shorter-chain acylcarnitines and TCA cycle-intermediates suggesting a 
change in energy utilization from glucose to fat with diets low in fruit and vegetables 

– Comparison with 3DFR and FFQ in a cross-sectional, observational study of free-living 
individuals (n=60) 

Berry diets: dried SBs, sea buckthorn 
phenolics ethanol extract mixed with 
Maltodextrin (SBe+MD) (1:1), SBo, and 
frozen bilberries 

(Larmo, et al. 2013) 

Effects of berries on serum metabolome, 
concentrations of circulating lipids, 
lipoproteins, and low-molecular-weight 
metabolites in women with risk of 
cardiovascular disease and type 2 diabetes 

RCT crossover 
33–35 d / Women with 
CDV, T2D risk (n= 110) 

Serum  1H NMR Positive changes observed in the baseline group of higher cardiometabolic risk  
– Dried SBs induced beneficial effects on serum triglycerides and VLDL subclasses 
– SBo ↓ the serum concentration of total and LDL cholesterol and apolipoprotein B 
– SBe+MD ↑ effect on serum triglycerides and VLDL 
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Paleolithic-type (PD) diet vs. 
Nordic Nutrition Recommendations 
(NNR) diet 

(Chorell, et al. 2016) 

Plasma metabolic response in relation to 
insulin sensitivity after weight loss induced 
by a diet intervention 

CTs 
5 wk / Women (n=10) 
6 m / Postmenopausal 
women (n=70) 

Plasma  GC–TOF/MS PD improved insulin sensitivity compared to NNR via ↓ DGLA and ↑ MI and b-HB 
– 6 months intervention: PD group ↓ 1,5-AG, DGLA (20:3, n-6), lauric acid (12:0), glycine, 

tryptophan and tyrosine; and ↑ MI, DHA (22:6, n-3), ascorbic acid, β-HB, serine and oxalic acid 
compared to NNR group. Changes in amino acids; concomitant ↓ in SFA and n6-PUFAs 

Orange juice 
 
 

(Moreira, et al. 2018) 

Effect of two-week orange juice 
consumption by a mass-spectrometry based 
metabolomics approach 
 

Single arm trial 
15 d / Healthy (n=15) 

DBS 
Plasma 
 

FIA–MS 
GC–MS 

– ↑ of short-chain acylcarnitines and ↓ of medium and long-chain acylcarnitines 
– ↑ C3:1, C5-DC(C6-OH), C5-M-DC, C5:1-DC, C8, C12-DC, lysopc18:3, myristic acid, 

pentadecanoic acid, palmitoleic and palmitic acid and ↓in nervonic acid, C0, C2, C10, C10:1, 
C16:1, C16-OH, C16:1-OH, C18-OH, PC aa C40:4, PC ae C38:4, PC ae C42:3, PC ae C42:4 and 
cholesterol levels 

GRAIN & FIBER       

Diet rich in whole grain rye and rye bran 
products vs. a diet of refined whole grain 
products with added cellulose as control 

(Moazzami, et al. 2011) 

Effects of a diet rich in whole grain rye 
products on the plasma profile of prostate 
cancer patients  

RCT crossover  
6 wk / Early-stage 
prostate cancer men 
(n=24) 

Plasma 1H NMR Shift in energy metabolism toward catabolic status 
– ↑ 3-hydroxybutyric acid, acetone, betaine, N,N-dimethylglycine, and dimethyl sulfone, after RP 

intake  
– Fasting plasma homocysteine and leptin ↓ after RP intake compared to WP intake  

Rye breads vs. white-wheat breads 
(≤20% of total energy intake) 
 

(Lankinen, et al. 2011) 

Changes in the metabolic profile produced by 
high-fiber rye bread to study the 
mechanisms underlying the health effects of 
rye bread 

RCT crossover 
8 wk / Postmenopausal 
women (n= 39) 

Plasma UPLC–
qTOF/MS 
GCxGC–
TOF/MS  

– SM (d18:1/25:1) and SM(d18:1/25:3) ↑ at the end of the RB period compared with WB  
– Ribitol, ribonic acid, and 1H-indole-3-acetic acid (indoleacetic acid) ↑ during RB period 
– Ribonic acid and tryptophan concentrations positively correlated  
– Myristoleic and oleic acid concentrations ↓ during the RB period   

Low GI diet, low protein diet, high GI diet 
and low GI high protein diet  
(Rasmussen, et al. 2012) 

Effects of high vs low protein and low- vs. 
high-GI diets maintaining weight loss in 
families with history of obesity 

CRT parallel  
6 m / Healthy overweight 
(n=109) 

Urine 1H NMR – ↑ formate in the HGI diet groups  
– Hippurate associated with dietary fibre intake  

High fiber (HF) diet vs. low fiber (LF) diet  
(Ready meals: Pasta Bolognese, Chicken 
Tikka Masala, and Fish with spinach and 
mashed root vegetables) 

(Johansson-Persson, et al. 2013) 

Alterations of plasma metabolome profiles 
to identify exposure and effect markers of 
dietary fiber intake 

RCT crossover 
5-wk / men (30-70 y) 
and women (50-70 y) 
with BMI>30 kg/m2 
and total cholesterol 
5.5–7.0 mmol/L (n=30) 

Plasma  LC–qTOF/MS – 6 features in ESI+ and 14 features in ESI− differed after HF compared to LF diet 
– 2-aminophenol sulfate ↑ during HF diet  
– m/z 153.0186 (γ-resorcylic acid) identified as a marker for a high dietary fiber intake  
– Nuatigenin identified at level II, but requires validation as a biomarker of oat intake 

Meal with refined wheat, whole-meal 
rye, and refined rye breads 
 

(Moazzami, et al. 2014) 

Postprandial metabolic responses between 
rye breads using NMR and targeted LC–MS 
metabolomics. Association with postprandial 
insulin responses  

RCT crossover  
Test meal / Healthy 
postmenopausal 
women (n=20) 

Serum 1H NMR 
LC–MS  

– RWB ↑ postprandial concentrations of leucine and isoleucine compared with RRB and WRB 
– Women with ↑ fasting leucine and isoleucine and ↓ SMs and PCs had ↑ insulin responses after 

all kinds of bread 
– Circulating ↑ BCAAs associated with ↑ risk of diabetes 

Low glycemic load (GL) diet vs. high GL 
diet  

(Barton, et al. 2015) 

Protective benefits of low GL diets. 
Modifications of plasma metabolome using a 
targeted metabolomics approach. 

