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Abstract

We describe 4 experiments testing contrasting predictions of two recent models
of probability judgment: the quantum probability model (Busemeyer et al., 2011)
and the probability theory plus noise model (Costello and Watts, 2014, 2016b).
Both models assume that people estimate probability using formal processes that
follow or subsume standard probability theory. One set of predictions concerned
agreement between people’s probability estimates and standard probability theory
identities. The quantum probability model predicts people’s estimates should agree
with one set of identities, while the probability theory plus noise model predicts
a specific pattern of violation of those identities. Experimental results show the
specific pattern of violation predicted by the probability theory plus noise model.
Another set of predictions concerned the conjunction fallacy, which occurs when
people judge the probability of a conjunction P (A ∧ B) to be greater than one
or other constituent probabilities P (A) or P (B), contrary to the requirements of
probability theory. In cases where A causes B, the quantum probability model
predicts that the conjunction fallacy should only occur for constituent B and not for
constituent A: the noise model predicts that the fallacy should occur for both A and
B. Experimental results show that the fallacy occurs equally for both, contrary to
the quantum probability prediction. These results suggest that people’s probability
estimates do not follow quantum probability theory. These results support the idea
that people estimate probabilities using mechanisms that follow standard probability
theory but are subject to random noise.

keywords: probability; quantum theory; conjunction fallacy.
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Researchers over the last 50 years have identified a large number of systematic biases in

people’s judgments of probability. These biases are typically taken as evidence that people

do not follow the normative rules of probability theory when estimating probabilities, but

instead use a series of heuristics (mental shortcuts or ‘rules of thumb’) that sometimes

yield reasonable judgments but sometimes lead to severe and systematic errors, causing

the observed biases (Kahneman and Tversky, 1973). This ‘heuristics and biases’ view

has had a major impact in psychology (Kahneman and Tversky, 1982, Gigerenzer and

Gaissmaier, 2011), economics (Camerer et al., 2003, Kahneman, 2003), law (Korobkin and

Ulen, 2000, Sunstein, 2000), medicine (Eva and Norman, 2005) and other fields, and has

influenced government policy in a number of countries (Oliver, 2013, Vallg̊arda, 2012).

The existence of these systematic biases in people’s probabilistic reasoning is incon-

trovertible. The conclusion that these biases necessarily demonstrate heuristic reasoning

processes is, however, less sure. Recent research has shown that many of these biases can

be explained if we assume that people estimate probability using formal processes that

follow or subsume standard probability theory. Two such formal models are the quantum

probability model proposed by Busemeyer and colleagues (Busemeyer et al., 2011, Buse-

meyer and Bruza, 2012), and our own probability theory plus noise model (Costello and

Watts, 2014, 2016b). Both models can account for a number of well-known biases seen in

people’s probabilistic reasoning. Importantly, however, both models predict that people’s

probability judgments will follow the rules of standard probability theory, with no system-

atic bias, for certain specific expressions. Experimental results confirm these predictions,

suggesting that people’s mechanisms for probabilistic reasoning are ‘surprisingly rational’

(Costello and Watts, 2014, Costello and Mathison, 2014, Costello and Watts, 2016a,b,c).

While these two models predict agreement with probability theory for certain expres-

sions, they also predict systematic bias away from the rules of standard probability theory
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for a range of other expressions. Importantly, these two models make contrasting pre-

dictions about the occurrence and direction of these biases. In this paper we describe a

series of experiments testing these constrasting predictions about two different aspects of

people’s judgments of probability.

First, the models make different predictions about the occurrence of the ‘conjunction

fallacy’. The conjunction fallacy arises when people judge some conjunction of events

A ∧ B1 to be more probable than one of the constituents of that event (that is, when

P (A ∧ B) > P (A) or P (A ∧ B) > P (B) in people’s probability estimates), contrary

to the rules of probability theory. The quantum probability model predicts that the

conjunction fallacy will never occur when the events in question are ‘compatible’, but will

only occur for ‘incompatible’ events (Section 3 gives a detailed explanation of the meaning

of compatibility in quantum probability). Further, when two events are incompatible and

there is some causal relationship between events A and B (that is, if A in some way causes

B), the quantum probability account predicts that the conjunction fallacy will only occur

for the caused event B, and not for the causing event A. The probability theory plus

noise account, by contrast, predicts that the conjunction fallacy will be most likely to

occur when there is little difference between the probability of the conjunction and the

probability of the constituent, irrespective of event compatibility and irrespective of the

direction of cause between the two events. The model also predicts that there will be no

overall difference between total fallacy rates for the caused event and total fallacy rates

for the causing event, summing across all forms of conjunction A ∧ B, A ∧ ¬B , ¬A ∧ B

and ¬A ∧ ¬B .

Second, and perhaps more importantly, both models make a number of significantly

contrasting predictions about the extent to which people’s probability judgments will agree

1Following the standard notation for logical connectives, we take A∧B to represent ‘A and B’, A∨B
to represent ‘A or B’ and ¬A to represent ‘not A’.
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or disagree with various identities in probability theory. These identities are expressions

which probability theory requires must have a value of 0 for all events A and B. In the

quantum probability account, these predictions depend again on both the compatibility of

events A and B and on the direction of the causal relationship between A and B. If A and

B are compatible, the quantum probability theory account predicts that the probability

theory identities

P (A ∧B) + P (A ∧ ¬B)− P (A) = 0 (1)

and

P (A ∧B) + P (B ∧ ¬A)− P (B) = 0 (2)

will both hold in people’s probability estimates: if we ask people to estimate P (A), P (B),

P (A ∧ B), P (A ∧ ¬B) and P (B ∧ ¬A) for some pair of events A and B and then sum

those estimates according to the identities, the prediction is that the average value of

these sums will be 0, as required by probability theory. If A and B are incompatible and

A causes B, the quantum probability model predicts that the first identity (involving the

causing event A), will hold while the second identity (involving the incompatible caused

event B) can be violated. The probability theory plus noise account, by contrast, predicts

that neither of these identities will ever hold: in this model both identities will be reliably

violated in people’s estimates for all events (compatible or incompatible, and causing or

caused) and will, on average, have positive values.

In the first two sections below we present these two models and derive these con-

trasting predictions. In the third section we describe an experiment investigating the

occurrence of the conjunction fallacy for compatible events. In the fourth section we de-

scribe an experiment investigating violations of identities such as Equations 1 and 2. In

the fifth section we describe an experiment investigating the relationship between direc-

tion of causality and both the conjunction fallacy and values of these probability theory
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identities. In the sixth section we describe an experiment more directly examining the

role of causality in the occurrence of the conjunction fallacy. In the seventh section we

apply a simulation of the noise model to the specific results from Experiments 1 and 2.

The results, across all these experiments, agreed with the probability theory plus noise

account and contradicted the quantum probability account: conjunction fallacy rates and

violation of these identities did not depend on event compatibility; there was no difference

between fallacy rates relative to causing constituents and relative to caused constituents,

and people’s probability estimates violated probability theory for identities such as 1 and

2 for all events in just the way predicted by the probability theory plus noise model.

1 The probability theory plus noise model

The probability theory plus noise model assumes that people estimate probabilities via

a mechanism that is fundamentally rational (following standard frequentist probability

theory), but is perturbed in various ways by the systematic effects or biases caused by

purely random noise or error. This approach follows a line of research leading back at least

to Thurstone (1927) and continued by various more recent researchers (see, e.g. Dougherty

et al., 1999, Erev et al., 1994, Hilbert, 2012). This model explains a wide range of results

on bias in people’s direct and conditional probability judgments across a range of event

types, and identifies various probabilistic expressions in which this bias is ‘cancelled out’

and for which people’s probability judgments agree with the requirements of standard

probability theory (see Costello and Watts, 2014, Costello and Mathison, 2014, Costello

and Watts, 2016a,b,c).

In standard frequentist probability theory the probability of some event A is estimated

by drawing a random sample of events, counting the number of those events that are

instances of A, and dividing by the sample size. The expected value of these estimates
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is P (A), the probability of A; individual estimates will vary with a binomial proportion

distribution around this expected value. Our model assumes that people estimate the

probability of some event A in exactly the same way: by randomly sampling items from

memory, counting the number that are instances of A, and dividing by the sample size. If

this process was error-free, people’s estimates would be expected to have an average value

of P (A) (and to vary randomly around that average, due to sampling error). Human

memory is subject to various forms of random error, however. To reflect this we assume

events have some chance d < 0.5 of randomly being read incorrectly: there is a chance

d that a ¬A (not A) event will be incorrectly counted as A, and the same chance d that

an A event will be incorrectly counted as ¬A. We take PE(A) to represent P (read as A):

the probability that a single randomly sampled item from this population will be read as

an instance of A (subject to this random error in counting). Since a randomly sampled

event will be counted as A if the event truly is A and is counted correctly (this occurs

with a probability (1 − d)P (A), since P (A) events are truly A and events have a 1 − d

chance of being counted correctly), or if the event is truly ¬A and is counted incorrectly

as A (this occurs with a probability (1 − P (A))d, since 1 − P (A) events are truly ¬A,

and events have a d chance of being counted incorrectly), the population probability of a

single randomly sampled item being read as A is

P (read as A) = PE(A) = (1− d)P (A) + (1− P (A))d = (1− 2d)P (A) + d (3)

We now consider the process of probability estimation. We take pe(A) to represent

an individual estimate of the probability of A, produced by randomly sampling some set

of events from memory and counting the proportion that are A (subject to random error

in reading an item as A). Since PE(A) is the probability of an item being read as A,

and since these samples are drawn randomly, these estimates pe(A) will vary randomly
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following the binomial proportion distribution

Bin(N,PE(A))

N

where N is the size of the sample drawn. Using 〈X〉 to represent the expected value of

some randomly varying variable X (the value we would get if we averaged an infinite

number of samples of that variable), a property of the binomial proportion distribution

is that 〈
Bin(N,PE(A))

N

〉
= PE(A)

for any sample size N . Given this, we take 〈pe(A)〉 to represent the expected value of

estimates pe(A) independent of sample size: the value we would get if we averaged an

infinite number of individual estimates pe(A), each based on a sample drawn randomly

from a population with probability P (A) noise rate d, and with sample size varying across

samples. Let pi represent the probability of a sample being drawn with a particular size

N = i, and we have

〈pe(A)〉 =
∞∑
i=1

pi

〈
Bin(i, PE(A))

i

〉
=
∞∑
i=1

piPE(A) = PE(A)
∞∑
i=1

pi

Since the sum of probabilities pi across all sample sizes necessarily equals 1, we thus have

〈pe(A)〉 = PE(A) = (1− 2d)P (A) + d (4)

This equation gives the expected value or predicted average for people’s estimates for the

probability of some event A: individual estimates will vary randomly around this expected

value in a binomial proportion distribution. Note that this predicted average embodies a

regression towards the center, due to random noise: estimates are systematically biased

away from the ‘true’ probability P (A), such that on average estimates will tend to be

greater than P (A) when P (A) < 0.5, and will tend to be less than P (A) when P (A) > 0.5,

and will tend to equal P (A) when P (A) = 0.5.
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According to the model, this regressive effect of random error is predicted for all types

of events, but the rate of error (and so the degree of regression) will be higher for complex

events such as conjunctions A∧B and disjunctions A∨B. This idea of increased error for

conjunctive or disjunctive events follows the standard statistical concept of propagation

of error, which states that if two variables A and B are subject to random error, then a

complex variable (e.g. A ∧B) that is a function of those two variables will have a higher

rate of error than either variable on its own. To reflect this, we assume a rate of random

error of d for single events but of d + ∆d for conjunctions and disjunctions (where ∆d

represents a small increase in the rate of random error). In this model the expected value

of estimates for a conjunctive event A ∧B is

PE(A ∧B) = (1− 2[d+ ∆d])P (A ∧B) + [d+ ∆d] (5)

and the expected value of estimates for a disjunctive event A ∨B is

PE(A ∨B) = (1− 2[d+ ∆d])P (A ∨B) + [d+ ∆d] (6)

Since this model assumes that the probability P (A) is estimated by retrieving a random

sample of episodes from memory and counting the number of A’s, it may seem that the

model is only able to give probability estimates for events that have already been seen.

