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1 Abstract

Recent research has identified three invariants or identities that appear to hold in peo-

ple’s probabilistic reasoning: the QQ identity, the addition law identity, and the Bayes

rule identity (Costello and Watts, 2014, Fisher and Wolfe, 2014, Costello and Watts,

2016a, Wang and Busemeyer, 2013, Wang et al., 2014). Each of these identities represent

specific agreement with the requirements of normative probability theory; strikingly, these

identities seem to hold in people’s judgements despite the presence of strong and system-

atic biases against the requirements of normative probability theory in those very same

judgements. These results suggest that the systematic biases seen in people’s probabilistic

reasoning follow mathematical rules: for these particular identities, these rules cause an

overall cancellation of biases and so produce agreement with normative requirements. We

assess two competing mathematical models of probabilistic reasoning (the ‘probability

theory plus noise’ model and the ‘quantum probability’ model) in terms of their ability

to account for this pattern of systematic biases and invariant identities.

keywords: rationality; biases; probability;
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A fundamental goal of science is to find invariants: constant mathematical relation-

ships that hold between different variables (Simon, 1990). Such invariants are perhaps

the defining characteristic of quantitative ‘hard’ science: almost all important results in

physics (Maxwell’s equations of electromagnetism, Newton’s law of graviation, Einstein’s

field equations, the mass-energy equivalence, and so on) describe such invariant rela-

tionships. While such mathematical invariants or identities are rarer in the behavioural

sciences, recent work has identified three identities that appear to hold in people’s intuitive

probabilistic reasoning: the ‘QQ’ (‘Quantum Question’) identity (Wang and Busemeyer,

2013, Wang et al., 2014), the addition law identity (Costello and Watts, 2014, Fisher and

Wolfe, 2014), and the Bayes rule identity (Fisher and Wolfe, 2014, Costello and Watts,

2016a). Each identity describes a constant relationship that holds between different prob-

abilistic judgements, and each represents specific agreement with the requirements of

classical probability theory in those judgements. Strikingly, these identities or invariants

hold in people’s intuitive judgements of probability despite the presence of strong biases,

or systematic deviations from the requirements of probability theory, in those very same

judgements.

The fact that these mathematical identities appear to hold in people’s probabilistic

judgement (alongside patterns of systematic bias in those same judgements) has important

implications for our understanding of how people reason about probability. It suggests

that people judge probability in a way that follows some sort of formal, mathematical

process that causes systematic biases in judgement whose values cancel each other out

in particular invariant relationships. Indeed, these patterns of systematic bias alongside

invariant identities are predicted by two competing formal models of probabilistic rea-

soning. One model, based on noisy frequentist probability, predicts the addition law and

Bayes rule identities (Costello and Watts, 2014, 2016a) while the other, based on quantum
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probability, predicts the QQ identity (Wang and Busemeyer, 2013, Wang et al., 2014). In

this paper we ask whether either of these models are able to account for all three invariant

identities. In the first section we explain the QQ, addition law and Bayes rule identities.

In the second section we present the quantum probability model and show that, while this

model predicts the QQ identity, it is fundamentally unable to account for addition law and

Bayes rule identity results. In the third section we present the ‘probability theory plus

noise’ model and explain how it predicts the addition law and Bayes rule identity results.

We also describe how priming effects in this model allow it to explain the QQ identity and

to make some novel predictions connected to that identity (predictions that are supported

by experimental results). In the fourth section we draw some general conclusions.

2 Identities in probabilistic reasoning

In presenting the addition law, Bayes rule and QQ identities we use the following nota-

tion, derived in part from quantum probablity theory. We take P (A) to represent the

normatively correct probability of event A. We take A to represent a question about

the occurrence or non-occurrence of A: in the language of quantum probability, A is an

‘observable’ that returns either A or ¬A. The QQ identity is an invariant that relates

answers to questions presented in different sequential orders. For tasks involving question

ordering, we consider two possible orderings represented as AB (first a question about A,

then a question about B) or BA (first a question about B, then a question about A). We

take PAB(A) to represent the subjective estimated probability of A in the first ordering

(the probability of getting a ‘yes’ answer to the question A when A is asked first and B

is asked second). We take PBA(A) to represent the subjective estimated probability of A

in the second ordering (the probability of getting a ‘yes’ answer to the question A when

B is asked first and A second). We take P∗(A) to represent the subjective estimated
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probability of A when order is irrelevant (when A and B do not occur sequentially)1.

Since a subsequent presentation of question B cannot affect the results obtained from

a prior presentation of question A (time travel is not allowed!), P∗(A) = PAB(A) and

P∗(B) = PBA(B).

2.1 The QQ identity

Consider a situation where people are asked yes-no questions in two alternative orders

AB or BA. This situation is commonly seen in polls; for example, in a Gallup poll

conducted in September 1997, half of participants were asked the question “Do you think

Al Gore is honest and trustworthy?” followed immediately by the question “Do you think

Bill Clinton is honest and trustworthy?”, while the other half of participants were asked

the same questions in the reverse order (Moore, 2002). A noticable pattern of bias in such

situations is that people’s answers for a given question are often strongly influenced by the

order of question presentation: the probability of a ‘yes’ answer to question A when that

question comes first can be significantly different from the probability of a ‘yes’ answer

when question A is preceded by question B ( PAB(A) 6= PBA(A)). In the Clinton-Gore

questions, for example, 76% of participants answered ‘yes’ to the Gore question when

it was asked first (the AB order; PAB(A) = 0.76), while 66% answered yes when that

question was asked second, after the Clinton question (the BA order; PBA(A) = 0.66):

the prior presentation of the Clinton question produced a bias, reducing the likelihood of

a ‘yes’ answer to the Gore question. These order effects occur both in polls on a range of

different topics (Moore, 2002) and in similar experimental studies (Wang and Busemeyer,

2013, Wang et al., 2014).

1In previous work we’ve used PE(A) to represent this subjective estimated probability of A. We use
the P∗(A) notation here to stress the fact that this represents a subjective estimate in situations where
ordering is irrelevant.
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Simultaneously, however, results (both from experimental studies and from poll data)

show that the following identity tends to hold reliably in such sequential question answer-

ing:

PAB(A ∧B) + PAB(¬A ∧ ¬B)− PBA(A ∧B)− PBA(¬A ∧ ¬B) = 0

(this expression has a value of −0.003 in answers to the Clinton-Gore questions, for

example). This represents unbiased agreement with the requirements of probability theory

(in which, of course, the probability of a conjunction A∧B does not depend on the order of

the events within the conjunction). This identity appears to hold for all such consecutive

questions, despite significant order effects for the same set of question answers. This

identity holds for questions across a wide range of different topics in 72 different national

representative surveys in the US, and in laboratory studies of the effects of order in

question answering (Wang et al., 2014). This identity does not appear to hold when

questions are not consecutive.

To connect the QQ identity more closely to order effects in sequential judgement, we

rewrite it in the form

PAB(A ∧B)− PBA(A ∧B) = −[PAB(¬A ∧ ¬B)− PBA(¬A ∧ ¬B)] (1)

This identity reveals an interesting pattern in the effects caused by question ordering: the

contextual order effect observed when taking the difference between the probability of

answering ‘yes’ to both questions in the order AB and the probability of answering ‘yes’

to both questions the order BA is equal to the negative of the contextual order effect

observed when taking the difference the probability of answering ‘no’ to both questions in

the order AB and the probability of answering ‘no’ to both questions the order BA. A

scatterplot of values of the probability differences on the left and right sides of Equation 1,

for the 72 studies analysed by Wang et al. (2014), is shown in Figure 1: as the scatterplot
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examine this issue for all 72 studies. For any observed table of
context effects, we can bound the q value by the size of the order
effect. Recall that we defined the size of the order effect in terms
of the diagonal with the larger summed absolute values of con-
text effects (e.g., 0.15 for Clinton–Gore and 0.22 for white–
black). The q value can possibly equal but cannot exceed the size
of the order effect defined in this manner (SI Text). If the order
effect is close to zero, then the q value must also be close to zero,
and sampling estimation error for both will cause them to be
approximately equal in size, so the q test is only interesting when
the order effects are well above zero. The relation between the
q value and the order effect can be described by their ratio: size
of the q value/size of the order effect. Because of the sampling
error, this ratio will necessarily be close to 1 when the order
effect is very small, but if the QQ equality holds, then this ratio
should drop to zero as the size of the order effect increases. Fig. 1,
Right plots this ratio for the 17 studies that produced an order effect
greater than 0.10. As predicted by the QQ equality and shown in the
figure, this ratio starts well below 1.0 when the order effect is small
and drops toward zero when the order effect becomes large; over
the entire range, the q value remains small.
Fig. 1 may provide a compelling illustration, but it does not