RCT crossover  
4 wk / (n=20) 

Plasma LC–QTrap/MS  
– Kynureate was significantly altered following Low GL 

Meal consisted of commercial refined 
wheat bread (1177 kJ), 40 g cucumber 
and 300 mL non-caloric orange drink 
 

(Shrestha, et al. 2017) 

Impact of a single meal on human 
metabolism. Changes in the metabolic 
profile of postmenopausal healthy women 
after ingestion of a wheat bread meal 
containing carbohydrates, proteins and fats 

Post-prandial study 
/ Postmenopausal  
women (n=19) 

Urine 1H NMR  
LC–MS/MS 
 

The metabolic profile reflected the shift from catabolic to anabolic status 
– ↓ Acylcarnitines and ketone bodies reflected adaptive physiological responses to food (switch 

from β-oxidation to glycolysis and fatty acid synthesis). ↑ in lactate and pyruvate  
– Diacyl, alkyl acyl, PCs and lyso-PCs changed postprandially  
– All PCs ↓ at 180 min, and lyso-PCs (except for C18:2) ↓ at 45 min. Isoleucine, leucine and 

phenylalanine ↑ at 60 min and methionine ↑ at 45 min. Alanine and proline ↑ at 90 min 

MEAT/FISH      

Low meat diet (60 g/day), high red meat 
diet (420 g/day) and (vegetarian diet 
(420 g/day from nonmeat sources) 

(Stella, et al. 2006) 

Effects of three diets on the metabotype 
signature of humans 

RCT crossover  
15 d / Healthy 
Caucasian men (n=12) 

Urine  1H NMR – High-meat diet ↑ urinary levels of creatinine, creatine, acetylcarnitine, TMAO, taurine, and 1- 
and 3- methylhistidine  

– Vegetarian diet: ↑ p-hydroxyphenylacetate  
– Low-meat diet and vegetarian diet signatures characterized 

Fatty fish and lean fish (100–150 g/meal 
at least four times a week) vs. control 
group (meals made with lean meat) 
 

 
(Lankinen, et al. 2009) 

Effect of  fatty fish or lean fish on serum 
lipidomic profiles in subjects with coronary 
heart disease 

CT parallel  
8 wk / Subjects with 
myocardial infarction 
or unstable ischemic 
attack (n=33) 

Plasma  UPLC–
qTOF/MS 
 

Protective effects of fatty fish on the progression of CHD or insulin resistance 
– Fatty fish group (plasma): ↓ oleic acid (18:1n-9) and dihomo-clinolenic acid (20:3n-6), ↑ a-

linolenic (18:3n3), arachidonic (20:4n-6), EPA (20:5n-3), docosapentaenoic (22:5n3) and DHA 
(22:6n-3). ↓ Ceramides, lysophosphatidylcholines (lysoPC), DGs, phosphatidylcholines and 
lysophosphatidylethanolamines 

– Lean fish group (plasma): ↑ cis-vaccenic acid (18:1n-7), cholesterol esters and specific long-
chain triacylglycerols 
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Balanced diets with lean-seafood vs. 
non-seafood proteins 

(Schmedes et al. 2018) 

Effect of different protein sources in  fasting 
and postprandial serum metabolites and 
lipid species 

RCT crossover 
4 wk  / Healthy (n = 27) 

Serum 1H NMR 
UPLC–
qTOF/MS 

– Lean-seafood diet ↓ serum isoleucine and valine in fasting state; ↓ lactate and ↑ citrate and 
trimethylamine N-oxide during postprandial state 

– Non-seafood diet ↑ 26 lipid species in fasting state, e.g,. ceramides 18:1/14:0 and 18:1/23:0 
and lysophosphatidylcholines 20:4 and 22:5 

DAIRY PRODUCTS & FATS      

Low-fat dairy diet vs. two full-fat dairy 
diets (fermented and non-fermented) 

(Nestel, et al. 2013) 

Effects of different dairy product-rich diets 
on potential biomarkers of CHD including a 
lipidomic analysis of plasma 

RCT crossover  
3 wk / Overweight/ 
obese subjects (n=12) 

Plasma LC–QTrap/MS 
GC–MS 

– Non-fermented dairy diet: ↑ sphingomyelin and ↓ plasmalogen species phosphatidylcholine 
plasmalogen and phosphatidylethanolamine plasmalogen 

– Full-fat dairy diets: ↑ phosphatidylcholine containing 15:0 and 17:0  

Diet increased in energy intake (1,250 
kcal/day reached with high-energy, high-
fat snacks and a liquid-oil-based 
supplement mixed in a dessert) 

(Heilbronn, et al. 2013) 

Effect of overfeeding on lipids in men and 
women 
 
 

Single arm trial 
28-d / Healthy (n=41) 

Serum LC–QTrap – Overfeeding: ↑ Alkenylphospahtidylethanolamine (PE(P)) and their precursor 
aklylphosphatidylethanolamine (PE(O)); ↑ total ceramide and ↓ Lysoalkylphosphatidylcholine 
(LPC(O)) and diacylglycerol  

– ↑ HDL, PE(P) and PE(O) suggest a change in HDL lipid composition with overfeeding 

Breakfast meals containing dairy fat or 
vegetable (soy) oil 

 
 

(Meikle, et al. 2015) 

Effect of dairy fat and soy oil on the 
postprandial lipidome in men 

RCT crossover  
Test meal / Males (n= 
21) 
 
 

Plasma LC–QTrap/MS ↑ in lipids with potential antioxidant capacity in postprandial period after dairy meals 
– Dairy meal: ↑ plasma phospholipids. ↑ alkenylphosphatidylethanolamine postprandially 
Soy: ↓ sphingomyelin, ether-linked, lysophospholipids, alkenylphosphatidylcholine, 
alkylphosphatidylethanolamine, alkenylphosphatidylethanolamine, lysoalkylphophatidylcholine, 
and lysophosphatidylethanolamine. 