This view depends on a conception of memory as being nothing but a store of recorded

events. We can, however, take an alternative conception of memory as a constructive

process that can generate representations of events even if those specific events have not

previously been seen (events that might occur in the future, for example). Support for

this view comes from evidence that remembering past events and imagining future events

are very similar cognitive processes (see e.g. Schacter, 2012).

If we take this ‘constructive’ or ‘simulation’ view of memory then our model can apply

to probability estimates for all forms of event, whether previously seen or completely
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novel. In this view estimating the probability of some event A happening in the future,

for example, would involve generating or imagining a number of possible future outcomes

and counting the proportion that contained event A (subject to random error in counting).

We follow this constructive view of memory, and so assume that this model applies to all

forms of event, both previously seen and completely novel.

1.1 Predictions: the conjunction fallacy

For any two events A and B where P (B) ≤ P (A), probability theory’s ‘conjunction rule’

requires that P (A∧B) ≤ P (B) ≤ P (A) must always hold. This follows from the fact that

A∧B can only occur if A and B themselves occur. People reliably violate this requirement

for some events, and commit the conjunction fallacy by giving probability estimates for the

conjunction A∧B that are greater than the estimates they gave the lower constituent B.

Numerous experimental sthistudies have demonstrated the reliable nature of this fallacy

in people’s probability judgment (Costello, 2009, Gavanski and Roskos-Ewoldsen, 1991,

Fantino et al., 1997). Rates of conjunction fallacy occurrence vary widely, with some

conjunctions producing fallacy rates higher than 85% and others producing fallacy rates

lower than 10% (Fisk and Pidgeon, 1996). Extensive experimental data demonstrates a

reliable relationship between the difference of constituent probabilities P (A) and P (B)

and the rate of occurrence of the conjunction fallacy (with high fallacy rates arising when

P (B) is low and P (A) is high, and lower rates arising when both are low or both are high;

see Tversky and Kahneman, 1983, Costello, 2009, Gavanski and Roskos-Ewoldsen, 1991,

Fantino et al., 1997, Stolarz-Fantino et al., 2003, Sides et al., 2002, Fisk and Pidgeon,

1996, Wedell and Moro, 2008). A range of experimental results also show a relationhip

between conditional probability values P (B|A) and P (A|B) and conjunction fallacy rates,

with fallacies being more frequent when conditional probabilities are high (Tversky and
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Kahneman, 1983, Pidgeon and Fisk, 1998, Fabre et al., 1995, Locksley and Stangor, 1984).

The relationship between conditional probabilities and conjunction fallacy rates appears

somewhat weaker than the influence of constituent probability values: Tversky and Kah-

neman (1983) observed fallacy rates higher than 85% for conjunctions where P (A) was

low and P (B) high, but around 60% for conjunctions where the conditional probability

P (A|B) was high, and Thüring and Jungermann (1990) found a much stronger relation-

ship between constituent probability difference and conjunction fallacy rate than between

conditional probability and fallacy rate. Finally, more recent experimental results have

also shown a reliable relationship between inductive confirmation (as represented, for ex-

ample, by the degree to which the added conjunct B is confirmed by the presence of A;

that is, the degree to which P (B|A) > P (B)) and conjunction fallacy rates (Tentori et al.,

2013).

These patterns of conjunction fallacy occurrence arise as a consequence of random

variation in our model. Assuming without loss of generality that P (B) ≤ P (A), the

general idea is that a reasoner’s probability estimates for the probabilities of B and A∧B

will both vary randomly around their expected values PE(B) and PE(A∧B). This random

variation means that some individual estimates will occur where pe(B) < pe(A ∧ B),

producing a conjunction fallacy response. The closer the expected values PE(B) and

PE(A ∧ B) are to each other, the greater the chance of this fallacy response occurring.

More specifically, this model predicts that the rate of conjunction fallacy responses will

increase with the difference between average estimates

PE(A ∧B)− PE(B)

= (1− 2[d+ ∆d])P (A ∧B) + [d+ ∆d]− (1− 2d)P (B)− d

= (1− 2d)[P (A ∧B)− P (B)] + ∆d[1− 2P (A ∧B)]

(7)

(being low when this difference is negative and high when it is positive). When this
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difference is negative we have PE(A ∧B) < PE(B). Since individual estimates pe(A ∧B)

and pe(B) are both perturbed by random noise (which is equally likely to be positive or

negative), when this difference is negative we expect that an individual estimate pe(A ∧

B) will randomly fall above an estimate pe(B) less than 50% of the time, producing a

conjunction fallacy rate of less than 50%. Rearranging, we see that this difference will be

positive when

∆d[1− 2P (A ∧B)] > (1− 2d)[P (B)− P (A ∧B)] (8)

and when this inequality holds we expect that an individual estimate pe(A ∧ B) will

randomly fall above an estimate pe(B) more than 50% of the time, producing fallacy

rates of over 50% (and indeed as high as 85% or 90%) for some events. This model can

thus account for the wide range of conjunction fallacy rates seen in experimental studies.

Since probability theory imposes the requirement that P (A ∧ B) ≤ P (B), the left-hand

side of the inequality in Equation 8 will be highest when P (B) is low. Since probability

theory also imposes the requirement that 1 − P (A) ≥ P (B) − P (A ∧ B) ≥ 0, the right-

hand side of this inequality will be lowest when 1 − P (A) is low: that is, when P (A) is

high. In other words, this model predicts that conjunction fallacy rates will be highest

when P (B) is low and P (A) is high, just as observed in experimental results. Since in

probability theory high values for the conditional probabilities P (A|B) (or P (B|A)) imply

values for the conjunction P (A ∧ B) that are close to P (B) (or P (A)), the right-hand

side of the inequality in Equation 8 will also be lower when the conditional probabilities

P (A|B) and P (B|A) are high (again, increasing fallacy rates). The left-hand side of this

inequality, however, will be lower when these conditional probabilities are high (reducing

fallacy rates), and so the model predicts a weaker link between conditional probability

values and conjunction fallacy rates, just as observed in experimental results.
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Finally, this model is at least potentially consistent with Tentori et al.’s results show-

ing a link between inductive confirmation and conjunction fallacy rates: there are a range

of reasonable values of our noise parameters d and ∆d for which the model can reproduce

these results (see Costello and Watts, 2016c, for this model’s account of the link between

the conjunction fallacy and inductive confirmation). More generally, applying a computa-

tional simulation of this model to conjunction fallacy data from Fisk and Pidgeon (1996),

this model gave a close match to a wide range of high and low fallacy rates produced for

different conjunctions (Costello and Watts, 2016a).

Note that the conjunction fallacy in this account does not depend in any way on the

direction of causation between A and B: the conjunction fallacy can occur in this model

if A causes B or if B causes A (or if there is no causal relationship). Since by assumption

∆d is small, we expect the rate of conjunction fallacy responses pe(A ∧ B) > pe(B) to

primarily follow the expression (1 − 2d)[P (A ∧ B) − P (B)]: we use this expression to

extend the model’s predictions about conjunction fallacy rates below.

This model allows us to make predictions about conjunction fallacy rates for different

forms of conjunction. In particular, we can use the rules of probability theory to identify a

number of conjunction-constituent pairs which will have related conjunction fallacy rates

in our model. For example, consider the conjunction fallacy P (¬A∧¬B) > P (¬A) (that

is, ‘not A and not B’ is judged more likely to occur than ‘not A’ alone). From Equation

7 the rate of conjunction fallacy responses pe(¬A ∧ ¬B) > pe(¬A) will be related to the

difference between average estimates

PE(¬A ∧ ¬B)− PE(¬A)

= (1− 2d)[P (¬A ∧ ¬B)− P (¬A)] + ∆d[1− 2P (¬A ∧ ¬B)]

and so will follow the expression (1−2d)[P (¬A∧¬B)−P (¬A)]. From probability theory,
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Table 1: Conjunction-constituent pairs for which the probability theory plus noise model
predicts approximately the same rate of conjunction fallacy occurrence for all events A
and B. If observables A and B are compatible, the quantum probability model predicts
no conjunction fallacy occurrence for any of these pairs. If observables are incompatible
and A causes B, the quantum probability model predicts that the fallacy will never occur
for pairs in column 1, but will occur for pairs in column 2.

conjunction-constituent pair 1 conjunction-constituent pair 2

P (A ∧B) vs P (A) P (¬A ∧ ¬B) vs P (¬B)

P (A ∧ ¬B) vs P (A) P (¬A ∧B) vs P (B)

P (¬A ∧B) vs P (¬A) P (A ∧ ¬B) vs P (¬B)

P (¬A ∧ ¬B) vs P (¬A) P (A ∧B) vs P (B)

however, we have

P (¬A ∧ ¬B)− P (¬A) = P (A ∧B)− P (B)

and so we expect the rate of conjunction fallacy responses pe(¬A∧¬B) > pe(¬A) to follow

the rate of conjunction fallacy responses pe(A ∧ B) > pe(A). Table 1 identifies a number

of other such conjunction-constituent pairs for which this model predicts approximately

matched conjunction fallacy rates.