substitute for an appropriate statistical test of the null hypothesis
that the expectation of the q values is zero. We exclude the four
national surveys that were specifically selected from previous
studies because they found question order effects (although in-
cluding them does not change our conclusions below; SI Text);
and we analyze the distributions of χ2 statistics for order effects
and q values from the remaining 66 Pew surveys that were se-
lected without any bias for either test. As described before, these
include all of the datasets available from Pew in the past decade
that manipulated the order of two questions. On the one hand,
the χ2 distribution test for order effects produced a significant
deviation from the null hypothesis (p = 0.0004); on the other
hand, the χ2 distribution test for the q values indicates no sig-
nificant deviation from the null hypothesis (p = 0.4625) (see SI
Text for detail on the χ2 tests). Taken together, these results
show that across all 66 Pew datasets, there are significant ques-
tion order effects, and the QQ equality holds as predicted.
In summary, we have presented strong evidence that context

effects produced by the order of questions satisfy the QQ
equality predicted by quantum theory: (i) The context effect
from one cell of a diagonal is negatively correlated with that
from the other cell; (ii) the q value remains small even as the size
of the context/order effect increases; (iii) the q values do not
differ significantly from zero as tested by a large set of national
survey data on various topics collected in the past decade. We do

not know of any existing cognitive constraints that would pro-
duce these symmetrical results for context effects. It is possible to
construct a model that is narrowly constrained to satisfy the QQ
equality, but these constraints could also prevent the model from
accounting for order effects (see SI Text for two such examples,
one based on a model that assumes a probability of repeating the
first choice, and another that assumes an anchoring-adjustment
process). What is needed is a general theory for question order
effects that satisfies the QQ equality constraint. We hope that these
findings prompt researchers to look for alternative accounts. In any
event, we turn next to the basis for the quantum theory prediction.

Quantum Model of Measurement Order Effects
The discovery of the QQ equality was not an accident. This law
was predicted a priori from a quantum probability model of
human judgment (5). The model is simple and intuitive, and the
derivation for the test is general and parameter free. We begin
with a cognitive-process interpretation of the theory and later
present it formally. (See ref. 3 for a general introduction to
quantum probability applied to cognition and decision.)
The general idea may be stated in the following way. The

knowledge that a person has and uses to answer questions can be
represented as a very high multidimensional space, H. This space
can be described by a set of orthogonal axes (technically termed
“basis vectors” below) that is chosen to answer the questions.
Many cognitive theories represent knowledge as a vector of fea-
ture values, and one can think of the axes in these terms. For
example, if features are binary and there are 100 relevant features,
then each of the 2100 axes can be used to represent a different
pattern of ones and zeros where a 1 represents presence and a
zero represents absence of that feature (e.g., ref. 8). A person’s
beliefs about events are represented by a unit length vector,
generally at an oblique angle with respect to these axes. The
projection of the belief vector onto an axis can be described as
a belief that a feature is present. H does not change with the
question asked or with the context in which the question occurs,
but the way the knowledge in H is used changes with both fac-
tors. Of course, not all of the knowledge in H is needed to answer
a given question, and the knowledge that is to be considered
for answering a given question, A, is a subspace, SA, of H. The
knowledge used to answer another question, B, is represented
by another subspace, SB, which generally is of different di-
mensionality and is not necessarily aligned with the axes chosen
to describe SA. For example, if H is represented by a cube and SA
is the square plane on the bottom of the cube, then SB could be
another plane containing the cube’s major diagonal. Finally, the
probability of affirming an answer is determined by the square of
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Fig. 1. Empirical demonstration of the QQ equality. Left shows the context effect from one diagonal cell plotted against the context effect from the other
cell within the same diagonal. The QQ equality is satisfied when the data points fall on the predicted line with the intercept of 0 and the slope of −1 (shown
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Figure 1: Scatterplot of contextual order effects for the 72 studies in Wang et al. (2014).
Each point represents one of these studies, with the x-axis giving the difference between
the probability of answering ‘yes’ to both questions A, B in the order AB and the
probability of answering ‘yes’ to both questions in the order BA. This first contextual
order effect is equal to the probability difference PAB(A ∧ B) − PBA(A ∧ B) for that
study. The y-axis gives the difference between the probability of answering ‘no’ to both
questions in the order AB versus the probability of answering ‘no’ to both questions in
the order BA. This second contextual order effect is equal to the probability difference
PAB(¬A∧¬B)−PBA(¬A∧¬B) for that study. The quantum probability model predicts
that these points will fall along a line with intercept 0 and slope −1 (solid line in the
Figure). This image is taken from Wang et al. (2014).

shows, these differences are related as in Equation 1.

While this QQ identity is stated in terms of the probabilities of binary choices (the

probability of answering ‘yes’ or ‘no’ to a given question), recent work has tested a very

similar QQ identity in probability estimation (Yearsley and Trueblood, 2017). In a study
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examining people’s judgements of the probability of various candidates winning the Demo-

cratic or Republican nomination (N) for president in the 2016 US elections given that

they had won or lost two primaries A and B, Yearsley and Trueblood (2017) found a reli-

able effect of order of presentation such that P (N |A,B) 6= P (N |B,A) (that is, such that

the probability of a candidate winning the nomination given that they had won primary

A and primary B, presented in that order, was reliably different from the probability of

the candidate winning the nomination given that they had won primary B and primary

A presented in that order). Despite this order effect, however, Yearsley and Trueblood

(2017) also found that the following version of the QQ identity

PAB(N |A ∧B) + PAB(N |¬A ∧ ¬B)− PBA(N |A ∧B)− PBA(N |¬A ∧ ¬B) = 0

held in probability estimates, on average (where, for example, PAB(N |A ∧ B) represents

the probability of N given that A and B hold and they are presented in the order AB).

This general pattern, of bias due to order of question presentation (PAB(A) 6= PBA(A))

combined with simultaneous agreement with the QQ identity, is predicted by a model

of reasoning based on quantum probability (Wang and Busemeyer, 2013, Wang et al.,

2014). The fact that this QQ identity appears to hold for consecutive questions, despite

significant order effects for the same set of questions, and has been seen as providing

‘the strongest form of support [for the quantum probability model] because its prediction

is not dependent on parameter choices-other applications of quantum theory to human

cognitive depend on choosing parameter values to best fit data’ (Wang et al., 2014)

2.2 The Addition Law identity

Probability theory requires that certain identities must hold for probability estimates

involving any pair of events A and B. One such identity is the addition law, which
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requires that

P (A) + P (B)− P (A ∧B)− P (A ∨B) = 0 (2)

must hold for all events A and B. Two other ‘expansion’ identities require that

P (A ∧B) + P (A ∧ ¬B)− P (A) = 0 (3)

and

P (A ∧B) + P (¬A ∧B)− P (B) = 0 (4)

must hold for all events A and B. The addition law identity follows from the rules of set

intersection and union represented by the A ∧ B and A ∨ B terms; the two expansion

identities follow from the fact that a given set of eventsA consists of two mutually exclusive

subsets: the set of events A ∧B, and the set of events A ∧ ¬B.

Consider an experiment where we ask people to estimate various probabilities P (A),

P (B), P (A ∧ B), P (A ∨ B), P (A ∧ ¬B), P (B ∧ ¬A) for a range of different events A

and B, and combine those estimates as in the various identities. In such experiments we

find two interesting patterns. First, when we combine people’s probability estimates for

a given pair of events A,B as in the addition law identity, the average value obtained

is equal to, and symmetrically distributed around, probability theory’s required value of

0. Second, when we combine the same estimates for the same events A,B as in the two

expansion identities, the average value is not equal to 0; instead, the average value is

positive and is similar for both of these expansion identities. In other words, people’s

probability estimates reliably agree with probability theory for the addition law identity,

while simultanously deviating from probability theory for the two expansion identities.