Carbohydrate-rich, low fat diet (30E% 
fat, 55E% carbohydrates, 15E% protein) 
vs a low carbohydrate, high fat diet 
(45E% fat, 40E% carbohydrates, 15E% 
protein) 

(Frahnow, et al. 2017) 

Characterization of the metabolic adaptation 
after switching from a low fat to a high fat 
Western-style diet in mono- and dizygotic 
twins 

Crossover trial 
6 wk / Non-obese, 
healthy, twin pairs 
(n=46) 

Plasma DIMS 
(QExactive) 

High heritability of basal concentrations of specific lipid species with strong dependence on sex, 
BMI and age 
– Finding of 5 different reactions 

PROBIOTICS & PREBIOTICS       

Probiotic L. rhamnosus GG vs. placebo 
 
 

(Lahti, et al. 2013) 

Impact of a probiotic on the composition and 
stability of the intestinal microbiota and 
serum lipid profiles 

RCT 
3 wk / Healthy Finnish 
adults (n = 25) 

Serum UPLC– 
qTOF/MS 

The intestinal commensals are implicated in the metabolism of various lipid species 
– No differences in lipid profile stability between the treatment groups 
– 86 bacterial group-lipid pairs with notable correlations  
– 23 of the 131 genus-level taxa detectable by the HITChip  

ITF (inulin/oligofructose 50/50 mix) 
prebiotics supplement vs. placebo 
(maltodextrin) 

(Dewulf, et al. 2013) 

Impact of ITF prebiotics on the gut microbial 
ecosystem in obese women  

RCT 
3 m / Obese women 
(n=30) 

Plasma 
Urine 

1H NMR No significant clustering induced by the prebiotic  
– Subtle changes in the gut microbiota correlated with changes in fat mass, serum LPS and 

metabolism (hippurate, lactate and PC) 
– Patients with ↑Propionibacterium and Bacteroides vulgatus: ↑ lactate and PC  

Chicory-derived inulin (Orafti inulin) 
12 g of inulin (treatment) vs. 
maltodextrin (placebo control) 

(Vandeputte, et al. 2017) 

Effect of chicory-derived inulin (Orafti inulin) 
on bowel function in healthy individuals 
with constipation 

RCT crossover 
4 wk / Healthy with 
constipation (n=44) 

Faeces GC-MS ↓ Bilophila abundances associated with softer stools and a favourable change in constipation-
specific quality-of-life measures 
– Faecal metabolite profiles not altered by inulin consumption. ↑dodecanal  
– Changes in relative abundances of anaerostipes, bilophila and bifidobacterium  
 

Oral probiotics mixture vs.  a placebo 
 

(Baldassarre, et al. 2018) 

Effectiveness and the safety of a probiotic-
mixture for the treatment of infantile colic 
in breastfed infants 

RCT 
21 d / Infants between 
30 and 90 days (n=66) 

Faeces  1H NMR Probiotic modulated infantile colic symptoms by the end of treatment 
– Probiotic: ↑ acetate in subjects treated with the placebo and propylene glycol 

Placebo: ↑ 2-hydroxyisovalerate, alanine and 2-oxoisocaproate 

DRINKS      

Beverages with carbohydrates and 
carbohydrates combined with proteins 
(low-carbohydrate, high carbohydrate, 
low-carbohydrate-protein and water) 
 

(Chorell, et al. 2009) 

Effect of post- exercise ingestion of 
carbohydrates in combination with proteins 
on systemic metabolic response in the early 
recovery phase following exercise.  

CT crossover 
90 min of ergometer-
cycling sessions / Males 
(n=24) 
  

Serum GC–TOF/MS Impairments in insulin function or insulin resistance following ingestion of carbohydrates or 
carbohydrates + proteins 
– Pseudouridine suggested as a novel marker for pro-anabolic effect with LCHO-P ingestion (↑ 

insulin and availability of amino acids, and ↓ 3-methylhistidine) 
– LCHO-P improved metabolic status of less fit subjects in the recovery phase.↓ fatty acids and 

↑ sugars, amino acids, insulin, and PSU 

Green tea with carbohydrate-
hydroelectrolyte drink or oligomineral 
water 

Systemic effects of an isotonic sports drink 
on the metabolic status of athletes during 
recovery  

CT crossover Plasma 
Urine 

1H NMR – Green tea–based sports drink had effect on glucose, citrate, and lactate levels in plasma and on 
acetone, 3-OH-butyrate, and lactate levels in urine 

– Absorption of green tea extract components: ↑ caffeine and hippuric acid levels in urine 
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(Miccheli, et al. 2009) Strenuous cycling 
sessions / Male athletes 
(n=44) 

Beverages containing glucose 
(maltodextrin (MD) + glucose (2:1 
ratio)), galactose (MD + galactose (2:1)), 
or fructose (MD) + fructose (2:1)) 

(Bruce, et al. 2010) 

Effects of three different carbohydrate based 
recovery beverages after sessions of 
ergometer cycling in a human exercise study  
 
 

CT crossover 
cycling sessions / 
Trained male cyclists 
(n=10) 
 

Plasma GC–TOF/MS – Galactose beverage: ↑ galactonic acid throughout the recovery period 
– Fructose beverage: ↑ fructose  

Red wine (272mL/day) vs dealcoholized 
red wine (272mL/day) or gin (100mL/day) 
 

(Vazquez-Fresno, et al. 2012) 

Effect of moderate wine intake on the 
metabolome of subjects with CDV risk, 
identifying both markers of consumption and 
endogenous changes 

RCT crossover 
4 wk / High-risk subjects 
≥55 y without 
documented CHD (n=61) 

Urine 1H NMR – Metabolites from wine metabolism: mannitol in RWA and tartrate in RWA and RWD  
– Endogenous modifications after wine consumption: BCAA metabolites  
– Ethanol robust biomarker of alcohol consumption in GIN and RWA diets  
– 4-hydroxyphenylacetate and hippurate different effect in combination with alcohol 