Notice that Table 1 includes every possible way in which the conjunction fallacy can

occur (all possible conjunctions A ∧ B,A ∧ ¬B,¬A ∧ B and ¬A ∧ ¬B, with each con-

junction being compared with both of its constituents). From this we see that the model

makes a further prediction about overall conjunction fallacy rates: it predicts that the

overall conjunction fallacy rate, summed across all pairs in the first column (pairs involv-

ing the constituents A and ¬A) should, on average, be approximately equal to the average
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conjunction fallacy rate across all pairs in the second column (pairs involving the con-

stituents B and ¬B). This relationship should hold for all events A and B, irrespective of

the causal relationship between those events. As we see in our discussion of the quantum

probability model below, that model makes a different prediction, which depends on the

causal relationship between A and B.

1.2 Predictions: probability theory identities

Probability theory requires that identities such as Equations 1 and 2 must have a value

of 0 for all events A and B. We can use our model’s expressions for expected value

(Equations 3, 5 and 6) to make predictions about the expected value of these identities

in people’s probability estimates. For the identity in Equation 1, for example, our model

predicts an average value of

PE(A ∧B) + PE(A ∧ ¬B)− PE(A)

= (1− 2d[d+ ∆d])P (A ∧B) + [d+ ∆d]

+ (1− 2d[d+ ∆d])P (A ∧ ¬B) + [d+ ∆d]− (1− 2d)P (A)− d

= d+ 2∆d[1− P (A ∧B)− P (A ∧ ¬B)]

= d+ 2∆d[1− P (A)]

(9)

(with values varying randomly around that average). Since 1 − P (A) is never less than

zero or greater than 1, we see that the model predicts an average value for this identity

that is between d and d+2∆d, and so is necessarily positive (since d represents the chance

of random error in counting, which is always positive in this model), and which varies

around the midpoint of that range, which is d+ ∆d. Table 2 gives a number of identities

which in probability theory are required to have have a value of 0, but which in this model

are predicted to have a similar positive value, on average, in people’s estimates. As we

see below, the quantum probability model makes a different prediction.



SURPRISING RATIONALITY 16

T
ab

le
2:

P
re

d
ic

te
d

va
lu

es
of

th
e

n
oi

se
m

o
d
el

an
d

th
e

q
u
an

tu
m

m
o
d
el

fo
r

a
se

ri
es

of
p
ro

b
ab

il
it

y
th

eo
ry

id
en

ti
ti

es
.

S
ta

n
d
ar

d
p
ro

b
ab

il
it

y
th

eo
ry

re
q
u
ir

es
th

es
e

id
en

ti
ti

es
to

h
av

e
a

va
lu

e
of

0.
T

h
e

p
ro

b
ab

il
it

y
th

eo
ry

p
lu

s
n
oi

se
m

o
d
el

p
re

d
ic

ts
th

at
,

if
w

e
as

k
p

eo
p
le

to
es

ti
m

at
e

th
es

e
p
ro

b
ab

il
it

ie
s

fo
r

so
m

e
ev

en
ts
A

,
B

an
d

co
m

b
in

e
th

em
as

in
th

es
e

id
en

ti
ti

es
,

th
e

av
er

ag
e

va
lu

e
fo

r
th

es
e

id
en

ti
ti

es
w

il
l

b
e

p
os

it
iv

e
fo

r
al

l
ev

en
ts

,
d
ev

ia
ti

n
g

fr
om

0
b
y
d

+
∆
d

or
2(
d

+
∆
d
)

(w
h
er

e
d

re
p
re

se
n
ts

th
e

ch
an

ce
of

ra
n
d
om

er
ro

r)
.

T
h
e

q
u
an

tu
m

p
ro

b
ab

il
it

y
m

o
d
el

m
ak

es
d
iff

er
en

t
p
re

d
ic

ti
on

s
fo

r
th

re
e

m
u
tu

al
ly

-e
x
cl

u
si

ve
si

tu
at

io
n
s:

w
h
en

th
e

as
su

m
ed

ob
se

rv
ab

le
s
A

an
d
B

ar
e

co
m

p
at

ib
le

;
w

h
en

th
e

as
su

m
ed

ob
se

rv
ab

le
s

ar
e

in
co

m
p
at

ib
le

an
d

m
ea

su
re

d
in

th
e

or
d
er

A
th
e
n

B
(e

.g
.,

w
h
en

A
ca

u
se

s
B

);
or

w
h
en

th
e

as
su

m
ed

ob
se

rv
ab

le
s

ar
e

in
co

m
p
at

ib
le

an
d

m
ea

su
re

d
in

th
e

or
d
er

B
th
e
n

A
(e

.g
.,

w
h
en

B
ca

u
se

s
A

).

la
b

el
id

en
ti

ty
n

oi
se

m
o
d

el
q
u

an
tu

m
m

o
d

el

co
m

p
at

ib
le

in
co

m
p

at
ib

le
:

in
co

m
p
at

ib
le

:
A

th
e
n

B
B

th
e
n

A

1
P

(A
)

+
P

(¬
A
∧
B

)
−
P

(A
∨
B

)
d

+
∆
d

0
0

δ A

2
P

(B
)

+
P

(¬
A
∧
B

)
−
P

(A
∨
B

)
d

+
∆
d

0
δ B

0

3
P

(A
∧
B

)
+
P

(A
∧
¬B

)
−
P

(A
)

d
+

∆
d

0
0

−
δ A

4
P

(A
∧
B

)
+
P

(¬
A
∧
B

)
−
P

(B
)

d
+

∆
d

0
−
δ B

0

5
P

(A
∧
B

)
+
P

(¬
A
∧
B

)
+
P

(A
∧
¬B

)
−
P

(A
∨
B

)
2(
d

+
∆
d
)

0
0

0

6
P

(A
∧
B

)
+
P

(¬
A
∧
B

)
+
P

(A
∧
¬B

)
+
P

(¬
A
∧
¬B

)
−

1
2(
d

+
∆
d
)

0
0

0



SURPRISING RATIONALITY 17

2 The quantum probability model

The quantum probability model assumes that people’s probabilistic reasoning follows the

mathematical rules used to calculate event probability in quantum theory. In these rules

the probability of some event is measured by projecting a vector representing the current

state onto a space representing that event. Each such projection causes a change in the

current state vector, and so has an effect on subsequent probabilities. This means that a

fundamental aspect of quantum theory is that the probability of two quantum events can

depend on the order in which those events are measured (if the probabilities of events A,

B are measured in the order A then B, the results obtained can be different from those

obtained when measured in the order B then A).

This order dependence allows the quantum probability model to address various order

effects seen in people’s sequential inference and judgment. A reliable finding in research

on sequential inference judgments is that the order in which evidence is presented reliably

influences the final inference made, with in most cases more recent evidence having a

stronger impact on the final inference. In testing the quantum probability model against

another leading model for these effects, Hogarth and Einhorn’s belief-adjustment model,

Trueblood and Busemeyer (2011) found that the quantum model gave a more accurate

account of these effects. The model has also been applied to order effects in question

answering, again producing impressive results and in particular, showing that a specific

relationship predicted by the quantum model very reliably holds in question-answering

studies (Wang and Busemeyer, 2013).

Just as importantly, the quantum probability model assumes that these order effects

apply, not only to separate and sequential inferences or judgments, but to the components

of individual judgments; and in particular to judgments of conjunctive and disjunctive
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probabilities. These quantum order effects in judgments of conjunctive and disjunctive

probabilities allow the quantum probability model to address observed patterns of con-

junction and disjunction fallacy occurrence. In comparing the competing predictions of

the noise and quantum models here, we focus on the two models contrasting accounts for

these conjunctive and disjunctive probability judgments (we return to the issue of order

effects in sequential inference and judgment in the General Discussion).

In presenting the quantum probability model we don’t go into the mathematical details

of probability judgment in quantum theory. Instead, we focus on describing the ways in

which quantum probability agrees with, and deviates from, standard probability theory.

The primary theoretical distinction between quantum and standard probability lies in the

idea of ‘compatible’ or ‘incompatible’ observables. An observable defines the set of all

possible distinct outcomes for a given measurement. For example, if we are checking to

see whether some event A has occurred or not, we are, in the terminology of quantum

theory, measuring an observable A, which returns one of two distinct outcomes: A (the

event has occurred) and ¬A (the event has not occurred).2 Two observables A and B are

incompatible, in quantum theory, if the outcome of a joint observation (such as P (A∧B))

depends on the order in which A and B were measured (see Busemeyer et al., 2011, p.

199). We use this difference as a measure of incompatibility below, with the idea that

the greater the difference between P (A∧B) under the ordering A then B and P (A∧B)

under the ordering B then A, the more confident we are that the observables in question

are incompatible. (Just be be clear on our notation: we take expressions such as P (A∧B)

to represent the probability of both A and B occurring. When, in quantum probability

theory, the value of P (A ∧ B) depends on the order of measurement, we give that order

2In quantum theory, each of these outcomes A and ¬A would be referred to as an eigenvalue of the
observable, with the observable defining orthonormal vectors of unit length (eigenvectors) in a multidi-
mensional state space. We don’t need to use this detailed view of quantum theory in our discussion here,
and so we avoid this more complex terminology.
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explicitly in the text.)

If two observables are compatible, then quantum probability expressions for all possible

outcomes of those observables (that is, for P (A), P (¬A), P (B), P (¬B), P (A ∧ B),

P (A ∧ ¬B), P (A ∨ B), and so on) are exactly equivalent to the standard probability

theory expressions for those outcomes. In other words, if two observables are compatible

then all the probability theory identities given in Table 2 should have the value of 0, as

required in standard probability theory. Similarly, if two observables are compatible then

the conjunction fallacy should never occur for outcomes of those observables.

If two observables are incompatible, in quantum theory those observables cannot both

be measured simultaneously: instead they must be measured separately, one after the

other. If two incompatible observables are measured in the order A then B, then quan-

tum probability expressions for the outcomes the second observable can deviate from the

requirements of probability theory, giving, for example

P (B) = P (¬A ∧B) + P (A ∧B) + δB (10)

where P (B) is the probability obtained when B is measured with no prior measurement of

A, P (¬A∧B) and P (A∧B) are the probabilities obtained when A and B are measured

in the orderA then B, and where δB is a ‘quantum interference’ term for observable

B. This quantum interference term arises because, contrary to the ‘macroscopic realism’

view of the world and thus to the assumptions of standard probability theory, in quantum

theory if A is not measured, it is not necessarily in either state A or state ¬A: it may be

in some ‘superposition’ of states. This means that the two probabilities P (¬A ∧ B) and

P (A∧B) do not necessarily cover all possible cases arising when estimating P (B) with no

prior measurement of A, and so P (B) = P (¬A∧B)+P (A∧B) does not necessarily hold.