Table 1, for example, shows average values for these identities from two experiments in

Costello and Watts (2016a) and from a study by Fisher and Wolfe (2014): in this table
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Figure 2: Scatterplot of individual values for the positive and negative terms of the
addition law identity, for all individual pairs A,B and all participants in Experiments 1
and 2 of Costello and Watts (2016a). Each point represents on the x-axis the sum of a
single participant’s estimates for P (A∧B) and P (A∨B) for a single pair for events A,B
(the negative terms in that identity), and on the y-axis the sum of the same participant’s
estimates for P (A) and for P (B) for the same events (the positive terms in that identity).
There are 498 individual x,y pairs here in total: the correlation between x and y values
(between positive and negative terms in the identity) was r = 0.82, p < 0.00000001.
The dashed line represents the line of equality, and indicates the relationship required by
normative probability theory. The line of best fit to the data (solid) was obtained via
Deming regression, which accounts for error in observations on both the x- and y-axes.

we see that the average value for the addition law identity (identity 1 in the table) is very

close to 0, while the average values for the two expansion identitites (identities 2 and 3 in

the table) are positive and have similar values).

This agreement with the addition law doesn’t just hold when averaging across events:

it also holds separately for each individual pair of events A and B, and they hold when A
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and B are familiar everyday events (e.g. different types of weather), when A and B refer

to the occurrence of different types of disease in certain populations, when A and B refer

to future political or economic outcomes, or when A and B refer to various personality-

description scenarios (Costello and Watts, 2014, Costello and Mathison, 2014, Costello

and Watts, 2017, 2016b, Fisher and Wolfe, 2014, Costello and Watts, 2016a). To illustrate

this, Table 2 shows average values for the addition law identity for each of the 16 different

event pairs used in (Costello and Watts, 2016a): average values are close to 0 for almost

all event pairs.

These results show that people’s probability estimates, when put together in the form

of the addition law identity, agree with the requirements of normative probability the-

ory both when averaged across event pairs (Table 1) and when averaged with in a single

event pair A and B (Table 2). This agreement holds despite reliable deviation from the

requirements of normative probability theory for the two ‘expansion’ identities. These

results do not, however, show that this agreement with the addition law holds in individ-

ual participant’s responses. To demonstrate this agreement in individual responses, we

constructed a scatterplot of individual values for the positive and negative terms of the

addition law identity, for all individual pairs A,B and all participants in Experiments 1

and 2 of Costello and Watts (2016a). Each point in this scatterplot represents on the

x-axis the sum of a single participant’s estimates for P (A∧B) and P (A∨B) for a single

pair for events A,B (the negative terms in that identity), and on the y-axis the sum of

the same participant’s estimates for P (A) and for P (B) for the same events (the positive

terms in that identity). If agreement with the addition law held reliably in participant’s

individual responses, we would expect points in this scatterplot to be distributed around

the ‘line of equality’ (the line with intersept 0 and slope 1). Figure 2 shows this scat-

terplot. As this figure shows, the relationship follows and is distributed symmetrically
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around the line of equality, indicating that the addition law identity does hold in individ-

ual probability estimates (with symmetrical deviations due to random error in individual

responses). A JZS Bayes Factor analysis based on a paired t-test of x, y values in this

scatterplot gave strong evidence in favour of the null hypothesis that x and y values were

equal (Scaled JZS Bayes Factor = 19.85), supporting the conclusion that the addition law

identity holds in individual participant probability estimates.

2.3 The Bayes rule identity

The addition law identity applies to direct or marginal probabilities. Similar results hold

for identities that involve conditional probabilities. One identity involving conditionals is

the additive form of Bayes rule, which requires that

P (B|A)P (A)− P (A|B)P (B) = 0 (5)

must hold for all events A and B. Two parallel ‘Bayes expansion’ identities require that

P (A ∧B)− P (A|B)P (B) = 0 (6)

and

P (A ∧B)− P (B|A)P (A) = 0 (7)

must hold for all events A and B. These identities all follow from the conditional proba-

bility definition

P (A|B) =
P (A ∧B)

P (B)
provided P (B) > 0

Again, consider an experiment where we ask people to estimate various probabilities

P (A), P (B), P (A ∧ B), P (A|B),P (B|A) and so on for a range of different events A and

B, and combine those estimates as in the various identities. In such experiments we find
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Figure 3: Scatterplots of individual values for the positive and negative terms of the
Bayes rule identity, from all participants in Experiments 1 and 2 of Costello and Watts
(2016a). Each point point represents on the x-axis the product of a single participant’s
estimates for P (A|B) and P (B) for a single pair for events A,B (the negative term in that
identity), and on the y-axis the product of the same participant’s estimates for P (B|A)
and P (A) for the same events (the positive term). There are 498 individual x,y pairs here
in total: the correlation between x and y values was r = 0.81, p < 0.00000001. The dashed
line represents the line of equality, and indicates the relationship required by normative
probability theory. The lines of best fit (solid) was obtained via Deming regression, which
accounts for error in observations on both the x- and y-axes.

patterns that follow those for the addition law identity. First, when we combine people’s

probability estimates as in the Bayes rule identity, the average value obtained is equal to,

and symmetrically distributed around, probability theory’s required value of 0. Second,

when we combine the same estimates for the same events A,B as in the two Bayes expan-

sion identities, the average value is not equal to 0; instead, the average value is positive
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(typically around 0.12, half the value seen for expansion identities in Equations 3 and 4)

and is similar for both of these expansion identities (see Table 1). Finally, as with the

addition law identity, agreement with the Bayes rule identity holds both in averages across

event pairs (see Table 1), in averages within individual event pairs (see Table 2). The

identity also holds in individual responses, as demonstrated by the scatterplot in Figure

3; as before, a JZS Bayes Factor analysis based on a paired t-test of x, y values in this

scatterplot gave strong evidence in favour of the null hypothesis (Scaled JZS Bayes Factor

= 19.85), supporting the conclusion that the identity holds in participant’s probability

estimates. Taken together, these results demonstrate that people’s probability estimates

reliably agree with probability theory for the Bayes rule identity, while simultanously

deviating from probability theory for the two Bayes expansion identities.

All of these patterns, of agreement with the addition law identity and the Bayes rule

identity and simultaneous violation of the expansion identities (with approximately the

same positive value for identities in Equations 3 and 4 and approximately half that value

for identities in Equations 6 and 7), are predicted to hold in the probability theory plus

noise model. The model predicts similar patterns of agreement and bias for a number of

similar identities (predictions which are confirmed in experimental results; see e.g. Costello

and Watts, 2014, 2016a). Confirmation of these predictions has been taken as evidence

that the probability theory plus noise model ‘may provide a fully general account of the

mechanisms by which people estimate probabilities’ (Costello and Watts, 2016a).

3 The quantum probability model

The quantum probability model (Busemeyer et al., 2011, Busemeyer and Bruza, 2012,

Wang and Busemeyer, 2013, Wang et al., 2014) assumes that people’s probabilistic rea-

soning follows the mathematical rules used to calculate event probability in quantum
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theory. A fundamental aspect of quantum theory is that the probability of two quan-

tum events can depend on the order in which those events are measured. This order

dependence allows the quantum probability model to address various order effects seen in

people’s sequential inference and judgement.

Probability has a geometric interpretation in quantum theory, based on the projection

of state vectors. We avoid this geometric interpretation here and instead focus on present-

ing various results on how quantum probability agrees with, and deviates from, standard

probability theory. In quantum probability, an observable defines the set of all possible

distinct outcomes for a given measurement: the set of possible answers to the question

represented by that measurement. The primary theoretical distinction between quantum

and standard probability lies in the idea of ‘compatible’ or ‘incompatible’ observables.

Two observables are compatible if both observables can be measured simultaneously. If

two observables are compatible, quantum probability theory reduces exactly to standard

probability theory in all cases. This means that if two observables are compatible then

all the probability theory identities described above have a value of 0, and there are no

order effects in judgement.