Functional beverage containing grape 
skin extract vs. a control beverage as a 
placebo 

(Khymenets, et al. 2015) 

Impact of acute and sustained consumption 
of a functional beverage based on grape skin 
extracts on the urinary metabolome by 
applying an untargeted metabolomic approach 

RCT crossover  
15 d / Healthy (n=31) 

Urine HPLC–
qTOF/MS  

– Prolonged FB consumption: microbial metabolites of flavanols, hydroxyvaleric acid and 
hydroxyvalerolactone derivatives 

– Acute FB consumption: ↑ tyrosine  
– Representative markers of FB consumption: epicatechin and phenolic acid metabolites (tissular 

and microbiota origin)  

MISCELANEOUS      

Dried black tea extract powder (capsule 
containing 2500 mg of dried black tea 
extract poweder, red grape extract or 
sucrose-placebo) 

(van Velzen, et al. 2009) 

Integration of metabolomics and 
pharmacokinetics (or nutrikinetics) data to 
describe a human study population with 
different metabolic phenotypes  

RCT crossover  
2 d / Healthy non-
smoking males  (n=20) 

Urine 1H NMR – ↑ urinary excretion of gut mediated metabolites of tea flavonoids 
– The nutrikinetic properties of phenolic biomarkers describe metabolic phenotypes  
– Hippuric acid and 4-hydroxy derivate of hippuric acid (4-hydroxyhippuric acid) important 

contributors to RP 
 

Vitamin E supplementation (capsule 
containing 400 mg of α-tocopheryl acetate) 

(Wong and Lodge 2012) 

Changes induced by vitamin E 
supplementation on plasma metabolome  

Single arm trial 
4 wk / Males (n=10) 

Plasma LC–qTOF/MS – Supplementation ↑ plasma vitamin E, ↑ Lysophosphatidylcholine species (16:0, 18:0, 18:1, 
18:2, 20:3 and 22:6) 

–  Vitamin E influences phospholipid metabolism and induces lysoPC generation 

n-3 PUFA supplement (capsule with 3 g/day)  
 

 
 

(Rudkowska, et al. 2013) 

Molecular and metabolic changes following 
n-3 PUFA supplementation (traditional 
biomarkers, transcriptome and metabolome 
analyses) 

Run in period 
followed by single 
arm trial 
6-wk / Healthy (n=30)   

Plasma LC–MS 
 

n-3 PUFA supplementation suggest cardioprotective effects 
– ↓ Triglycerides and ↑ erythrocyte n-3 PUFA, ↓ plasma glycerophosphatidylcholine and 

lysophosphatidylcholine in both genders 
– ↑ Plasma HDL-cholesterol and fasting glucose levels in women after n-3 PUFA 
– n-3 PUFA changed expression of 610 genes in men and 250 genes in women 
– n-3 PUFA in men ↑ acylcarnitines, hexose and leucine. In women ↓ SM C20:2 and ↑ SM C22:3 

Four isoenergetic diets differing in n-3 
FA and polyphenols content 
 

(Bondia-Pons, et al. 2014) 

Effects of n-3 fatty acid and polyphenol rich 
diets on plasma and HDL fraction lipidomic 
profiles in subjects at high cardiovascular risk 

RCT parallel 
8 wk / Individuals at 
high cardiovascular risk 
(n=78) 

Plasma UPLC–
qTOF/MS 

– Inverse correlation between long-chain TG with high number of double bonds (≥6), PCs and PEs 
with low number of double bonds (≤4) and with lipids containing arachidonic acid in plasma 

– Observation of two patterns 
– PCs and PEs major lipids altered in the HDL fraction 

High–palmitic acid (HPA) vs a low–
palmitic acid and high–oleic acid (HOA) 
diet 

(Kien, et al. 2014) 

Effect of dietary fatty acids and their 
metabolism on CVD risk; Identification of a 
metabolomic signature in blood lipid 
concentrations and whole-body fat oxidation 

CT crossover 
3 wk / Healthy (n=18) 

Muscle 
Serum 

GC–MS 
DIMS 

– PA with OA ↓ blood LDL concentration and whole-body fat oxidation  
– ↑ production and accumulation of acylcarnitines in women 
– HOA ↓ PA:OA ratio in serum and muscle phosphatidylcholine  
– Inhibitory effects of the HOA diet on mRNA expression of INSIG-1  

Gelatin and whey protein supplements 
(20-g/d) 

(Piccolo, et al. 2015) 

Differences in plasma metabolites from 
obese women consuming gelatin vs. whey 
protein supplements (weight-loss trial) 

RCT parallel  
8 wk / Obese women 
with metabolic with 
MetSyn (n=29) 

Plasma GC–qTOF/MS – Supplemental protein source rich in BCAAs modifies innate BCAA metabolism 
– Whey-based vs gelatin-based protein supplement: ↓ fasting plasma abundance of Pro- and Cys-

related metabolites  
 

Commercial meal with blueberry and 
chocolate flavour (—Nutrilett 
Intensive—, Axellus A/S, Denmark) 

(Schmedes, et al. 2015) 

Potential of NMR-based metabolomics and 
impact of a 6-week very low-calorie diet and 
weight reduction on the serum and faecal 
metabolome in overweight healthy subjects 

CT 
6 wk / Healthy females 
(n=70) 

Serum 
Faeces 

1H NMR  – Highest weight loss: ↑ serum ketone bodies (3-HBA, acetoacetate) and lactate 
– Lowest weight loss: ↑ serum lipids 
– Pre- and post-weight loss faecal samples ↓ acetate, butyrate and propionate and ↑ lactate and 

lipids after weight reduction 

Two breakfast meals: Cereal breakfast 
and egg vs ham breakfast, both with 
coffee or tea 

Comparison of the acute metabolic response 
to two equicaloric breakfasts using 1H NMR 
metabolomics 

CT crossover 
4 d / Healthy s (n=24) 