Note that quantum interference is not an error term here: for a given observable B (and
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a given state, in quantum thory; or a given participant, in Busemeyer et al.’s model) this

quantum interference term δB has a fixed value that specifies the relationship between

P (B) and P (¬A∧B) +P (A∧B) for that observable. The quantum interference term δB

can take on different values for different observables A and B (and different participants):

in some cases positive, in some negative, and in some cases 0.

If two incompatible observables are measured in the order A then B then P (A) has no

such interference term, and so remains exactly equivalent to the corresponding standard

probability theory expression, giving, for example

P (A) = P (A ∧ ¬B) + P (A ∧B)

This is because measurement of A causes the observable to collapse out of superposition

and take on either state A or state ¬A: the two probabilities P (A ∧ ¬B) and P (A ∧ B)

arising from subsequent measurement of B do cover all possible cases arising after the

outcome A, and so their sum equals P (A). If incompatible observables are measured in

the opposite order B then A, there is a parallel interference δA for observable A, and no

interference term for observable B.

Note that, in quantum theory, deviations from the requirements of standard proba-

bility theory only arise for single event probabilities (P (A) or P (B)) because only these

single-event probabilities have associated quantum interference terms. Assuming a fixed

ordering of observables A then B (or B then A), in quantum theory we have

P (A ∨B) + P (¬A ∧ ¬B) = 1

P (A ∧B) + P (¬A ∧B) + P (A ∧ ¬B) + (1− P (A ∨B)) = 1

P (A ∧B) + P (¬A ∧B) + P (A ∧ ¬B) + P (¬A ∧ ¬B) = 1

simply because each of these expressions cover all possible measurements from the ob-

servables A and B (for example, the two terms A∨B and ¬A∧¬B in the first expression
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are mutually exclusive and either one or the other must be true: in a given quantum

mechanical experiment - a given fixed ordering - the probabilities of these terms must

necessarily sum to 1). Rearranging, then, we see that with a fixed ordering of observables

the identities

P (A ∧B) + P (¬A ∧B) + P (A ∧ ¬B) + P (¬A ∧ ¬B)− 1 = 0

P (A ∧B) + P (¬A ∧B) + P (A ∧ ¬B)− P (A ∨B) = 0

(identities 5 and 6 in Table 2) must hold in quantum theory, just as as in standard

probability theory.

The quantum probability model’s predictions about deviations from probability theory

depend on the compatibility of observables (there is no such deviation for compatible

observables) and the order of observables (even for incompatible observables, deviation

from probability theory occurs only for the second observable). In what circumstances

could incompatibility arise in people’s probability judgments? Busemeyer et al. (2011)

use the quantum theory requirement that incompatible observables cannot be measured

simultaneously to identify two circumstances in which incompatibility can arise for events

A and B: incompatibility can arise when A and B are not known to occur together (and

so a simultaneous assessment of their probabilities is not possible) or when A and B must

be assessed against different sets of background knowledge (and so, again, simultaneous

assessment of both is not possible). Busemeyer et al. (2011) illustrate these circumstances

using the well-known example of Linda, from Tversky and Kahneman (1983):

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As

a student she was deeply concerned with issues of discrimination and social justice, and

also participated in anti-nuclear demonstrations.

What is the probability that:
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Linda is a bank teller. (A)

Linda is a bank teller and active in the feminist movement. (A ∧B)

Tversky and Kahneman found that people’s probability judgments significantly vio-

lated probability theory in this example, with more than 85% of participants committing

the conjunction fallacy by judging A∧B as more probable than A. In Busemeyer et al.’s

model events A ( ‘Linda being a bank teller’) and B ( ‘Linda being active in the feminist

movement’) are incompatible because first, A and B are not known to occur together;

and second, assessment of P (A) requires background knowledge about career prospects

for college graduates, while assessment of P (B) requires background knowledge about

concern for social justice and feminist activism. Since these events are incompatible, the

quantum model allows for deviation from probability theory for these events, just as seen

in Tversky and Kahneman’s conjunction fallacy results.

How does the quantum probability model impose an ordering on incompatible events?

If two incompatible events have a particular causal ordering (if one event A necessarily

occurs before the other event B), the quantum model assumes that the observables A

and B are measured in this causal order. If event A happens before and in some way

causes event B, the model assumes that observable A is measured first and B is measured

second, and so there is a quantum interference term δB associated with the caused event

B but no such term associated with the causing event A (Busemeyer et al., 2011). In

cases where there is a causal ordering between events, the quantum probability model

thus allows for occurrence of the conjunction fallacy for the caused event B but not for

the causing event A (because there is a quantum interference term associated with the

caused event B but not the causing event A). Note that the locus of occurrence of the

conjunction fallacy in this model is not in the conjunctive probability P (A ∧ B), but

in the single probability P (B): the quantum interference term δB associated with that
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single probability can ‘move’ that probability below the conjunctive probability P (A∧B),

producing a conjunction fallacy response relative to the caused event B.

If A and B have no causal ordering, Busemeyer et al. (2011) take a different approach

and assume that the most probable of the two events is measured first when calculating

the conjunctive probability P (A ∧ B): that is, if P (A) > P (B) then the conjunctive

probability is measured in the order A then B, but if P (B) > P (A) it is measured

in the order B then A. Our primary focus in this paper is on the causal ordering of

observables, and so for clarity and ease of presentation we will typically assume that

observables are ordered by cause (though we do address the proposal that observables are

ordered by probability in Experiment 1, below).

2.1 Predictions: the conjunction fallacy

The conjunction fallacy occurs when people judge P (A) < P (A∧B) or P (B) < P (A∧B),

contrary to the rules of standard probability theory. In the quantum model, probability

judgments deviate from standard probability theory only when the observables A and B

are incompatible; for compatible events, probability judgments exactly follow the require-

ments of probability theory. Given this, the main prediction in this model is that the

conjunction fallacy will be rare for compatible events (that is, for events which are known

to occur together and which are assessed relative to the same background knowledge).

Note that, even though probability judgments for compatible events are assumed to ex-

actly follow the requirements of standard probability theory, the model does not predict

0 conjunction fallacy occurrence for such events: instead it allows that some conjunction

errors can occur by chance for such events, due to noise in measurement (Busemeyer

et al., 2011). For incompatible events, by contrast, probability judgments do not fol-

low the requirements of standard probability theory (interference terms arising due to
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incompatiblity), and so the conjunction fallacy can be frequent for incompatible events.

Assume we have two incompatible observables A and B that have a causal order from

event A to event B (where event A occurs before and in some way causes event B). In the

quantum probability model this means that deviations from probability theory (such as

the conjunction fallacy) can only occur for the second observable (the caused event), and

cannot occur for the first observable (the causing event). In other words, the quantum

model predicts that the conjunction fallacy will be rare for compatible observables, and

even for incompatible observables that are causally linked, will be rare for the first causing

event A (that is, P (A) < P (A∧B) will not occur), but can only occur frequently for the

caused event B (P (B) < P (A ∧B) can occur).

In terms of Table 1, the quantum probability model predicts that, if A causes B,

the conjunction fallacy should occur rarely for conjunction-constituent pairs in column 1

(which all involve a comparison relative to the causing event A), and should only occur

frequently for pairs in column 2 (which involve a comparison relative to the caused event

B). This is in contrast to the predictions of the probability theory plus noise model, which

says that the fallacy should arise at approximately the same rate for the comparisons in

column 1 and 2 in that table.

2.2 Predictions: probability theory identities

A similar point applies to deviations from probability theory in the various identities given

in Table 2. All of these identitites have a value of 0 in standard probability theory. In

the quantum model, probability judgments necessarily agree with standard probability

theory when the observables A and B are compatible; and so in this model, all of these

identities should have a value of 0 for compatible observables and will only deviate from

0 for incompatible observables.
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If observables are incompatible, then the values of these identities depend on the

ordering of observables A and B and on whether the identity contains P (A) or P (B). If

an identity contains a probability expression for the first measured observable, there is

no interference term and the identity has a value of 0, as in standard probability theory.

If an identity contains the second observable, however, there is an interference term for

that observable, and the identity’s value will equal the value of that term. Consider,

for example, identity 2 in Table 2. This identity contains P (B). If observables are

incompatible and B causes A, then there is no interference term for B and identity 2

has a value of 0. If observables are incompatible and A causes B, however, there is an

interference term for B and identity 2 has the value

P (B) + P (A ∧ ¬B)− P (A ∨B)

= [P (¬A ∧B) + P (A ∧B) + δB] + P (A ∧ ¬B)− P (A ∨B)

= δB + [P (¬A ∧B) + P (A ∧B) + P (A ∧ ¬B)− P (A ∨B)]

= δB

(from Equation 10): this identity is predicted to have a value equal to the interference

term δB.

Next consider identity 4 in Table 2. This identity again contains P (B). If observables

are incompatible and B causes A, then there is no interference term for B and identity

4 has a value of 0. If observables are incompatible and A causes B, however, there is an

interference term for B and identity 4 has the value

P (A ∧B) + P (A ∧ ¬B)− P (B)

= P (A ∧B) + P (A ∧ ¬B)− [P (¬A ∧B) + P (A ∧B) + δB]

= −δB

and this identity is predicted to have a value equal to the negative of the interference

term, or in other words, equal to that of identity 2 but with the opposite sign.
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Parallel predictions hold for identities 1 and 3. These identities are expected to have

values of 0 if A causes B, while if B causes A these identities have values equal to the

interference term δA but with opposite signs. Note that, since identities 2 and 4 can only

have values δB and −δB when A causes B, while identities 1 and 4 can only have values

δA and −δA when B causes A, these two cases are mutually exclusive. This means that,

if identities 2 and 4 have values significantly different from 0 for a given pair of events A

and B, then the quantum probability model requires that identities 1 and 3 have a value

equal to 0 (no interference term) for those events, and vice versa.

Finally, consider identities 5 and 6. Neither of these identities contain an expression

P (A) or P (B), and so neither expression contains a quantum interference term. As we

saw earlier, the quantum probability model thus predicts that, as long as the ordering of

observables is fixed, these two identities will always a value of 0 irrespective of whether

A and B are compatible or incompatible, and irrespective of whether A causes B or B

causes A.