Incompatible observables, by contrast, cannot be measured simultaneously, and mea-

surement outcomes depend on the order of measurement. If all probabilities are measured

with the same ordering then again quantum probability theory reduces exactly to stan-

dard probability theory (if all probabilities are of the form PAB()̇, for example, then all

relationships between those probabilities match the requirements of standard probability

theory and all probability theory identities hold). If probabilities are measured with dif-

ferent orderings, however, then quantum probability deviates from standard probability,

producing biases in judgement and order effects in sequential question answering such

as PAB(A) 6= PBA(A), PBA(B) 6= PAB(B) and PAB(A ∧ B) 6= PBA(A ∧ B). In our
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presentation of the quantum probability model we represent these order effects as

δA = PAB(A)− PBA(A)

δB = PBA(B)− PAB(B)

δA∧B = PAB(A ∧B)− PBA(A ∧B)

Each of these represents a ‘quantum interference’ term for A, B or A ∧ B. These inter-

ference terms arise from the geometric relationship between the current state vector, the

vector representing the observable A and that representing the observable B. Note that

these quantum interference expressions are not error terms: for given observables B and A

(and a given state, in quantum thory; or a given participant, in the quantum probability

model) these terms have a fixed values that represented the difference between probabil-

ities when measured in different orders. The quantum interference term δA, for example,

has a fixed value that specifies the relationship between PBA(A) (the probability of A

when estimated immediately after presentation of B) and PAB(A) = P∗(A) (the proba-

bility of A when estimated without prior presentation of B). These quantum interference

terms can take on different values for different observables (and different participants): in

some cases positive, in some negative, and in some cases 0.

It is important at this point to make a distinction between quantum probability applied

as a model of choice (a model of how people choose to answer ‘yes’ or ‘no’ to consecutive

questions in, for example, QQ identity question tasks) and quantum probability applied

as a model of probability estimation (a model of how people produce an estimate of the

probability of a given event, as in the addition law and the Bayes rule tasks). In applying

the quantum model to a choice situation involving consecutive questions A and B (as

in QQ identity question tasks), theorists take quantum probabilities such as PAB(A) to

represent the probability of a participant answering ‘yes’ to question A (see e.g. Wang

and Busemeyer, 2013, Wang et al., 2014). Here the quantum probability represents the
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chance of a given response, rather than a participant’s probabilistic judgement about the

event in question: so that PAB(A) represents the probability of a participant answering

‘yes’ to a question about Clinton being trustworthy when that question is asked first, but

PAB(A) does not represent a specific participant’s individual estimate of the probability

that Clinton is trustworthy. When taking this view, quantum probabilities such as PAB(A)

are in some way ‘ensemble’ properties: they apply to the set of participants taking part

in a given question-answering task, rather than to each participant individually.

In applying the quantum model to situations involving probability judgement (that

is, situations where participants are asked to estimate the probability of some event A),

by contrast, theorists assume that the quantum probability PAB(A) does represent an

average participant’s estimate or judgement of the probability of A. We can see this

aspect of the quantum model most clearly in the model’s application to the well-known

conjunction fallacy, which arises when individual participants reliably judge the probabil-

ity of a conjunctive event A ∧B to be higher than the probability of a constituent event

A(Tversky and Kahneman, 1983). One arguments in favour of the QP approach has been

its ability to explain this fallacy in terms of differential quantum interference effects for

the single probability PAB(B) and the conjunctive probability PAB(A∧B): a result that

can only hold if quantum probabilities such as PAB(B) and PAB(A ∧ B) are assumed to

represent people’s probability estimates, rather than the chance of a given response in a

choice situation (see e.g. Busemeyer et al., 2011). We see a similar approach in research

investigating order effects in probability judgement, where participants are given, for ex-

ample, a sequence of facts about a criminal case case and asked to estimate, after each

new piece of information, the probability of the defendant being guilty. The quantum

probability model gives an accurate computational fit to differences in people’s probabil-

ity estimates depending on the order of presentation of information in such studies: a
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result that can only hold if, as before, quantum probabilities are assumed to represent

people’s probability estimates (see, e.g. Trueblood and Busemeyer, 2011). Finally, Years-

ley and Trueblood’s recent work makes this link explicit, by using the quantum model to

predict agreement with a version of the QQ identity in subjective probability estimates

(as discussed above).

This link between probability in choice tasks and probability in estimation tasks is,

of course, psychologically plausible (it is reasonable to think that the chance of someone

responding ‘yes’ to a question about a given statement in a choice task is proportional to

their judgement of the likelihood of that statement being true). We stress this link explic-

itly here because it is necessary for our application of the quantum model simultaneously

to the QQ, addition law, and Bayes rule identities, below, since the first identity arises in

choice tasks, while the second and third arise in probability estimation tasks. We return

to this topic in the General Discussion below.

3.1 The addition law

The addition law identity applies in cases where questions are not presented in a particular

sequential order (AB or BA) but are order independent. In this situation there are no

order effects for simple probabilities (the probability of A is P∗(A) = PAB(A) and that

of B is P∗(B) = PBA(B)). Since in quantum probability incompatible observables must

be measured in a particular order, however, order effects for incompatible observables

still apply when people are asked to estimate conjunctive or disjunctive probabilities

such as P (A ∧ B), P (A ∧ ¬B) or P (A ∨ B). For such conjunctions or disjunctions the

quantum probability model assumes a particular characteristic ordering for observables

that depends on the causal link between those observables, or possibly on the values of

the simple probabilities P (A) and P (B). Complex probabilities such as P (A ∧ B) are
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estimated using this characteristic ordering. This means that the relationship between a

simple probability P (A) and the conjunctive probabilities P (A ∧B) and P (A ∧ ¬B) will

depend on this characteristic ordering. When the characteristic ordering of observables

for conjunctions is AB, the relationship between estimates for P (A) and estimates for

P (A ∧B) and P (A ∧ ¬B) will be

P∗(A) = PAB(A) = PAB(A ∧B) + PAB(A ∧ ¬B) (8)

as in standard probability theory (since the ordering of observables is the same for all three

probabilities in this expression, quantum probability reduces to standard probability in

this case). When the characteristic order of observables for conjunctions is BA, however,

the relationship between estimates for P (A) and estimates for P (A ∧B) and P (A ∧ ¬B)

will be

P∗(A) = PAB(A) = PBA(A) + δA

= PBA(A ∧B) + PBA(A ∧ ¬B) + δA

(9)

with the first line arising from the definition of δA, and the second line arising from

the fact that PBA(A), PBA(A ∧ B) and PBA(A ∧ ¬B) are all measured in the same

ordering (and so the requirements of standard probability theory hold and so PBA(A) =

PBA(A ∧ B) + PBA(A ∧ ¬B)). Parallel results, of course, arise for the probability of B:

when complex probabilities are measured in the ordering BA we get

P∗(B) = PBA(B) = PBA(A ∧B) + PBA(¬A ∧B) (10)

as in standard probability theory, but when complex probabilities are measured in the

ordering AB we get

P∗(B) = PBA(B) = PAB(B) + δB

= PAB(A ∧B) + PAB(¬A ∧B) + δB

(11)
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We can use these expressions for P∗(A) and P∗(B) to derive the quantum probability

model’s predictions for values of the addition law identity (Equation 2) and for the two

expansion identities (Equations 3 and 4) in three separate situations: where observables

are compatible, where the characteristic ordering of observables is AB, and where the

characteristic ordering is BA. The first three lines of Table 1 shows these predictions.

Recall that experimental results show that the addition law identity has a value of ap-

proximately 0 in people’s probability judgements, while the two expansion identities have

approximately the same positive value. From Table 1 we see that, if observables are com-

patible, all three identities have a predicted value of 0 (contrary to experimental results).

If observables are measured in the order AB, one expansion identity has a predicted value

of 0 and the addition law and the other expansion identity have the same values, devi-

ating from zero by δA (contrary to experimental results). If observables are measured in

the order BA, the other expansion identity has a predicted value of 0 and the addition

law and the first expansion identity have the same values, deviating from zero by δB

(again, contrary to experimental results). The quantum probability model’s predictions

are inconsistent with the experimental results in all three situations: the quantum model

cannot account for these results.

3.2 Bayes rule identity

In quantum probability theory a conditional probability P (A|B) is necessarily measured

in the order BA (with the given event A occurring first and the conditional event B

occurring after). This means that the relationships

PBA(A ∧B) = P (A|B)PBA(B) = P (A|B)P∗(B) (12)

PAB(A ∧B) = P (B|A)PAB(A) = P (B|A)P∗(A) (13)
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necessarily hold in quantum probability (since the probabilities in these expressions are

all measured in the same order, and so follow the requirements of probability theory). If

observables A and B are compatible, there are no order effects and so we have

P (B|A)P∗(A)− P (A|B)P∗(B) = PBA(A ∧B)− PAB(A ∧B) = 0

as in standard probability theory. If observables are incompatible, however, we get

P (B|A)P∗(A)− P (A|B)P∗(B) = PBA(A ∧B)− PAB(A ∧B) = δA∧B

The quantum probability model thus predicts a value of 0 for the Bayes rule identity

only when observables are compatible (that is, when there are no order effects), while for

incompatible observables, the quantum model predicts a value for the Bayes rule identity

equal to δA∧B.