Urine 1H NMR – EHB vs CB ↑ phosphocreatine/creatine, citrate and lysine. CB:↑ erythrose  
– Coffee drinkers: ↑ 2- furoylglycine and Sumiki’s acid in postprandial  
– Tea drinkers: ↑ 3-hydroxyisovalerate in postprandial 
– Coffee and tea drinkers:↑ trigonelline and hippuric acid postprandial 
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(Radjursoga, et al. 2017) 
Daily intake of dark chocolate during (25 
g for breakfast and lunch) 

 
 
 

(Martin, et al. 2012) 

Identify metabolic phenotypes indicative of 
specific responses to dark chocolate 
consumption 
  

Single arm trial 
1 wk / Healthy (n=73) 
(n=20 final study) 
 
 

Plasma 
Urine  

1H NMR  
FIA−QTrap  
LC–qTOF 

– Urinary excretion of cocoa-derived metabolites: ↑ 7-methylxanthine, theobromine, and their 
products by endogenous and microbial metabolism e.g., hippurate, 3-(3-hydroxyphenyl)- propionate  

– NMR signals; aromatic compounds associated to metabolism of cocoa polyphenols 
– CD subjects ↑ urinary content of butyrate, 3-hydroxybutyrate, 3-hydroxyisovalerate, p-cresol 

sulfate, phenyacetylglutamine and phenylacetate, and ↓ creatinine  
– CD vs CI subjects: consistent pattern ↓ 3-hydroxyisovalerate, p-cresol sulfate, creatinine, 

phenylacetylglutamine, and phenylacetate,  
Soluble cocoa powder 
(40 g of cocoa with 250 mL of water and  
40 g of cocoa with 250 mL of milk vs 250 
mL of milk as a control) 

(Llorach, et al. 2009) 

Metabolomic strategy to analyse the 
influence of a single cocoa intake on the 24 h 
kinetic trajectory  

CT crossover 
Single dose / Healthy 
(n=10) 

Urine HPLC–qTOF – 27 metabolites related to cocoa-phytochemicals  
– Main changes after cocoa powder intake: alkaloid derivatives, polyphenol metabolites (both 

host and microbial metabolites) and processing-derived products such as diketopiperazines 

Cocoa powder (40 g with 250 ml of milk) 
 

 
(Llorach-Asuncion, et al. 2010) 

Changes in urinary metabolome after cocoa 
powder consumption. Capacity to improve 
metabolome visualization and interpretation 
after a meal consumption study  

Post-prandial study 
24 h / Healthy (n=10) 
 

Urine HPLC–qTOF  – Metabolites characterized by several mass features 
– Two-way clustering tool for discovering the possible source of metabolites 

Ready-to-eat meals supplemented with 1.4 
g of cocoa extract (645 mg polyphenols) vs 
control meal 

(Ibero-Baraibar, et al. 2016) 

Effect of consuming ready-to-eat meals 
containing a cocoa extract 

RCT parallel  
4 wk / Middle-aged 
volunteers (n=50) 

Urine  HPLC–TOF/MS – Metabolites in cocoa group related to theobromine metabolism (3-methylxanthine and 3-methyluric 
acid), food processing (L-beta-aspartyl-L-phenylalanine), flavonoids (2,5,7,3′,4′-pentahydroxyflavanone-
5-O-glucoside and 7,4′-dimethoxy-6-C-methylflavanone), catecholamine (3-methoxy-4-
hydroxyphenylglycol-sulphate) and endogenous metabolism (uridine monophosphate) 

Abbreviations: CE-UV, capillary electrophoresis-ultraviolet; RCT, randomized controlled crossover trial; n, number of people initially enrolled in the study; HPLC, high pressure liquid 

chromatography; qTOF, quadropole time of flight; FIA-MS, flow injection-mass spectrometry analysis; LTQ-FT, linear ion trap mass spectrometer coupled with Fourier Transform 
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Table 2.   Dietary biomarkers proposed in humans through the use of high throughput metabolomics based approaches (human dietary intervention studies + cross 

sectional studies) 

FOOD  METABOLIC 
APPROACH SAMPLE CANDIDATE BIOMARKERS REF 

VEGETABLES     

Cruciferous  1H NMR Urine S-methyl-L-cysteine sulphoxide (Edmands, et al. 2011) 

Cruciferous  LC-MS/MS Urine Sulforaphane (May, et al. 2013) 

Onion 1H NMR Urine N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide  (Posma, et al. 2017) 

Beetroot UPLC-qTOF-MS Urine  4-Ethyl-5-amino-pyrocatechol sulphate; 4-Methylpyridine-2-carboxylic acid glycine conjugate (Andersen, et al. 2014) 

Radish sprouts UHPLC-QqQ-MS/MS Urine Sulforaphene; Sulforaphane-N-acetyl-l-cysteine; 3,3'-Diindolylmethane (Baenas, et al. 2017) 

Broccoli  FIE-MS Urine Ascorbate; Tetronic acids; L-Xylonate/L-lyxonate; Naringenin glucuronide  (Lloyd, et al. 2011) 

White cabbage/Brussels 
sprout 

UPLC-qTOF-MS Urine N-acetyl-S-(N-3- methylthiopropyl)cysteine; N-acetyl-S-(Nallylthiocarbamoyl)cysteine; 
Iberin N-acetyl-cysteine; Erucin N-acetyl-cysteine; N-Acetyl-(N’-benzylthiocarbamoyl)- 
cysteine; Sulforaphane N-acetyl-cysteine; Sulforaphane N-cysteine 

(Andersen, et al. 2013) 

Red cabbage 
(brussels sprouts, pointed 

cabbage) 

UPLC-qTOF-MS  Urine  3-Hydroxy-hippuric acid sulphate; 3-Hydroxy-hippuric acid; Iberin N-acetyl-cysteine;  
N-acetyl-S-(N-3-methylthiopropyl)cysteine; N-acetyl-S-(N-allylthiocarbamoyl)cysteine; 
Sulphoraphane N-acetyl-cysteine   

(Andersen, et al. 2014) 