We can summarise the quantum model’s predictions for the identities in Table 2 as

follows. For a given pair of events A and B, there are three possible situations: First,

A and B are compatible, in which case the quantum model predicts a value of 0 for all

identities. Second, A and B are incompatible and A causes B, in which case the quantum

model predicts a value of 0 for all identities but 2 and 4: these two identities are predicted

to have opposite signs (one positive, one negative). Third, A and B are incompatible and

B causes A, in which case the quantum model predicts a value of 0 for all identities

but 1 and 3: these two identities are predicted to have opposite signs (one positive, one

negative). The probability theory plus noise model, by contrast, predicts that every one

of these identities will deviate from 0, and all will have positive values.

In the next sections we describe a series of experiments testing these contrasting pre-
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dictions about the occurrence of the conjunction fallacy and about the values of these

identities. We begin by considering the relationship between compatibility and the oc-

currence of the conjunction fallacy.

3 Experiment 1: conjunction fallacies with compati-

ble observables3

In this section we assess the occurrence of the conjunction fallacy for compatible events.

Recall that the probability theory plus noise model predicts that the rate of conjunction

fallacy occurrence for B (the rate at which A ∧ B is judged more likely than B) should

follow the difference between the average of probablity estimates for A∧B and the average

of estimates for A, and should be greater than 50% when this difference is positive. In

the probability theory plus noise model, whether or not A and B are incompatible should

have no impact on the rate of fallacy occurrence. In the quantum probability model, by

contrast, the fallacy should not occur when A and B are compatible, but can only occur

when they are incompatible.

We tested these contrasting predictions about the occurrence of the conjunction fallacy

using data from Experiment 1 in Costello and Watts (2014). This experiment asked

participants about the probability of various different weather events (such as sunny,

cloudy, cold, and so on), and about the probability of conjunctions of various different

pairs of those events. We expect that these conjunctions will have a relatively high

degree of compatibility, in terms of the quantum probability model, for two reasons.

First, people have a relatively large amount of experience with most of these conjunctions

(people are familiar with days that are rainy and cold, for example). Second, the same

background knowledge seems to be important in assessing the probability of different kinds

3Raw data from all 4 experiments are available online at https://osf.io/gz29m/
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of weather event (in assessing the likelihood that a given day will be cloudy, for example,

important background knowledge might be the time of year, the degree of wind, the level

of humidity, and so on; in assessing the likelihood that a day will be cold, the same

knowledge is important). Since these events match the requirements for compatibility

in the quantum probability account, it predicts low conjunction fallacy rates for these

events. The probability theory plus noise model, by contrast, predicts high fallacy rates

for some of these events: those where the average difference between P (A∧B) and P (A)

(or P (B)) is small or positive. (Note that the quantum probability model also predicts

that fallacy rates will be high for events where the average difference between P (A ∧ B)

and P (A) (or P (B)) is small, but only for incompatible events: for compatible events the

model predicts low fallacy occurrence in all cases.)

As a check, we test the assumption of compatibility in these materials. The pairs of

weather events A, B used in this experiment do not have a causal order (event A does

not necessarily happen before event B). Participants in the experiment, however, did give

different probability estimates for P (A) and P (B): for each pair some individual partici-

pants gave estimates where P (A) > P (B), while other participants gave estimates where

P (B) > P (A). The quantum model suggests that a particant who gave P (A) > P (B)

for a pair will use the ordering A then B when estimating that conjunctive probabil-

ity P (A ∧ B), while a participant who gave P (B) > P (A) for some pair will use the

ordering B then A when estimating that conjunctive probability. To test for incom-

patibility of a pair of events A and B we compare values of P (A ∧ B) for participants

who gave P (A) > P (B) (and so presumably used the ordering A then B) against val-

ues of P (A ∧ B) for participants who gave P (B) > P (A) (and so presumably used the

ordering B then A). If these two sets of values for P (A ∧ B) are significantly different,

we conclude that this pair of events would be counted as incompatible in the quantum
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probability model.

3.1 Participants

Participants were 83 students at the School of Computer Science and Informatics, UCD,

who participated as part of a course requirement. Participants had not taken part in any

previous studies of probability estimation or the conjunction fallacy.

3.2 Materials

This experiment gathered estimates PE(A), PE(B), PE(A∧B), PE(A∨B) and PE(A|B)

from 83 participants for 12 pairs A,B of weather events. Two sets of weather events (the

set ‘cloudy, windy, sunny, thundery’ and the set ‘cold, frosty, sleety’) were used to form

these pairs. These sets were selected so that they contained events of high, medium and

low probabilities. Conjunctive and disjunctive weather events were formed by pairing

each member of the first set with every member of the second set and placing ‘and’/‘or’

between the elements as required, generating weather events such as ‘cloudy and cold’,

‘cloudy and frosty’, and so on. One group of participants (N = 42) were asked questions

in terms of probability, of the form

• What is the probability that the weather will be W on a randomly-selected day in

Ireland?

for some weather event W . This weather event could be a single event such as ‘cloudy’, a

conjunctive event such as ‘cloudy and cold’ or a disjunctive event such as ‘cloudy or cold’.

The second group (N = 41) were asked questions in terms of frequency, of the form

• Imagine a set of 100 different days, selected at random. On how many of those 100

days do you think the weather in Ireland would be W?



SURPRISING RATIONALITY 30

where the weather events were as before. These two question forms were used because of

a range of previous work showing that frequency questions can reduce fallacies in people’s

probability judgments; the aim was to check whether this question form could eliminate

fallacy responses for everyday repeated events. (We also asked people to estimate condi-

tional probabilities for these events: we do not use those estimates here).

3.3 Procedure

Participants were given questions containing all single events and all conjunctive and

disjunctive events, with questions presented in random order on a web browser. Responses

were on an integer scale from 0 to 100 and were divided by 100 prior to analysis, and so

probability estimates were given in units of 0.01.

For every pair of weather events A,B used in the experiment, each participant gave

estimates for the two constituents A and B, and for their conjunction, disjunction and

conditional. Each participant gave these estimates for 12 such pairs.

3.4 Results

We analysed the data from this experiment by considering the relationship between av-

erage conjunction estimates and the minimum of average constituent estimates, and by

assessing the degree of incompatibility of the event pairs used (see Table 3). There was

little difference in fallacy rates between the ‘frequency format’ and ‘probability format’

forms of question, so for simplicity we collapse the groups together in our analysis.

Table 3 shows the rate of occurrence of the conjunction fallacy for the twelve A,B

event pairs, the average probability estimate for the two constituent events A and B

in the twelve event pairs, and the average probability estimate for their conjunction.

Events are ordered in each pair so that event B has a lower average probability estimate
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than event A. The table also shows the difference between the average estimate for the

conjunction A ∧ B and the average estimate for the lower constituent B: from Equation

7 this difference predicts the rate of conjunction fallacy occurrence in the probability

theory plus noise model. The table also shows overall conjunction fallacy rate for each

pair. Pairs are sorted in order of increasing value of the difference between conjunctive and

minimum constituent estimates. Fallacy rates were reliably predicted by this difference

(r = 0.93, p < 0.00001), just as predicted by the probability theory plus noise model.

Also just as predicted by the probability theory plus noise model, fallacy rates were less

than 50% in all cases where this difference was negative, and greater than 50% in all cases

where this difference was positive.

As Table 3 shows, the conjunction fallacy was frequent for conjunctions of these event

pairs (typically occurring at rates above 50%, indicating that more than half of partici-

pants produced the conjunction fallacy). This is problematic for the quantum probability

model, because these conjunctions meet the criteria for compatibility in that model (peo-

ple have a relatively large amount of experience with most of these conjunctions - people

in Ireland are familiar with days that are cloudy and cold, or cold and sunny - and the

same background knowledge seems to be important in assessing the probability of these

different weather events) and so the conjunction fallacy should not occur for these con-

junctions. For each of the 12 pairs of weather events A,B used in the experiment, we

divided participants into two groups (those who rated P (A) > P (B) and those who rated

P (B) > P (A)) and carried out an unpaired t-test comparing values for P (A∧B) in those

two groups. Responses from participants who rated P (A) = P (B) were excluded from

this analysis. Of these 12 t-tests, only one was significant at the p < 0.01 level, with no

correction for multiple comparisons; with Bonferroni correction, this pair was significant

at the p < 0.05 level, and no other pair showed a significant difference. The fact that
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there was no significant difference in values for P (A ∧ B) for the other 11 event pairs

suggests that these pairs are compatible, in line with our initial assumptions. The one

event pair that showed a significant difference in estimates for P (A∧B) between the two

groups (suggesting incompatiblity) also had the lowest rate of conjunction fallacy occur-

rence in the experiment. This again is problematic for the quantum probability model,

which predicts the conjunction fallacy only for incompatible events.

Taken together, these results are consistent with the probability theory plus noise

model, in that they show that fallacy rates are reliably related to the difference between

the average probability estimate for a conjunction and the minimum of the average prob-

ability estimates for the constituents of that conjunction. This pattern is just what we

would expect to see if the conjunction fallacy arises in individual estimates because those

estimates vary randomly around their average values.

These results give evidence against a fundamental proposal of the quantum probability

model: that the conjunction fallacy only occurs for conjunctions of incompatible events.

These results show that the conjunction fallacy can occur frequently for conjunctions

which we would expect to be compatible. Note, however, that these results depend on

a somewhat indirect test of incompatibility. In the next section we address this problem

by examining predictions of the quantum probability model that hold whether events are

compatible or incompatible.

4 Experiment 2: Probability theory Identities

In this section we assess the two models’ predictions for values of the probability theory

identities in Table 2. Recall that the probability theory plus noise model predicts that

values for these identities should be reliably positive for all pairs of events A and B.

The quantum probability model, by contrast, predicts that, if a given pair of events are
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Table 3: This table shows the conjunction fallacy rate for the twelve event pairs in Exper-
iment 1. The table also shows the average probability estimate for two constituent events
A and B in these pairs, along with the average probability estimate for their conjunction,
and the average difference between the estimate for the conjunction A ∧ B and for the
lower constituent B (positive values for this difference indicate the occurrence of the con-
junction fallacy in averaged data). Fallacy rates were reliably predicted by this difference
(r = 0.93, p < 0.00001), and fallacy rates were less than 50% in all cases where this dif-
ference was negative and greater than 50% in all cases where this difference was positive,
just as predicted by the probability theory plus noise model. Only one pair showed sta-
tistically significant evidence of incompatibility. Fallacy rates were relatively high across
all pairs, and indeed were lowest for the pair with significant evidence of incompatibility,
contrary to the quantum probability model.