We can derive similar predictions for the ‘Bayes expansion’ identities (Equations 6 and

7 ) in three separate situations: where observables are compatible, where the characteristic

ordering of observables is AB, and where the characteristic ordering is BA. The last three

lines of Table 1 shows the predictions for these three identities. Recall that experimental

results show that the Bayes rule identity has a value of approximately 0 in people’s

probability judgements, while the two Bayes expansion identities have approximately the

same positive value. From Table 1 we see that, if observables are compatible, all three

identities have a predicted value of 0 (contrary to experimental results). If observables

are measured in the order AB, one expansion identity has a predicted value of 0 and

the Bayes rule and the other expansion identity have the same values, deviating from

zero by δA∧B (contrary to experimental results). If observables are measured in the order

BA, the second Bayes expansion identity has a predicted value of 0 and the Bayes rule

and the other expansion identity have values that both deviate from zero by δA∧B but

with opposite signs (again, contrary to experimental results). The quantum probability
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model’s predictions are inconsistent with the experimental results in all three situations:

again, the quantum model cannot account for these results.

3.3 The ‘QQ’ identity

Unlike the addition law and Bayes rule identities, the QQ identity applies specifically

to cases where questions are presented in a given sequential order (AB or BA). The

order effects for incompatible observables in the quantum probability model imply that if

participants are asked to answer sequential questions about incompatible observables A

and B, then PAB(A∧B) (the probability of a ‘yes’ answer to both questions when the order

is AB) will be different from the probability PBA(A∧B) (the probability of a ‘yes’ answer

to both questions when the order is BA), with this difference being represented by the

interference term δA∧B. A necessary mathematical consequence of quantum probability

is that exactly the same order effects apply to conjunctive probabilities PBA(¬A ∧ ¬B)

and PAB(¬A ∧ ¬B), and so we have

PAB(A ∧B)− PBA(A ∧B) = δA∧B = PBA(¬A ∧ ¬B)− PAB(¬A ∧ ¬B)

and therefore the QQ identity holds for events A and B in the quantum probability model

(see Wang and Busemeyer, 2013, Wang et al., 2014, for proofs). By symmetry we have

parallel agreement between order effects

PAB(A ∧ ¬B)− PBA(A ∧ ¬B) = PBA(¬A ∧B)− PAB(¬A ∧B)

Wang et al. (2014) estimate the size of the overall order effect in each of their 72 different

polls or experimental studies via the overall order effect measure Z, where
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Z = max


|PBA(A ∧B)− PAB(A ∧B)|+
|PBA(¬A ∧ ¬B)− PAB(¬A ∧ ¬B)|

|PBA(A ∧ ¬B)− PAB(A ∧ ¬B)|+
|PBA(¬A ∧B)− PAB(¬A ∧B)|

(14)

The overall order effect for a given survey, as measured by this expression Z, is equal to

the summed absolute values of the order effects for A∧B and ¬A∧¬B, or for A∧¬B and

¬A ∧ B, whichever is greater. The greater the value of this measure for a given survey,

the larger the overall order effect in that survey. Wang et al. (2014) find statistically

significant order effects in most of these polls or studies, but reliable agreement with the

QQ identity. The fact that this QQ identity appears to hold simultaneously with such

order effects has been taken as clear evidence that ‘human judgements follow quantum

rules’ (Wang et al., 2014). In general, however, it seems that the quantum probabililty

model accounts for satisfaction of the QQ identity alongside the occurrence of reliable

order effects in sequential judgement, but is unable to account for addition law and Bayes

law results.

4 The probability theory plus noise model

The probability theory plus noise model assumes that people estimate probabilities via

a mechanism that is fundamentally rational (following standard frequentist probability

theory), but is perturbed in various ways by the systematic effects or biases caused by

purely random noise or error. This approach follows a line of research leading back at least

to Thurstone (1927) and continued by various more recent researchers (see, e.g. Dougherty

et al., 1999, Erev et al., 1994, Hilbert, 2012). This model explains a wide range of results

on bias in people’s direct and conditional probability judgements across a range of event

types, and idenifies various probabilistic expressions in which this bias is ‘cancelled out’
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and for which people’s probability judgements agree with the requirements of standard

probability theory (see Costello and Watts, 2014, Costello and Mathison, 2014, Costello

and Watts, 2017, 2016a,b).

In standard frequentist probability theory the probability of some event A is estimated

by drawing a random sample of events, counting the number of those events that are

instances of A, and dividing by the sample size. The expected value of these estimates

is P (A), the probability of A; individual estimates will vary with a binomial proportion

distribution around this expected value. Our model assumes that people estimate the

probability of some event A in exactly the same way: by randomly sampling items from

memory, counting the number that are instances of A, and dividing by the sample size. If

this process was error-free, people’s estimates would be expected to have an average value

of P (A) (and to vary randomly around that average, due to sampling error). Human

memory is subject to various forms of random error, however. To reflect this we assume

events have some chance d < 0.5 of randomly being read incorrectly: there is a chance

d that a ¬A (not A) event will be incorrectly counted as A, and the same chance d that

an A event will be incorrectly counted as ¬A. We take P∗(A) to represent P (read as A):

the probability that a single randomly sampled item from this population will be read as

an instance of A (subject to this random error in counting). Since a randomly sampled

event will be counted as A if the event truly is A and is counted correctly (this occurs

with a probability (1 − d)P (A), since P (A) events are truly A and events have a 1 − d

chance of being counted correctly), or if the event is truly ¬A and is counted incorrectly

as A (this occurs with a probability (1 − P (A))d, since 1 − P (A) events are truly ¬A,

and events have a d chance of being counted incorrectly), the population probability of a

single randomly sampled item being read as A is

P (read as A) = P∗(A) = (1− d)P (A) + (1− P (A))d = (1− 2d)P (A) + d (15)
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We now consider the process of probability estimation. We take p∗(A) to represent an

individual estimate of the probability of A, produced by randomly sampling some set of

events from memory and counting the proportion that are A (subject to random error in

reading an item as A). Since p∗(A) is the probability of an item being read as A, and since

these samples are drawn randomly, these estimates p∗(A) will vary randomly following

the binomial proportion distribution

Bin(N,P∗(A))

N

where N is the size of the sample drawn. Using 〈X〉 to represent the expected value of

some randomly varying variable X (the value we would get if we averaged an infinite

number of samples of that variable), a property of the binomial proportion distribution

is that 〈
Bin(N,P∗(A))

N

〉
= P∗(A)

for any sample size N . Given this, we take P∗(A) to represent the expected value of

estimates p∗(A) independent of sample size: the value we would get if we averaged an

infinite number of individual estimates p∗(A), each based on a sample drawn randomly

from a population with probability P (A) noise rate d, and with sample size varying across

samples. Let pi represent the probability of a sample being drawn with a particular size

N = i, and we have

〈p∗(A)〉 =
∞∑
i=1

pi

〈
Bin(i, P∗(A))

i

〉
=
∞∑
i=1

piP∗(A) = P∗(A)
∞∑
i=1

pi

Since the sum of probabilities pi across all sample sizes necessarily equals 1, we thus have

〈p∗(A)〉 = P∗(A) = (1− 2d)P (A) + d (16)
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This equation gives the expected value or predicted average for people’s estimates for the

probability of some event A: individual estimates will vary randomly around this expected

value in a binomial proportion distribution. Note that this predicted average embodies a

regression towards the center, due to random noise: estimates are systematically biased

away from the ‘true’ probability P (A), such that on average estimates will tend to be

greater than P (A) when P (A) < 0.5, and will tend to be less than P (A) when P (A) > 0.5,

and will tend to equal P (A) when P (A) = 0.5. This regression due to noise accounts for

a number of observed patterns of systematic bias in people’s probability estimates, such

as underconfidence, subadditivity, the conjunction fallacy, and the disjunction fallacy (see

Costello and Watts, 2014, 2017, 2016b).2

This model can also be extended to the estimation of conditional probabilities P (A|B)

(the probability of A given that B has occurred). Reasoning just as above, the model

predicts an expected value for the conditional probability P (A|B) of

P∗(A|B) =
(1− 2d)2P (A ∧B) + d(1− 2d) [P (A) + P (B)] + d2

(1− 2d)P (B) + d
(17)

and accounts for various observed patterns of bias in people’s conditional probability

judgement (see Costello and Watts, 2016a, for the derivation of this expression).