Greens: lettuce, spinach, 
green peppers 

UPLC-MS/MS Serum  3-carboxy-4-methyl-5-propyl-2- furanpropanoic (Guertin, et al. 2014) 

Vegetable HPLC-ESI-MS/MS Urine Enterolactone + kaempferol (Mennen, et al. 2006) 

Vegetarian diet 1H NMR Urine p-hydroxyphenylacetate (Stella, et al. 2006) 

Lactovegetarian diet 1H NMR Urine Hippurate; N-acetyl glycoprotein; Succinate (Xu, et al. 2010) 

Vegetarian diet 1H NMR Urine Phenylacetylglutamine; Glycine (O'Sullivan, et al. 2011) 

FRUITS     

Citrus HPLC-ESI-MS/MS Urine Hesperetin; Naringenin  (Mennen, et al. 2006) 

Citrus 1H NMR Urine Proline betaine (Heinzmann, et al. 2010) 

Citrus FIE-MS Urine Proline betaine and conjugates (Lloyd, et al. 2011) 

Citrus UPLC-QTOF-Micro 
UPLC-LTQ-Orbitrap 

Urine Proline betaine; Limonene 8,9-diol glucuronide; Nootkatone 13,14- diol glucuronide; 
Hesperetin 3′-Oglucuronide; Hydroxyproline betaine; N-Methyltyramine sulfate; 
Naringenin 7- Oglucuronide 

(Pujos-Guillot, et al. 2013) 

Citrus LC-MS/MS Urine Proline betaine (May, et al. 2013) 

Citrus UPLC-MS/MS Serum  Stachydrine; Scyllo- and chiro-inositol (Guertin, et al. 2014) 

Orange/Citrus UPLC-qTOF-MS Urine  Proline betaine; Hesperetin glucuronide (Andersen, et al. 2014) 

Citrus UPLC-qTOF Urine Naringenin glucuronide (Edmands, et al. 2015) 
Orange juice UPLC-MS/MS 

GC/MS 
Urine N-methyl proline; Methyl glucopyranoside (alpha+beta); Stachydrine; Betonicine;  

N-Acetyl putrescine; Dihydroferulic acid 
(Rangel-Huerta, et al. 2017) 
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Aronia-citrus juice HPLC-qTOF-MS Urine Proline betaine; Ferulic acid; Mercapturate derivatives (Llorach, et al. 2014) 

Apple HPLC-ESI-MS/MS Urine Phloretin (Mennen, et al. 2006) 

Apples / pears UPLC-qTOF Urine Phloretin glucuronide  (Edmands, et al. 2015) 
Apple 1H NMR Urine Rhamnitol (Posma, et al. 2017) 

Raspberries FIE-MS 
 

Urine Sulphonated caffeic acid; Methyl-epicatechin sulfate ; 3-Hydroxyhippuric acid;  
Naringenin glucuronide; Ascorbate  

(Lloyd, et al. 2011) 

Bilberries UHPLC-qTOF-MS Plasma Hippuric acid (Hanhineva, et al. 2015) 

Strawberry LC-MS Urine 4-Hydroxyhippuric acid; 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) glucuronide; 
Pelargonin glucuronide; p-coumaric  acid sulphate; Dihydrokaempferol glucuronide;  
Furaneol sulphate; 2,5-dimethyl-4-methoxy-2,3-dihydro-3-furanone (mesifurane); 
Mesifurane sulphate; Leucopelargonidin; Catechin sulphate 

(Cuparencu, et al. 2016) 

Grapefruit  HPLC-ESI-MS/MS Urine Naringenin (Mennen, et al. 2006) 

Combination of fruits 
and/or fruit juices 

HPLC-ESI-MS-MS Urine Gallic acid, 4-O-methylgallic acid; Isorhamnetin; Kaempferol; Hesperetin; Naringenin; 
Phloretin 

(Mennen, et al. 2006) 

Sea buckthorn LC-MS Urine Catechin Sulphate; xi-2,3-dihydro-2-oxo-1H-indole-3-acetic acid; Hippuric acid;  
5-Hydroxyindole-3-acetic acid; Cyclohexane carboxylic acid glycine;  
1-Cyclohexene carboxylic acid glycine; Cyclohexadiene carboxylic acid glycine; N-methyl 
hippuric acid; Isorhamnetin glucuronide; Pyrocatechol sulphate; Dihydroxycyclohexane 
carboxylic acid; Protocatechuic acid glucoside 

(Cuparencu, et al. 2016) 

LEGUMES     

 Chickpeas, lentils, beans 1H NMR Urine Glutamine; Dimethylamine; 3-methylhistidine (Madrid-Gambin, et al. 2017) 

Peas 1H NMR Urine N-methylnicotinic acid (NMNA, trigonelline) (Posma, et al. 2017) 

SOY PRODUCTS     

Soy LC-MS/MS Urine Isoflavones (May, et al. 2013) 

Soy Drink GC-MS 
1H NMR 

Urine D-Pinitol; Maltol; Trigonelline; Pyridoxine; Trans-aconitate (Munger, et al. 2017) 

GRAINS     

Whole grain sourdough 
rye bread 

FIE-MS Urine Benzoxazinoid derivatives; Hydroxylated phenyl acetamide derivatives (Beckmann, et al. 2013) 

Whole-grain sourdough 
rye bread/ white wheat 

bread with rye bran 

LC-qTOF-MS Plasma Sulfonated hydroxyl-N-(2-hydroxyphenyl) acetamide; N-(2-hydroxyphenyl)acetamide; 
2,4-dihydroxy-1,4-benzoxazin-3-one; 1,3-benzoxaxazol-2-one 
 

(Hanhineva, et al. 2014) 

Whole-grain rye LC-qTOF-MS Urine Alkylresorcinol metabolites; Caffeic acid sulfate; Hydroxyhydroxyphenyl acetamide sulfate;  
3,5‐dihydroxyphenylpropionic acid sulfate; Hydroxyphenyl acetamide sulfate 

(Hanhineva, et al. 2015) 

Whole-grain bread  UHPLC-qTOF-MS Plasma Glucuronidated alk(en)ylresorcinols  (Hanhineva, et al. 2015) 