A B PE(A) PE(B) PE(A ∧B) PE(A ∧B)− PE(B) Fallacy rate

cold windy 0.74 0.72 0.64 -0.08∗ 40 %
cloudy cold 0.75 0.74 0.67 -0.07∗ 46 %
sunny sleety∗∗ 0.39 0.24 0.18 -0.06 37 %
sunny frosty 0.39 0.31 0.28 -0.03 49 %
frosty thundery 0.31 0.17 0.19 0.02 51 %
sleety thundery 0.24 0.17 0.19 0.02 58 %
cloudy frosty 0.75 0.31 0.35 0.04 52 %
cold sunny 0.74 0.39 0.45 0.06 54 %

windy frosty 0.72 0.31 0.37 0.06 60 %
windy sleety 0.72 0.24 0.31 0.07∗ 61 %
cold thundery 0.74 0.17 0.28 0.11∗ 64 %

cloudy sleety 0.75 0.24 0.37 0.13∗ 66 %

∗Significantly different from 0 in a one-sample t-tests(significant at the 0.005 level
with no correction for multiple comparisons, significant at the 0.05 level with Bonfer-
roni correction). Positive values indicate that the average for P (A ∧ B) was reliably
greater than the average for P (B) (a conjunction fallacy at the average, rather than
the individual participant, level).
∗∗Significant difference between P (A∧B) for participants who judged P (A) > P (B)
and P (A ∧ B) for participants who judged P (B) > P (A) (unpaired t-test, t(79) =
3.12, p = 0.0026), suggesting incompatibility (significant at the 0.05 level with Bon-
ferroni correction).
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compatible, then all identities will have a value of 0. If the events are incompatible then

the quantum model predicts that all identities have a value of 0 but identities 1 and 3

(and identities 2 and 4) and these identities will have opposite signs (one positive, one

negative).

We tested these predictions using data from another experiment on conjunction and

disjunction fallacies (Experiment 2 in Costello and Watts, 2014). This experiment gath-

ered 68 participants’ estimates for P (A), P (B), P (A ∧ B), P (A ∨ B), P (A ∧ ¬B) and

P (¬A ∧ B) for 9 different pairs A,B of weather events (see Table 4). As in the previ-

ous experiment, we expect that these weather events will have a relatively high degree

of compatibility in terms of the quantum probability model, because people have a rel-

atively large amount of experience with these events, and because the same background

knowledge is important in assessing the probability of these weather events.

Materials were constructed and presented just as in the previous experiment. Half of

the participants saw ‘frequency format’ questions and half ‘probability format’ questions.

As in the previous experiment, participants were given questions containing all single

events and all conjunctive and disjunctive events, with questions presented in random

order on a web browser. Responses were on an integer scale from 0 to 100 and were

divided by 100 prior to analysis, and so probability estimates were given in units of 0.01.

4.1 Results

Two participants were excluded (one because they gave responses of 100 to all but 4 ques-

tions and the other because they gave responses of 0 to all but 2 questions), leaving 66

participants in total. For every pair of weather events A,B used in the experiment, each

participant gave probability estimates for the two constituents A and B and for every con-

junction/disjunction. For each participant we calculated the values of various identities
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from Table 2 for each of the nine pairs A,B. We also measured the degree of incompati-

bility between these event pairs just as in the previous experiment, by comparing, for each

event pair, the estimates for P (A ∧ B) given by participants who judged P (A) > P (B)

against the estimates for P (A ∧B) given by participants who judged P (A) < P (B).

Table 4 shows the average values obtained for the relevant identities for each of the 9

event pairs in the experiment. For each of these pairs, we divided participants into two

groups (those who rated P (A) > P (B) and those who rated P (B) > P (A)) and carried out

an unpaired t-test comparing values for P (A∧B) in those two groups (excluding responses

from participants who rated P (A) = P (B)). None of these tests were significant at the p <

0.01 level, with no correction for multiple comparisons; with Bonferroni correction, no pair

showed a significant difference, and so we have no significant evidence for incompatibility

among the events in these pairs. The quantum probability model predicts that values

for all identities should be 0 for compatible events. For each identitity and each event

pair, we carried out a single sample t-test comparing individual values for that identity

against 0. Since there are 9 event pairs, and 6 identities, this gives 45 separate t-tests.

All these t-tests were significant at at least the p < 0.001 level; with Bonferroni correction

for multiple comparisons, all these tests were significant at the 0.05 level (the adjusted

significance level for individual tests being 0.05/45 = 0.0011). Values for all identities were

reliably positive as predicted by the probability theory plus noise model and contrary to

the predictions of the quantum model.

The above analysis assumes that all pairs of events used in this experiment are essen-

tially compatible. Even if we assume that these pairs are in fact incompatible, however,

the results shown in Table 4 remain inconsistent with the quantum probability model.

Recall that, for a given pair of incompatible events, the quantum probability model pre-

dicts values of opposite signs (one positive, one negative) for identities 1 and 3 and for
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identities 2 and 4 (see Table 2), and predicts a value of 0 for identity 5. As Table 4 shows,

however, values for all these identities are positive, contradicting the quantum model’s

prediction and supporting the noise model.

The same difficulty for the quantum probability model arises even if we assume that

the degree of compatibility of a given pair of events varies from participant to participant.

In the quantum probability model, the degree of incompatibility of a given pair of events

A and B is given by the values of the quantum interference terms δA and δB: when these

terms are 0 the events are compatible, when one or other term differs from zero, the events

are incompatible. Assume, for a given pair of events A and B, that each participant i

has associated quantum interference terms δAi
and δBi

, which vary from participant to

participant. For a given participant i the value of identity 1, in the quantum probability

model, is equal to δAi
(see Table 2), and so across a set of n participants the average value

of identity 1 is

〈δA〉 =
1

n

n∑
δAi

Similarly, for participant i the value of identity 3, in the quantum probability model, is

equal to −δAi
and so across a set of n participants the average value of identity 1 is

1

n

n∑
−δAi

= −〈δA〉

The values of these two identities 1 and 3 in the quantum probability are thus necessarily

of opposite signs, irrespective of how compatibility varies individually across participants

(except in the case where 〈δA〉 = −〈δA〉 = 0). Since for participant i the value of identity

2, in the quantum probability model, is equal to δBi
and the value of identity 4 is equal

to −δBi
, exactly the same point applies to identities 2 and 4: in the quantum probability

the values of these identities must necessarily be of opposite signs, irrespective of how

compatibility varies individually across participants (except where 〈δB〉 = −〈δB〉 = 0). As
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Table 4 shows, however, the values of all these identities are in fact positive, contradicting

the predictions of the quantum probability model, and following the predictions of the

probability theory plus noise model.

Finally, the value of identity 5, in the quantum probability model, is expected to be

0 irrespective of the compatibility or incompatibility of events A and B (because this

identity does not involve any quantum interference terms). In the probability theory plus

noise model, by contrast, this identity is predicted to have a value of 2(d + ∆d) (that

is, twice the values of identities 1 . . . 4). The values in Table 4 are all positive and are

approximately twice the values for the other identities, supporting the noise model and

going against the quantum probability model.

4.2 Rates of noise

Our primary aim, in giving values for the identities in Table 4, is to test the conflicting

predictions of the quantum and the probability theory plus noise models. It is worth

noting also, however, that values for these identities reflect in some way the average

rate of assumed noise in that model (that is, reflect the average value of the assumed

parameters d and ∆d). The average noise rate suggested by these identities (around 0.25

in Table 4) seems, however, to be unreasonably high: in simulations fitting the model to

conjunction fallacy results from (Fisk and Pidgeon, 1996), we found the best match with

lower noise rates of around 0.1 (Costello and Watts, 2016a). One possible reason for the

relatively high rate of noise suggested by the average values for identities 1 . . . 4 comes

from the fact that the frequency distribution of values for these identities is significantly

skewed (see Figure 1). This skew means that the average is not an accurate indication

of the central tendency of this distribution: the distribution’s central tendency is better

reflected by its median or its mode, both of which give more reasonable estimates for
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the rate of noise in recall. The modal value for noise rate in this graph is around 0.1,

which is both more reasonable and more consistent with previous simulation results. We

return to this issue in our ‘simulations’ section, below. In the next section we describe an

experiment testing a different set of predictions of the quantum probability model: those

connected to the causal order of observables.

-0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5
0
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Figure 1: Frequency of occurrence of different values for Identities 1 . . . 4 in Experiment
2, grouped into ‘bins’ from v− 0.025 . . . v+ 0.025 for v from −0.5 to +1.5 in steps of 0.05.
According to the probability theory plus noise model, values of these identities represent
estimates of the underlying noise rate d+ ∆d. The mean value across all these identities
is around 0.25, initially suggesting a relatively high noise rate. Note, however, that this
distribution is significantly skewed, and so this mean value is not an accurate indication
of the central tendency of the distribution: the distribution’s central tendency is better
reflected by its median or its mode. The median value of this distribution is 0.2 and the
mode is 0.1: these values suggest lower rates of noise.
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5 Experiment 3: causally linked events

Recall that if two observables A and B are compatible then the quantum probability

model reduces exactly to standard probability theory, and so predicts agreement with

all probability theory identities and no conjunction fallacy occurrence. If observables A

and B are incompatible and are causally ordered so that A causes B in some way, then

the quantum probability model predicts that the conjunction fallacy should never occur

relative to causing events A or ¬A but can occur relative to subsequent caused events B

or ¬B. If the observables are incompatible the quantum model also predicts that values

of identities involving the causing event A (identities 1 and 3) should be 0, as required by

probability theory, while those involving the caused event B (identities 2 and 4) should

have opposite signs.

To test these predictions we gathered people’s estimates of probability of occurrence

for a range of causally linked events , and used these estimates to test these predictions.

These events are all constructed so that event A occurs before event B and so that

the occurrence of event A in some way causes (and so increases the likelihood of) the

subsequent event B.

Note that this design, where A causes B, imposes certain constraints on the probability

of B. To recognise that A is in some way a cause of B, the probability of B must be

higher in cases where A has occurred than otherwise: in other words, when A causes B

we have the requirement that P (B|A) > P (B). If P (B) is already high, this requirement

is hard to satisfy: if P (B) is already high then P (B) cannot be much higher in cases

where A has occurred, and so a causal link between A and B will not be seen. In other

words, our experimental design, because it is constructed to test causally linked events,

tends to exclude cases where P (B) is high. Recall, however, that in previous experimental
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results (and our model’s predictions), the conjunction fallacy occurs most frequently in

cases where P (B) is high (and P (A) is low). Our design will tend to exclude such cases,

and so we do not expect to see especially high conjunction fallacy rates for all materials

in this experiment.

5.1 Participants

Participants were 19 students at the School of Computer Science and Informatics, UCD,

who participated as part of a course requirement. Participants had not taken part in any

other probability estimation or conjunction fallacy studies.