4.1 Addition law and Bayes rule identities

As well as accounting for various patterns of systematic bias, this model also makes

predictions about the values of various probability theory identities such as the addition

law and the Bayes rule identity. If we substitute the expected values from Equation 15

2In accounting for effects such as the conjunction fallacy, the noise model makes use of the standard
statistical assumption of ‘propagation of error’, which says that that noise rates for conjunctions and
disjunctions are slightly higher than rates for single events (rates of d for single events, rates of d + ∆d
for conjunctions and disjunctions; ∆d assumed to be small). For simplicity of presentation we don’t use
this ∆d term here: since ∆d is assumed to be small, it has very little influence on the model’s predictions
about values of the various identities. We describe the effect of this ∆d term on the addition law and
bayes rule identities in detail in Costello and Watts (2016a).
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into the addition law identity, for example, we get an expected value of

P∗(A) + P∗(B)− P∗(A ∧B)− P∗(A ∨B)

= (1− 2d)P (A) + d+ (1− 2d)P (B) + d

− (1− 2d)P (A ∧B)− d− (1− 2d)P (A ∨B)− d

= 0

and so this model predicts that this expression should have a value of 0 on average in

people’s probability judgements just as required by standard probability theory, and just

as seen in experimental results (Costello and Watts, 2016a, 2014, 2016b, 2017, Costello

and Mathison, 2014, Fisher and Wolfe, 2014). Similarly, if we substitute the expected

values from Equation 15 and Equation 17 into the Bayes rule identity, we get an expected

value of

P∗(B|A)P∗(A)− P∗(A|B)P∗(B)

= (1− 2d)2P (A ∧B) + d(1− 2d) [P (A) + P (B)] + d2

− (1− 2d)2P (A ∧B) + d(1− 2d) [P (B) + P (A)]− d2

= 0

and again the model predicts a value of 0, just as required by standard probability theory

and just as seen in experimental results (Costello and Watts, 2016a, Fisher and Wolfe,

2014).

Note that both the addition law and the Bayes rule identity, the probability theory plus

noise model predicts an average value of 0, as required by normative probability theory,

with individual values varying randomly and symmetrically around that value, due to

random noise. This is just the pattern we see with individual values for these identities

(see Figures 2 and 3). The model does not predict that every individual value for these

identities will equal 0 (this would be a very unreasonable prediction for a model which

gives a fundamental role to random noise). Agreement with probability theory for the
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addition law and the Bayes rule identity arises in this model despite significant regressive

bias due to random noise in individual probability estimates making up these expressions.

This is because in the addition law and Bayes rule expressions the various biases due to

random noise in those individual probability estimates all cancel out, leaving no overall

bias in the identity as a whole. For other probability theory identities, however, this model

predicts no cancellation of regressive effects. For example, substituting the expected value

expressions from our model into the first ‘expansion’ identity (Equation 3), we get

P∗(A ∧B) + P∗(A ∧ ¬B)− P∗(A)

= (1− 2d)P (A ∧B) + d] + (1− 2d)P (A ∧ ¬B) + d− (1− 2d)P (A)− d

= d

and, since the error term d is necessarily positive, our model predicts that values for this

identity, computed from people’s estimates, will have a reliably positive value. For the

second ‘expansion’ identity (Equation 4) we similarly get

P∗(A ∧B) + P∗(¬A ∧B)− P∗(B)

= (1− 2d)P (A ∧B) + d] + (1− 2d)P (¬A ∧B) + d− (1− 2d)P (B)− d

= d

and the model predicts the same positive value for both identities, again just as observed

in experimental results (Costello and Watts, 2014, 2017, Costello and Mathison, 2014,

and see Table 1).

For the two ‘Bayes expansion’ identities (Equation 6 and 7) we get

P∗(A ∧B)− P∗(A|B)P∗(B) = (1− 2d)P (A ∧B) + d− (1− 2d)2P (A ∧B)

− d(1− 2d)[P (A) + P (B)]− d2

= d(1− d)− d(1− 2d) [P (A) + P (B)− 2P (A ∧B)]
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and

P∗(A ∧B)− P∗(B|A)P∗(A) = (1− 2d)P (A ∧B) + d− (1− 2d)2P (A ∧B)

− d(1− 2d)[P (A) + P (B)]− d2

= d(1− d)− d(1− 2d) [P (A) + P (B)− 2P (A ∧B)]

Since probability theory requires that 0 ≤ P (A) + P (B) − 2P (A ∧ B) ≤ 1 for all A and

B, and since d < 0.5 by assumption, we see that

d2 ≤ d(1− d)− d(1− 2d) [P (A) + P (B)− 2P (A ∧B)] ≤ d(1− d)

and values for both these identities will be distributed between d2 and d(1−d) in a way that

depends on P (A) +P (B)− 2P (A∧B). The average value for P (A) +P (B)− 2P (A∧B)

(across uniformly distributed probabilities that are constrained to be consistent with

probability theory) is 0.5, and so the average value for this expression is equal to d/2,

the centerpoint of this range. The model thus predicts the same average positive value

for both these identities; a value that is half that for the first two expansion identities.

Again, this is just as seen in experimental results (Costello and Watts, 2016a, and Table

1).

While the probablity theory plus noise model can account for the observed addition

law, Bayes rule identity, and expansion identity results, the model gives no role to order

in probability estimation and so is unable to account for the QQ identity results. In

the next section we describe how this model can be extended to account for sequential

order effects in probability estimation, and show that this extension accounts both for

systematic bias due to order in probability estimates, and for simultaneous agreement

with the QQ identity.
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4.2 The QQ identity and order effects

The probability theory plus noise model, as presented above, assumes that in sequential

probability judgements where one judgement P (B) is immediately followed by another

judgement P (A), the value given for P (A) is not influenced by the prior value given for

P (B). Why does the noise model assume no influence between sequential probability

judgements? The basic cause is the assumption that people estimate some probability

P (A) by drawing a sample of items at random from memory, and counting the proportion

that are A. To allow sequential effects in the noise model, we can relax this assumption,

and say that the chance of a given item being sampled from memory is influenced by the

degree to which that item is already active: more active items in memory are primed,

and are more likely to be ‘randomly’ sampled than the less active items. Assume that

probabilities are estimated in the order B then A. Since the estimation of probability

P (B) involved drawing a sample of items and counting the proportion that are B, those

items that were counted as B are more active (are primed), and so are more likely to

be included in the ‘random’ sample of items drawn when estimating P (A). This idea,

that priming affects the sample drawn when estimating a probability, is consistent with

the idea that probability judgements are systematically influenced by various forms of

random noise or error: priming, here, becomes one particular form of random error that

causes judgements to vary from estimate to estimate.

Suppose that the chance of an already primed item being sampled is s. Also suppose

that P (B) has just been estimated in a previous sample: P∗(B) then represents the

proportion of items in that previous sample that were read as B. A sample is now drawn

to estimate P (A). Each item drawn to make up that new sample has a probability sP∗(B)

of coming from the primed set of items that were already read as B, and a probability

1− sP∗(B) of being drawn randomly from the set of all items in memory. For the sP∗(B)
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items in our sample that were previously read as B, the probability of one of those items

being read as A is P∗(A|B); this is the conditional probability of an item being read as

A, given that it was read as B. For the remaining items that were just sampled randomly

from memory, the probability of one of those items being read as A is simply P∗(A).

Given that we have just given an estimate for the probability P (B), then, the expected

value for an immediately following estimate for P (A) will be

PBA(A) = sP∗(B)P∗(A|B) + (1− sP∗(B))P∗(A) (18)

and, substituting from Equations 15 and 17 and simplifying we get

PBA(A) = P∗(A) + s(1− 2d)2[P (A ∧B)− P (A)P (B)] (19)

as the probability of answering ‘yes’ to a question A when that question comes immedi-

ately after a question B.

From Equation 19 we see that PBA(A) 6= P∗(A) and so PBA(A) 6= PAB(A) will hold

in this model in general, with the probability of a ‘yes’ answer to question A when

that question comes first being different from the probability of a ‘yes’ answer when

question A immediately follows question B. This model thus produces order effects in

question answering, just as seen in experimental data. The sequential order effect here is

proportional to the difference P (A ∧ B) − P (A)P (B). This difference will be positive if

B is positively associated with A (if A is more likely to occur given that B has occurred),

will be negative if A is negatively associated with B (if A is less likely to occur given B

has occurred), and there will be no such contextual effect if A and B are independent (if

the occurrence of B has no impact on the probability of occurrence of A).