Whole-grain bread  HPLC-qTOF-MS Urine 2-hydroxy-N-(2-hydroxyphenyl) acetamide; 2-hydroxy-1,4-benzoxazin-3-one glycoside;  (Garcia-Aloy, et al. 2015) 
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3-(3,5-dihydroxyphenyl) propanoic acid glucuronide; 5-(3,5-dihydroxyphenyl) pentanoic 
acid sulphate; Dihydroferulic acid sulphate; Enterolactone glucuronide; Pyrraline;  
3-Indolecarboxylic acid glucuronide; 2,8-Dihydroxyquinoline glucuronide 

MEAT     

 Meat (omnivore diet) IEC Urine 1-methylhistidine; 3-methylhistidine (Myint, et al. 2000) 

Atkins diet 1H NMR Urine  Taurine (Lenz, et al. 2004) 

Ground Beef 
(raw/broiling)  

HPLC Plasma Carnosine (Park, et al. 2005) 

Meat  1H NMR Urine Acetyl-carnitine; Creatinine; Taurine; Carnitine; Trimethylamine-N-oxide;  
1-methylhistidine; 3-methylhistidine 

(Stella, et al. 2006) 

Low fat meat 1H NMR Urine Creatine; Histidine; Urea (Bertram, et al. 2007) 

Red meat IEC Urine 1-methylhistidine; 3-methylhistidin (Cross, et al. 2011) 

Red meat 1H NMR Urine O-acetylcarnitine  (O'Sullivan, et al. 2011) 

Beef GC-MS Plasma β-alanine; 4-hydroxyproline; 2-aminoadipic acid; Leucine (Ross, et al. 2015) 

Chicken HPLC-QTRAP 
1H NMR 

Plasma 
Urine 

3-methylhistidine; Guanidoacetate (Yin, et al. 2017) 

Chicken/ Red meat UHPLC-MS/MS Urine  
Plasma 

3-methylhistidin; Anserine; Carnosine (Cheung, et al. 2017) 

COOKED MEATS     

Fried meat (lean beef) GC–MS Urine  2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhlP); 4′-OH-PhIP (Reistad, et al. 1997) 

Char-broiled beef  GC–MS Urine  PhIP metabolites (Strickland, et al. 2002) 

Fried  chicken breasts LC-MS/MS Urine  PhIP metabolites; N2-OH-PhIP-N2-glucuronide; N2-PhIP-glucuronide (Kulp, et al. 2004) 

Grilled/stir-fried meat LC–MS Hair PhIP  (Kobayashi, et al. 2005) 

     

FISH      

Fish 1H NMR Urine  Trimethylamine-N-oxide (Lenz, et al. 2004) 

Salmon FIE-MS Urine Anserine; Trimethylamine-N-oxide; 1-methylhistidine   (Lloyd, et al. 2011) 

 UPLC-qTOF-MS  Trimethylamine N-oxide (Andersen, et al. 2013) 

Fish UPLC-qTOF-MS  Urine  Trimethylamine N-oxide  (Andersen, et al. 2014) 

Fish 
 

UPLC-MS/MS Serum  3-carboxy-4-methyl-5-propyl-2- furanpropanoic acid; DHA; EPA;  
1-Docosahexaenoylglycero-phosphocholine 

(Guertin, et al. 2014) 

Fatty Fish  UHPLC-qTOF-MS Plasma 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; EPA; DHA (Hanhineva, et al. 2015) 

Herring GC-MS Plasma DHA; Cetoleic acid (Ross, et al. 2015) 

Fish UHPLC-MS/MS Urine Trimethylamine-N-oxide (Cheung, et al. 2017) 

Meat / fish UHPLC-MS/MS Plasma Acetylcarnitine; Propionylcarnitine; 2-methylbutyrylcarnitine (Cheung, et al. 2017) 

DAIRY PRODUCTS     
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Cheese UPLC-qTOF/MS Urine 
 

Indoxyl sulfate; Xanthurenic acid; Tyramine sulfate; 4-hydroxyphenylacetic acid; 
Isovalerylglutamic acid; Acylglycines  

(Hjerpsted, et al. 2014) 

Butter UPLC-qTOF/MS Urine 3-phenyllactic; alanine, proline; pyroglutamic acid (Hjerpsted, et al. 2014) 

Butter UPLC-MS/MS Serum  Methyl palmitate (15 or 2);  Pentadecanoate (15:0); 10-Undecenoate (11:1n–1) (Guertin, et al. 2014) 

Milk GC-MS 
1H NMR 

Urine Lactose; Galactose; Galactonate; Allantoin; Hippurate; Galactitol; galactono-1,5-lactone (Munger, et al. 2017) 

Milk LC-MS 
GC-MS 
FIA-MS/MS 

Serum/ 
Plasma 
Urine 

Trimethyl-N-aminovalerate; Uridine; Hydroxysphingomyelin C14:1; 
Diacylphosphatidylcholine C28:1  

(Pallister, et al. 2017) 

NON-ALCOHOLIC 
BEVERAGES 

    

Sugar-
sweetened beverage 

1H NMR Urine Formate; Citrulline; Taurine; Isocitrate (Gibbons, et al. 2015) 

Coffee HPLC-ESI-MS/MS Urine Caffeic; Chlorogenic acid (Mennen, et al. 2006) 

Coffee HPLC-PDA-MS Urine  Dihydrocaffeic acid-3-O-sulfate; Feruloylglycine (Stalmach, et al. 2009) 

Coffee LC-MS/MS Plasma Dimethoxycinnamic acids (Nagy, et al. 2011) 

Coffee UPLC-qTOF-MS Urine Atractyligenin glucuronide; Diketopiperazine cyclo(isoleucyl-prolyl); Trigonelline; 
Paraxanthine; 1-methylxanthine, 1-methyluric acid, 1,7-dimethyluric acid,  
1,3 or 3,7 dimethyluric acid; 1,3,7-trimethyluric acid; 5-acetylamino-6-formylamino-3-methyluracil 

(Rothwell, et al. 2014) 