5.2 Materials

This experiment asked participants to estimate the probability of events that could occur

in the relatively near future (relative to the experiment; the experiment took place in

September 2014). Events were grouped into 5 event-sets, with each set having two events

(event A and its negation ¬A) that would occur before and were in some way causally

linked to two other later-occurring events (event B and its negation ¬B). All events

included an explicit statement of the year in which the event would occur, to ensure that

the ordering of events was clear to participants. Each event set also contained all 4 possible

conjunctions of these basic events (conjunctive events A∧B,A∧¬B,¬A∧B,¬A∧¬B),

and also contained the disjunctive event A ∨ B. For example, in set 1 the A and ¬A

events were

• The Irish Government increases taxes on cigarettes in the next budget (October

2014)

• The Irish Government does NOT increase taxes on cigarettes in the next budget

(October 2014)
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and the B and ¬B events were

• Smoking rates in Ireland decrease significantly in 2015

• Smoking rates in Ireland do NOT decrease significantly in 2015

and conjunctive and disjunctive events were constructed by placing ‘AND’ or ‘OR’ be-

tween these events. The A, ¬A and B, ¬B events in each event-set are shown in Table

5.

5.3 Procedure

Each event-set contained 9 events in total (4 constituents, 4 conjunctions, and 1 disjunc-

tion). Participants were asked to estimate the probability of each of these 9 events, for

all 5 event sets (giving 45 probability estimations in total). Questions were presented

in a printed booklet. On each page of the booklet there were 4 boxes, with each box

containing a statement of one of these 45 events followed by the question

What is the probability (the chance) that the above statement will come true?

(give your answer on a scale from 0% to 100%)

Events were presented in a different random order for each participant, with the con-

straint that events from the same event-set did not occur on the same page. The booklet

took about 30 minutes to complete.

5.4 Results

Participants gave their probability estimates on a percentage scale going from 0% to

100%. Before analysis we transformed these estimates to the 0 to 1 probability scale

by dividing by 100. We analysed participants responses by considering the occurrences

of the conjunction fallacy in participants’ individual responses for causing events and
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consequent events (as in Table 1), and by considering the individual values obtained for

the probability theory identities of interest (from Table 2).

For each event-set in this experiment there are 4 conjunctions (A ∧B, A ∧ ¬B, ¬A ∧

B, ¬A ∧ ¬B) each of which has 2 constituents. There are thus 8 distinct constituent-

conjunction pairs for each event sets (those given in Table 1). The conjunction fallacy

can potentially occur for all 8 of these cases. Table 6 shows the rate of occurrence of the

conjunction fallacy for all eight of these cases for each event set (that is, the proportion

of participants who judged P (A) < P (A ∧ B) or P (B) < P (A ∧ B), P (A) < P (A ∧ ¬B)

and so on, for that event-set). The organisation of Table 6 follows that of Table 1, with

conjunction fallacy rates relative to a causing event (A) in the left column, and fallacy

rates relative to a caused event (B) in the right column. As in Table 1, the paired left and

right (causing and caused) cases in this table are predicted to have related conjunction

fallacy rates in the probability theory plus noise model, while the quantum model predicts

no fallacies relative to the causing event A.

Table 1 also shows

As can be seen from this table, a wide range of conjunction fallacy rates occurred in the

experiment. Recall that the quantum probability model predicts no conjunction fallacy

occurrence relative to the causing event A (the constituent-conjunction pairs in the left

column), but predicts fallacy occurrence relative to the caused event B (the pairs in the

right column). The probability theory plus noise model predicts that the fallacy will occur

in both columns at a rate linear with the conjunction-constituent probability difference,

and with the fallacy occurring at a rate over 50% when this difference is positive. The

model also predicts the same overall average fallacy rate for both columns, and predicts

a positive correlation between fallacy rates in the left and right columns.

The results seen in Table 6 go against the quantum probability model’s predictions,
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Table 6: Conjunction fallacy rates, and average conjunction versus constituent probability
differences, for each of the 8 possible constituent-conjunction pairs from Table 1 and each
of the 5 event sets used in Experiment 3. The quantum probability model predicts no
conjunction fallacy occurrence relative to causing events A and ¬A (the constituent-
conjunction pairs in the left column), but predicts fallacy occurrence relative to caused
events B and ¬B (the pairs in the right column). The probability theory plus noise model
predicts that the fallacy will occur in both columns, at a rate related to the conjunction-
constituent probability difference, with the fallacy occurring at a rate over 50% when this
difference is positive. The model also predicts the same overall average fallacy rate for
both columns.

Fallacies relative to causing events Fallacies relative to caused events

event set Probability difference fallacy rate Probability difference fallacy rate

P (A ∧B) vs P (A) P (¬A ∧ ¬B) vs P (¬B)

1 -0.14 16 % -0.09 37 %
2 -0.29∗ 11 % -0.2 32 %
3 -0.22 26 % -0.01 32 %
4 -0.1 16 % -0.07 16 %
5 -0.17∗ 5 % -0.01 21 %

P (A ∧ ¬B) vs P (A) P (¬A ∧B) vs P (B)

1 -0.24 26 % -0.11 11 %
2 -0.22 21 % 0.13 16 %
3 -0.27∗ 11 % -0.1 32 %
4 -0.17 11 % -0.12 5 %
5 -0.15 0 % -0.12 11 %

P (¬A ∧B) vs P (¬A) P (A ∧ ¬B) vs P (¬B)

1 0.08 63 % 0.05 47 %
2 0.06 58 % -0.06 32 %
3 0.23∗ 89 % 0.26∗ 84 %
4 0.08 63 % 0.06 42 %
5 0.08 53 % 0.07 58 %

P (¬A ∧ ¬B) vs P (¬A) P (A ∧B) vs P (B)

1 0.06 26 % -0.01 26 %
2 0.18 68 % 0.06 37 %
3 0.06 58 % -0.05 32 %
4 -0.01 37 % -0.05 21 %
5 -0.02 16 % -0.14 5 %

Average fallacy rate 33.7% 29.7%

∗ Significantly different from 0 in a one-sample t-test(at the 0.005 level with no correction for
multiple comparisons, at the 0.05 level with Bonferroni correction). Positive values indicate a
conjunction fallacy at the average, rather than the individual participant, level.
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and support the probability theory plus noise model. There was no difference between the

rate of fallacy occurrence in the left column, causing-event cases (mean conjunction fallacy

rate of 33.7%, SD = 25.6) and the fallacy rate in the right column, caused-event cases

(mean conjunction fallacy rate of 29.7%, SD = 18.1; t(19) = 0.29, p > 0.1 in a paired

t-test). There was a reliable correlation between fallacy rates for paired causing-event (left

column) and caused event (right column) cases (r(19) = 0.76, p = 0.00015), supporting

the probability theory plus noise prediction that these fallacy rates would be positively

related. There was a reliable correlation between conjunction-constituent differences and

fallacy rates in the left column (r(19) = 0.85, p < 0.0000001) and in the right column

(r(19) = 0.70, p = 0.0006), as predicted by the probability theory plus noise model. Of

the 14 individual cases where the conjunction-constituent difference was positive, 9 had

a fallacy rate greater than 50% (as predicted by the noise model); all of the 26 individual

cases where the conjunction-constituent difference was negative also had a fallacy rate

less than 50% (again, as predicted by the noise model).

To test the two models’ competing predictions about the probability theory identities

in Table 2, we calculated, for each event-set and each individual participant, the values

obtained by substituting into each identity that participant’s estimates for probabilities

in that event set. For example, for the event-set 1 (increase in taxes on cigarettes in 2014,

and subsequent decrease in smoking rates in 2015) and the identity P (A ∧ B) + P (A ∧

¬B)− P (A)) we calculated the value of the expression

P(taxes increase AND smoking rates decrease)

+ P(taxes increase AND smoking rates do NOT decrease) − P(taxes increase)

for each participant. We carried out similar calculations for all other identities in Table

2 and all other event-sets. We carried out 30 one-sample t-tests comparing the values

obtained for each identity in each event set against 0, the value predicted for those iden-
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tities in the quantum probability model. Table 7 shows the average value obtained for

each identity in each event set, and the results of these comparisions. In each event-set,

average values obtained for all identities were positive and significantly different from 0,

as predicted by the probability theory plus noise model (p < 0.01 in all cases). With

Bonferroni correction for multiple comparisons, all but 2 of these tests were significant at

the 0.05 level (the adjusted significance level for individual tests being 0.05/30 = 0.0017:

all but 2 tests had p values less than this value). The quantum probability model predicts

a value of 0 for identities involving the causing event A (identities 1 and 3), and values of

differing signs for identities involving the caused event B (identities 2 and 4): the results

contradict these predictions. Finally, values obtained for identities 5 and 6 were twice

as positive as those for other identities, as predicted by the probability theory plus noise

model and contrary to the quantum model (p < 0.0001 in all cases).

6 Experiment 4: direct conjunction fallacy tests

The previous three experiments give a range of evidence, involving the value of various

probability theory identities and the occurrence of the conjunction fallacy, that contra-

dict the quantum probability model (Busemeyer et al., 2011), and support the probability

theory plus noise model (Costello and Watts, 2014, 2016b,c). One possible concern about

this evidence is that our assessment of the conjunction fallacy in these experiments was

indirect, and did not follow the approach used in many well known studies of the conjunc-

tion fallacy, such as Tversky and Kahneman’s Linda example. Where our experiments

asked people to assess conjunctive and constituent probabilities separately, those studies

typically present conjunctive and constituent statements together, and ask participants to

rank them in order of probability. Another concern is that our experiments involved quite

large numbers of probability judgments and responses, and so participants’ responses
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could have been distorted by effects of fatigue or loss of interest in the task. In this

experiment we address these concerns by carrying out a direct assessment of conjunction

fallacy rates in a standard probability ranking task that that took participants around 5

minutes to complete.

As in the previous experiment, the materials used here were designed so that event A

occurred before, and in some way caused, event B. As before, this design tends to exclude

cases where P (B) is high, and again we do not expect to see especially high conjunction

fallacy rates in this experiment.

6.1 Participants

We recruited 100 American participants via Amazons Mechanical Turk (mTurk), an online

marketplace for crowdsourcing tasks, including psychological experiments. Participants

had to be 18 years or older to be eligible for participation. On average, participants were

37.48 (SD = 12.25) years old and 46% female. All participants indicated English as their

native language, except one person who declined to answer.

6.2 Materials

A set of six problems was used in this experiment. Each problem consisted of a short

scenario along with an event-set of four statements arrayed in a vertical list. The event-set

included statements for events A, B, A∧B and one thematically related filler statement.