Despite these order effects, the QQ identity also holds in this model. To see this,

consider that, since P∗(B) is the probability of answering ‘yes’ to a question B and
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PBA(A) is the probability of answering ‘yes’ to a question A that immediately follows a

question B, the probability of answering ‘yes’ to both questions when presented in the

order BA is

PBA(A ∧B) = P∗(B)PBA(A) = P∗(B)P∗(A) + P∗(B)s(1− 2d)2[P (A ∧B)− P (B)P (A)]

and the probability of answering ‘yes’ to both questions in the order AB is

PAB(S ∧B) = P∗(A)PAB(B) = P∗(A)P∗(B) + P∗(A)s(1− 2d)2[P (A ∧B)− P (B)P (A)]

and so

PBA(A ∧B)− PAB(A ∧B) = s(1− 2d)2[P (A ∧B)− P (B)P (A)][P∗(B)− P∗(A)] (20)

Using the same line of reasoning for the probability of answering ‘no’ to both questions,

we get

PAB(¬B∧¬A)−PBA(¬B∧¬A) = s(1−2d)2[P (¬B∧¬A)−P (¬B)P (¬A)][P∗(¬A)−P∗(¬B)]

Substituting from Equation 15 and rearranging we have

P∗(¬A)− P∗(¬B) = (1− 2d)[1− P (A)] + d− (1− 2d)[1− P (B)]− d

= P∗(B)− P∗(A)

and from standard probability theory we have

P (¬A ∧ ¬B)− P (¬A)P (¬B) = P (A ∧B)− P (B)P (A)

and so

PAB(¬A∧¬B)−PBA(¬A∧¬B) = s(1−2d)2[P (B∧A)−P (B)P (A)][P∗(B)−P∗(A)] (21)

giving

PAB(B ∧ A)− PBA(B ∧ A) = −[PAB(¬B ∧ ¬A)− PBA(¬B ∧ ¬A)]
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and this model satisfies the QQ identity. Note, however, that this derivation of the QQ

identity is in terms of probability estimates: it assumes that people’s sequential estimates

of probability will be subject to priming and cancellation effects such that the QQ identity

holds, on average, but does not say anything explicit about people’s responses in choice

tasks. To apply this model to the situation of sequential choice (sequential ‘yes/no’

answers, as in Wang et. al.’s QQ identity results), we link probability estimation and

choice by assuming that, to a first approximation, the chance of a given participant

answering ‘yes’ to a given question statement is simply proportional to that participant’s

judgement of the probability of that statement being true. Given this, the model predicts

satisfaction of the QQ identity in both probability estimation and choice tasks.

How does this account of the effect of priming on probability judgement in sequen-

tially ordered tasks connect to our earlier model of noisy probability estimation? This

account represents a more detailed description of one particular aspect of noise affecting

probability judgement. In our model we assume that noise in probability judgement has

many different sources: random error in counting, random error in sampling, response

error, and, indeed, priming effects: when items are presented in randomly varying order,

priming effects are simply another source of random variation. In situations were proba-

bility estimation questions are presented in random order, we represent all these sources

of random noise in terms of a single noise parameter d, as in the model presented earlier.

When items are presented in a particular sequential order, however, these priming effects

are no longer random but are controlled by the order of presentation; in such situations

we take the parameter d to represent the various remaining random effects, and use our

priming parameter s to represent the, now no longer random, effect of order on probability

estimation. This account of priming thus does not, strictly speaking, represent a modi-

fication of the probability theory plus noise model; instead it simply represents a more
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detailed elaboration of one specific factor influencing noise in probability judgement.

Given this account of priming in sequential order effects, the noise model can now

account for agreement with the addition law and Bayes rule identities in people’s proba-

bility estimation, alongside simultaneous violation of the two expansion identities in those

judgements, and can also account for agreement with the QQ identity in people’s sequen-

tial question answering, alongside simultaneous order effects in people’s question answers.

This model thus gives a general account for patterns of agreement with, and deviation

from, standard probability theory in probability estimation and in sequential question

answering.

It is worth noting that we are not alone in presenting an alternative account of the

QQ identity that do not depend on quantum probability effects: in a recent paper Kellen

et al. (2017) described a class of repeat-choice models that also predict the QQ identity.

In the next section we test a specific prediction derived from our priming-based account

of order effects in sequential question answering.

4.3 Predicting order effects in sequential question answering

Order effects arise when people’s answers for a given question are influenced by the order

of question presentation: when the probability of a ‘yes’ answer to question A when that

question comes first is significantly different from the probability of a ‘yes’ answer when

question A is preceded by question B ( PAB(A) 6= PBA(A)). The probability theory plus

noise model makes a specific prediction about the direction and magnitude of such order

effects. Rearranging Equation 18 we get

PBA(A)− PAB(A) = PBA(A)− P∗(A) = sP∗(B)P∗(A|B)− sP∗(B)P∗(A)

= sP∗(B)[P∗(A|B)− P∗(A)]
(22)
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(where, as before, s is the chance of an already primed item being sampled). Note that the

probability term on the right-hand-side here measures, in classical probability theory, the

degree of dependence between A and B. If we make the simplifying first-order assumption

that the parameter s is constant across questions, the noise model thus predicts that the

effect of question order on responses (PBA(A)− P∗(A)) will be reliably correlated, across

questions, with degree of dependence between A and B, P∗(B)[P∗(A|B)− P∗(A)]. There

will be no order effect, in the noise model, if A and B are independent (if P∗(A|B) =

P∗(A)). There will be a positive order effect (a ‘yes’ answer to question A being more

likely when presented after question B than otherwise) when A and B are positively

dependent, and a negative order effect (a ‘yes’ answer to question A being less likely after

question B than otherwise) when A and B are negatively dependent.

The quantum probability model, by contrast, doesn’t predict any specific direction

or magnitude for order effects. In the quantum model the order effect for A follows the

expression

PBA(A)− PAB(A) = −δA = 2PBA(A ∧B)− 2θ
√
P∗(B)

√
P∗(A)

for a parameter θ that depends on the relationship between the geometric vectors assumed

to represent A, B, and the current state (see Wang and Busemeyer, 2013, p. 697). This

parameter θ is a priori not known, is different for each pair of questions A and B, and

can only be estimated in terms of observed values for the order effect for those specific

questions (see Wang and Busemeyer, 2013, p. 698). This parameter cannot be used to

predict the sign or magnitude of the order effect (since its value must be estimated in

terms of that effect).

We can test the noise model’s prediction about the order effect in question answering

using the same dataset originally used by Wang et al. (2014) to show agreement with QQ
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identity3. This dataset gathers people’s sequential question answering responses across

a wide range of different topics in 72 different national representative surveys in the US

(with responses from typically around 800 participants per topic), and in laboratory stud-

ies of the effects of order in question answering (Wang et al., 2014). In this dataset we

measure the order effect for questions in each individual survey by calculating the differ-

ence between the probability of a ‘yes’ answer to survey question A when that question

was asked first, and the probability of a ‘yes’ answer to question A when it was asked

imediately after survey question B. We also calculate the three probability terms in our

measure of dependence on the right-hand-side in Equation 22: P∗(B) (the probability

of a ‘yes’ answer to survey question B when that question was asked first) P∗(A) (the

probability of a ‘yes’ answer to survey question A when that question was asked first) and

P∗(A|B) (the probability of a ‘yes’ answer to survey question A , given that a ‘yes’ answer

to question B has just been given). Combining these terms as on the right-hand-side in

Equation 22 to compute the measure of dependence between questions for each survey,

we find a reliable correlation between the order effect for questions and the measure of

dependence (r = 0.41, p = 0.0004), supporting the noise model’s prediction.