Coffee 
 

UPLC-MS/MS Serum  Trigonelline (N’-methylnicotinate); Quinate; 1-Methylxanthine; Paraxanthine;  
N-2-furoyl-glycine; Catechol sulfate 

(Guertin, et al. 2014) 

Coffee UPLC-qTOF Urine Dihydroferulic acid sulfate (Edmands, et al. 2015) 

 1H NMR Urine 2-furoylglycine (Heinzmann, et al. 2015) 

Black tea 1H NMR Urine Hippuric acid; 1,3-dihydroxyphenyl-2-O-sulfate (Daykin, et al. 2005) 

Black tea HPLC-ESI-MS-MS Urine Gallic; 4-O-methylgallic acids (Mennen, et al. 2006) 

Black tea/green tea HPLC-MS/MS Urine Hippuric acid (Mulder, et al. 2005) 

Black tea/green tea 1H NMR Urine Hippuric acid; 1,3-dihydroxyphenyl-2-O-sulfate (Van Dorsten, et al. 2006) 

Black tea/green tea HPLC-FTMS(n) 
HPLC-TOFMS-SPE-NMR 

Urine Hippuric acid; Hydroxybenzoic glycine conjugate; Vanilloylglycine; Pyrogallol-2-O-sulfate (van der Hooft, et al. 2012) 

Tea UPLC-qTOF Urine 4-O-methylgallic acid (Edmands, et al. 2015) 
Wine 1H NMR Urine Tartrate; Ethyl glucuronide; 2,3-butanedio; Mannitol; Ethanol; 3-Methyl-2-oxovalerate (Vazquez-Fresno, et al. 2015) 

Wine   HPLC-ESI-MS/MS Urine m-coumaric acid; Gallic acid; 4-O-methylgallic acid (Mennen, et al. 2006) 

Wine UPLC-MS/MS Plasma 
Urine 

Gallic acid and ethylgallate metabolites; Resveratrol and resveratrol microbial metabolites; 
2,4-Dihydroxybenzoic acid; (epi)catechin; Valerolactone metabolites 

(Urpi-Sarda, et al. 2015) 

Red wine UPLC-qTOF Urine Gallic acid ethyl ester (Edmands, et al. 2015) 
Beer UPLC-MS/MS Serum 16-Hydroxypalmitate  (Guertin, et al. 2014) 
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MISCELLANEOUS     

Cocoa LC-qTOF Urine Vanilloylglycine; Dihydroxyphenyl valerolactone glucuronide; Furoylglycine;  
7-methylxanthine; 3-methylxanthine; Theobromine; Xanthurenic acid 

(Llorach-Asuncion, et al. 
2010) 

Cocoa HPLC-qTOF-MS Urine  Theobromine metabolism (AMMU; 3-methyluric acid; 7-methylxanthine; 3-methylxanthine; 
3,7-dimethyluric acid; Theobromine) 
Polyphenol microbial metabolites (Methoxyhydroxyphenylvalerolactone; Glucuronide and 
sulphate conjugates of 5-(3’ ,4’ -dihydroxyphenyl)-valerolactone) 

(Garcia-Aloy, et al. 2015) 

Chocolate UPLC-qTOF-MS Urine  6-Amino-5-[N-methylformylamino]- 1-methyluracil; Theobromine; 7-Methyluric acid  (Andersen, et al. 2014) 

Chocolate products UPLC-qTOF Urine Methyl(epi)catechin sulfate  (Edmands, et al. 2015) 
NUTS     

Almond Skin LC-qTOF Urine  Flavonoids; Valerolactone conjugates (Llorach, et al. 2010) 

Walnut HPLC-QTOF-MS Urine 10-hydroxy-decene-4,6-diynoic acid sulfate; Tridecadienoic/tridecynoic acid glucuronide; 
Sulfate conjugates of urolithin A; 3-indolecarboxylic acid glucuronide 

(Garcia-Aloy, et al. 2014) 

Peanut UPLC-MS/MS Serum  4-vinylphenol sulfate; Tryptophan betaine (Guertin, et al. 2014) 

Walnut UPLC-qTOF-MS Urine  5-Hydroxyindole-3-acetic acid  (Andersen, et al. 2014) 

Abbreviations: FIA-MS, flow injection-mass spectrometry analysis; HPLC, high pressure liquid chromatography; qTOF, quadrupole time of flight; QqQ, triple quadrupole; UHPLC, 

ultrahigh performance liquid chromatography 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



HYPOTHESIS

Data Acquisition & Conversion

Data Processing & Statistical Analysis

Feature detection
Generation of a reference database
Data import, compression and matrix construction

Metabolite Identification

Biomarker Identification & Interpretation
Data validation & Biochemical interpretation

Sample Treatment
Metabolite extraction

Sample Treatment
Extraction of predefined metabolites

Data Acquisition & Conversion

Data Processing & Statistical Analysis

Biomarker identification & Interpretation

Targeted metabolite acquisition
Data import, compression and matrix construction

Data alignment, filtering, normalization, transformation, scaling
Multivariate & Univariate Analyses

Peak Integration, normalization and quantification
(Use of IS, surrogates, QCs)

Transformation, scaling - Multivariate & Univariate Analyses

Preparation of Standards 
& Calibration Curves

Data validation & Biochemical interpretation

§
Processing software
Masslynx (Waters), Xcalibur (Thermo Fischer),

Analyst (AB Sciex), Compass (Bruker),

Chenomx Processor (Chenomx), MassHunter
and Chemstation (Agilent)

Statistical Packages
MATLAB, R, SPSS, SIMCA

¥
Reference Database
FooDB, HMDB, METLIN,
MassBank, LipidMaps &
LipidBlast, NIST, mzCloud

*Popular open data formats 

XML-based formats (mzXML, mzData and 

mzML) netCDF (ANDI-MS) 

Classical text files (JCAMP-DX, txt)

Biological/Clinical Interpretation
KEGG, BioCyc, MetaCyc, WikiPathways

Tools for automated processing

*

*

§

¥

Search in Databases
MS/MS, isotopic pattern, standard injection

UNTARGETED

TARGETED

§
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