Following Wang et al. (2014), we also test this prediction by considering only those 17

surveys in this dataset where Wang et al.’s value Z (which measures the overall order effect

across all combinations of questions in the survey; see Equation 14) had a value greater

than 0.1. Wang et al. (2014) take this subset of surveys as showing the largest and most

reliable effects of order on question answering. For this subset we again find a significant

correlation between the order effect for questions and the dependence measure in Equation

22 (r = 0.71, p = 0.0001), further supporting the noise model’s prediction. Figure 4 gives

a scatterplot relating order effects for individual questions in these 17 surveys to values

3We would like to thank Zheng Joyce Wang for providing this data
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of their respective dependence measures. Taken together, these results suggest that the

noise model does a reasonable job of predicting the magnitude and direction of order

effects in sequential question answering, at least in cases where there is a significant order

effect. In making this prediction, the noise model goes beyond the quantum probability

account for order effects in sequential question answering.
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Figure 4: Scatterplot of values of the order effects PBA(A) − P∗(A) and the associated
dependence measure P∗(B)[P∗(A|B)−P∗(A)], for the 17 surveys in Wang et al.’s dataset
for which the order measure Z was greater than 0.1. Since each survey contained two
questions, each with an associated order effect and dependence measure, there are 34
points in this scatterplot. There was a reliable correlation between order effect and de-
pendence measure across these 34 points (r = 0.713, p = 0.0001). The line of best fit was
calculated via Deming regression, which accounts for error in observations on both the x
and y axes.
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5 General Discussion

The main point of this paper has been to describe a systematic model which accounts for

a series of apparent invariants or identities (the addition law, the Bayes rule identity, the

QQ identity, and others) in people’s probabilistic judgement. This model assumes that

human probabilistic judgement is based on a rational process (one that follows frequentist

probability theory) that is subject to random noise and error. Our secondary point here

is to suggest that while an alternative model, based on quantum probability, can account

for QQ identity results, it is unable to account for results on the various other identities.

In this section we address responses from quantum probability theorists to our work.

We begin by considering some recent results from Yearsley and Trueblood (2017), who

investigate the simultaneous occurrence of both sequential order effects and the conjunc-

tion fallacy in judgements about real-world events: the probabilities of various different

Republican and Democratic candidates winning various U.S. presidential primaries. As

part of this investigation, Yearsley & Trueblood test a specific prediction the noise model

makes about conjunction fallacy occurrence: that the conjunction fallacy should only oc-

cur in averaged probability estimates when the conjunctive probability has a value less

than 0.5. This prediction follows from the role of regression in the noise model’s ac-

count for the conjunction fallacy, which, in the model, ‘pushes’ conjunctive probabilities

upwards when they are less than 0.5, and so can produce cases where the average conjunc-

tive probability is greater than the average constituent probability: a conjunction fallacy

in averaged probability estimates (see Costello and Watts, 2014, 2017, 2016b). Yearsley

and Trueblood (2017) find occurrences of the conjunction fallacy in averaged estimates in

cases where the conjunctive probability is greater than 0.5, apparently contradicting the

noise model’s prediction.
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Our response to this is to point out that the noise model’s account of the conjunction

fallacy in terms of regression does not address order effects on probability estimation:

that account assumes order-free presentation of probability questions, and describes the

conjunction fallacy as arising solely due to regressive effects which push conjunctive prob-

ability estimates upwards. As described in the previous section, however in the noise

model sequential order effects can push constituent probabilities downwards, especially

if there is a negative dependence between events A and B. This downward movement

of constituent probabilities can also produce the conjunction fallacy, by moving a con-

stituent probability estimate below a conjunctive probability estimate. The results of

Yearsley and Trueblood (2017), which find conjunction fallacy occurrence in cases where

average conjunctive probabilities are relatively high and where there are reliable order

effects, can thus been seen as consistent, at least to some degree, with the probability the-

ory plus noise model: the model would explain these conjunction fallacy results as arising

due to sequential order effects moving constituent probabilities downward, in addition

to regressive effects moving conjunctive probabilities upwards. Support for this proposal

relating order effects and the conjunction fallacy comes from the fact that there was a

reliable correlation between conjunction fallacy rates and sequential order effects across

individuals in Yearsley and Trueblood’s data. Future work investigating this account in

detail will clearly be necessary, however.

We now consider two more general responses from quantum theorists, both resting on

the distinction we discussed earlier: the distinction, in quantum probability, between sit-

uations where people judge the probability of some event or statement (give a probability

estimate, as in the addition law and Bayes rule tasks), and situations where people do

not give a probability estimate but instead make a binary choice (give a yes-no answer to

a question, as in the QQ identity tasks).
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One line of response from quantum theorists here would be to argue that the Quan-

tum Probability model is only designed to address binary choices, and not probability

estimates. Since only the QQ identity involves binary choices, while the other identities

involve probability estimates, this would mean that our evidence that the quantum model

cannot account for results associated with those other identities does not count against

that model. The problem here is that, as we described earlier, the quantum probability

model has been presented in the literature both in terms of producing binary responses

(e.g. Wang and Busemeyer, 2013, Wang et al., 2014) and in terms of producing probabil-

ity estimates (e.g. Busemeyer et al., 2011, Trueblood and Busemeyer, 2011, Yearsley and

Trueblood, 2017). If the quantum probability model does not, in fact, apply to probabil-

ity estimation, but instead only applies to choice, the quantum model becomes unable to

account for results on probability estimation: the scope of the model seems significantly

narrowed.

A second line of response to our results is to extend or augment the quantum proba-

bility model by adding a regressive transformation operator that converts a person’s ‘in-

ternal’ probability estimate (produced by state projection as in the equations of quantum

probability theory) into an overt probability judgement response. If this transformation

operator is chosen to be regressive in some way, then the overt probability judgements

produced in the quantum model will be subject to regressive effects similar to those pro-

duced by random error in the probability theory plus noise model, and such an augmented

quantum probability model will be able to produce results consistent with the addition

law and Bayes rule results (because these results are caused purely by regression in the

noise model).

While this is certainly a feasible response to our argument against the quantum model

here, it is problematic in a number of ways. First, such a transformation or extension
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of the quantum probability model will modify the model’s predictions about probability

judgement in general. It is thus not clear whether this new model will remain consistent

with previous results supporting the quantum approach. Second, it is not clear whether

there is any a priori reason for assuming a regressive transformation operator in the quan-

tum probability approach, beyond simply fitting the data. The noise model, by contrast,

provides an a priori reason for such regression: it arises as a consequence of purely random

error. If there were a mechanism within quantum probability that produced regressive

effects, that would provide significant support for the quantum approach. As far as we

can see, however, quantum probability does not in itself give rise to any such regressive

transformation. Finally, and most fundamentally, there is the problem of Occam’s razor:

‘entities must not be multiplied beyond necessity’. Our argument in this paper is that

various biases in probability judgement and sequential question answering, and simulta-

neous patterns of agreement with identities such as the addition law, bayes rule and the

QQ identity, can be explained solely in terms of a single entity: regressive effects caused

by random error. The quantum model, however, seems to require two entities to explain

these results: a quantum model of ‘internal’ probability representation, and a regressive

transform producing overt probability judgements. Given that the noise model seems to

be able to account for these results via just one of these entities (that of regression), it is

not at all clear what extra explanatory power the quantum model brings.

6 Conclusions

Much research on people’s probabilistic reasoning over the last 50 years has focused on

the various significant biases seen in probability estimation and judgement. Invariants

such as the addition law, the Bayes rule identity, and the QQ identity, which hold simul-

taneously with these biases, reveal an important fact: they show us that these biases are
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systematically and quantatitively related and can be explained mathematically. We can

see this in the case of the QQ identity, where there are reliable order effects (biases) in

responses which nonetheless cancel out when responses are combined in the identity. We

also see this in the addition law and Bayes rule identities, where there are reliable biases

in probability estimates which again, cancel out when those estimates are combined in

those identities.

We have shown that one particular mathematical model of probabilistic reasoning, the

probability theory plus noise model, can account for all three of these invariants, while

simultaneously explaining various systematic patterns of bias in probability estimation.

By contrast the quantum probability model seems unable to explain agreement with the

addition law and Bayes rule identities while simultaneously accounting for these patterns

of bias. These results support the theoretical proposal in the probability theory plus noise

model, which is that human probabilistic judgement is based on a rational process (one

that follows frequentist probability theory) that is subject to random noise.

It is important to stress that we are not suggesting that people’s probability estimates

are themselves rational. This is clearly not the case: there is very extensive evidence

demonstrating that people’s probability estimates are systematically biased away from

the requirements of probability theory. We argue that these biases are a consequence of

the influence of random noise on the probability estimates generated by an underlying

rational process. While this noise is random, it has systematic, directional effects (our

noisy model’s expected averages for probability estimates are systematically biased away

from the ‘true’ probability values, in a way that seems to match the biases seen in people’s

estimates) which are cancelled out in these three identities. This model gives a new and

useful perspective on the cognitive processes underlying people’s probabilistic reasoning.
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