The scenarios and corresponding events A and B are listed in Table 8. We designed the

materials to maximally discriminate between the noise and quantum model. In particu-

lar, event A was selected to be a cause of event B; additionally, the statements clearly

indicated that events A and B occurred in temporal succession. Since A causes B and

occurs before B, in the quantum probability model A will be first observable and B the
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second observable. The quantum probability model thus predicts no violations of prob-

ability theory relative to event A: and in particular, no occurrence of the conjunction

fallacy relative to A. The quantum probability model does allow conjunction fallacy to

occur relative to event B. The probability theory plus noise model, by contrast, allows

for occurrence of the conjunction fallacy for both A and B.

One potential concern with conducting research on mTurk is that the quality of data

may be lower than that of standard laboratory studies. To allay these concerns, we

included a catch question from Wolfe and Fisher (2013) designed to distinguish purposeful

from haphazard responding. The catch question describes the following scenario then asks

participants to rate the probability of a highly improbable event on a scale of 0 to 100:

Richard is an avid skier and spends 90% of his vacations skiing. Today he has

plane tickets to Aspen, Colorado and has been looking forward to this weekend

trip for months. Unfortunately, Richard had a bad accident in which he broke

both of his legs and is in a coma. What is the probability that Richard will

go skiing this weekend?

The objectively correct answer is 0 because Richard has two broken legs and is in a coma.

One advantage of this question is that the objectively correct answer provides a basis

for determining whether participants were attentive and taking the task seriously. Catch

questions similar to the one above have been shown to separate good from bad quality

data in terms of internal consistency and replicability of classic effects (Aust et al., 2013).

A second causal-link task was used to assess whether event A was perceived to be a

cause of event B. In this task participants judged the degree and direction of causation

between events A and B on the following scale: (7) Event A is a strong cause of B; (6)

Event A is a moderate cause of event B; (5) Event A is a weak cause of event B; (4)

Event A does not cause event B and event B does not cause event A; (3) Event B is a



SURPRISING RATIONALITY 51

Table 8: Scenarios and events A and B used in Experiment 4.

Scenario A event B event

1 Michael works as a finan-
cial advisor and enjoys
reading and doing puz-
zles in his downtime.

Michael has been eating
a pint of ice cream for
dessert on a regular ba-
sis.

Michael will become
overweight in the next
year.

2 Andrew is 32 and lives
with his wife and two
children, who are 1 and
3 years old.

Andrew has recently be-
gan to use steroids.

Andrew will be able to
bench press two-thirds of
his body weight during
his physical examination.

3 Jason has worked as a
taxi driver in New York
city for the past 25 years.

Jason was recently laid-
off from his job.

Jason will have high
stress in the next month.

4 Stephanie is a college
sophomore and will be
giving a big presentation
in her biology class next
week

Stephanie has been diag-
nosed with social anxiety
disorder in the past.

Stephanie will be very
nervous during her pre-
sentation next week.

5 Jerry is 60 years old and
works as an electrician.

Jerry recently won 10
million dollars in the lot-
tery.

Jerry will retire within
the next 5 years.

6 Steven is 43 years old and
lives in Minnesota.

Steven has been diag-
nosed with an auto-
immune disease in the
past.

Steven will become sick
with the flu this coming
winter.
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weak cause of event A; (2) Event B is a moderate cause of event A; (1) Event B is a

strong cause of event A.

A demographic questionnaire asked participants their age, gender, race, level of edu-

cation and familiarity with probability and statistics, and whether English was his or her

native language.

6.3 Procedure

Participants self-selected into Experiment 4 on mTurk. First, participants read instruc-

tions informing them to read each scenario carefully and rank order a vertical set of state-

ments from most likely at the top to least likely at the bottom by dragging and dropping

the statements into the desired order. Participants then completed a simple practice

trial to familiarise themselves with the experimental layout and ensure they understood

the instructions. The practice trial instructed participants to rank order a vertical list

of numbers from largest at the top to smallest at the bottom. Participants could not

proceed to the experiment until they provided the correct rank order. Next, participants

completed the probability rank order task. The problems were presented in a different

randomised order for each participant. Each problem was presented on a separate page,

with the scenario located at the top and the list of four statements arrayed vertically

below the scenario. The statements were also randomised for each participant. After

completing the probability rank order task, participants completed the casual-link task in

which they rated the degree and direction of causation between events A and B for each

problem. The order of questions for the casual-link task was randomised and presented

on a separate page. Finally, participants completed the demographic questionnaire and

were paid 20 cents for their participation. Most participants completed the experiment

in 2-6 minutes.
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6.4 Results

15 participants failed to give the correct answer to the catch question and were excluded

from analysis. This left 85 participants in total.

Results from the causal-link task showed that participants typically saw event A as a

strong or moderate cause of event B. The mean judgement on the ‘direction of causation’

scale was greater than 5 for the A,B pairs in every scenario, and was significantly different

from the neutral value of 4 in every scenario (p < 0.001 in a one-sample t-test). Since

participants typically saw event A as a moderate or strong cause of event B, and since

event A was explicitly described as occurring before event B in each scenario, the quantum

probability model predicts no conjunction fallacy occurrence relative to event A, but

allows fallacy occurrence relative to event B. The probability theory plus noise model

predicts that the conjunction fallacy can occur relative to either event.

The conjunction fallacy occurred fairly frequently in participants’ responses. 64% of

participants gave a conjunction fallacy response in at least 1 scenario they saw, and 46%

of participants gave a fallacy response to at least 2 scenarios (out of the 6 scenarios in

total). 36% of participants did avoid the fallacy entirely, however.

The conjunction fallacy occurred more frequently for the causing event A than for

the caused event B. 48% of participants gave at least one conjunction fallacy response

relative to A, while 42% of participants gave at least one fallacy response relative to

B; 33% of participants gave two or more conjunction fallacy responses relative to A,

while 18% of participants gave two or more fallacy responses relative to B. Table 9

shows the rates of conjunction fallacy occurrence relative to A and B for the six scenarios

used in the experiment. As this table shows, fallacy rates were not lower for event A

than event B: there were two scenarios where participants gave significantly more fallacy

responses relative to A than to B (p < 0.01 in McNeary’s Chi-squared test for equality of
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Table 9: Proportion of conjunction fallacy occurrences relative to causing event A (A∧B
ranked as more likely than A) and relative to caused event B (A∧B ranked as more likely
than B), for the six scenarios used in Experiment 4.

Scenario

Fallacy relative to 1 2 3 4 5 6 overall

All pairs

causing event A 12% 12% 25% 24%∗ 21%∗ 15% 18%
caused event B 25%∗ 16% 14% 7% 6% 12% 13%

Only pairs where A was judged as being a ‘strong cause’ of B

causing event A 11% 5% 30%∗∗ 18% 28%∗∗ 21% 17%
caused event B 29%∗∗ 20% 13% 8% 6% 18% 17%

∗p < 0.01,∗∗ p < 0.05, significance of difference between causing event and caused event
fallacy rates in this scenario (McNeary’s Chi-squared test for equality of proportions).
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proportions).

These results are problematic for the quantum probability model, which predicts no

fallacy responses relative to the causing event A. Participants judgments of the causal link

between A and B did vary, however. It could be that the problematic fallacy occurrence

for the causing event A arise from situations where participants did not, in fact, judge

event A as definitely a cause of event B. To test this, we carried out a second analysis

where we included an individual participant’s probability rankings in a given scenario

only if that participant judged the A event in that scenario as a ‘strong cause’ of event B

(if the participant gave a response of 7 in the causal-link task for that scenario). Table 9

also shows the rates of conjunction fallacy occurrence relative to A and B in this selected

subset of responses, for the six scenarios used in the experiment. Overall, fallacy rates

were equal for events A and B. As before, there were two scenarios where participants

gave significantly more fallacy responses relative to A than to B (p < 0.05 in McNeary’s

Chi-squared test for equality of proportions). These results are difficult for the quantum

probability model to explain.

7 Simulation of Experiments 1 and 2

The above experiments tested a series of specific contrasting predictions of the quantum

and noise accounts, and gave results confirming the noise model’s predictions while con-

tradicting those of the quantum account. In this section we examine the noise model’s

ability to account for the data in these experiments more generally, by applying a Monte

Carlo simulation of the model to the data from Experiments 1 and 2.

We first wrote a computer program that simulates the process by which, in the noise

model, an individual produces probability estimates associated with a given pair of events

A and B. This ‘single-individual’ simulation program takes as input three parameters
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PI(A), PI(B), and PI(A ∧ B) (representing the ‘true’ underlying probabilities of events

A, B and A ∧ B: the proportion of A, B, and A ∧ B events that the ‘individual’ has

seen), two parameters d and ∆d (representing the rate of noise in that individual’s prob-

ability estimation), and one parameter S representing the sample size used in probability

estimation.

The ‘true’ underlying probabilities PI(A), PI(B), and PI(A∧B) input to this program

are constrained to satisfy the requirements of standard probability theory (so that each

falls betwen 0 and 1, and PI(A) + PI(B) − 1 ≤ PI(A ∧ B) ≤ Min(PI(A) + PI(B)). All

other true probabilities ( PI(A ∧ ¬B),PI(¬A ∧ B), PI(A ∨ B), and so on) are calculated

from these input probabilities using the equations of standard probability theory. This

means that each single-individual simulation program contains a set of true underlying

probabilities that are fully constituent with the requirements of probability theory.

For a given set of input parameters,this simulation program produces an estimate

for some probability P (A) by drawing a random sample of S events from a Bernoulli

distribution with a p = PI(A) chance of returning 1 and 1 − p chance of returning 0.

The program then counts the number of 1’s in this sample, with a random chance d of

miscounting (counting 1 as 0, or 0 as 1 ): the program’s estimate PE(A) is equal to this

count divided by the sample size S. When estimating the probability of a combined event

such as P (A∧B), the program uses the same process but with parameter p = PI(A∧B)

for the Bernoulli distribution, and with d + ∆d as the chance of randomly miscounting

an item.

We use this single-individual simulation program to test the extent to which the prob-

ability theory plus noise model can match the data seen our experiments: matching the

observed conjunction fallacy rates for different event pairs, for example, or the distribution

of probability estimates for a given pair, or the distribution of values for the identities as



SURPRISING RATIONALITY 57

in Figure 1. To simulate probability estimates from multiple experimental participants for

a given event pair A, B, we produced multiple instances of this single-individual program,

giving each instance randomly-selected values for the noise parameters d and ∆d. Values

for d were selected randomly from a uniform distribution between 0 and 0.25 (based on

the assumption that noise in reasoning does not occur at particularly high rates). Values

for ∆d were selected randomly from a uniform distribution between 0 and 0.1 (based on

our assumption that ∆d is less than d). Each such instance was intended to represent an

individual participant with an individual rate of noise in recall. For simplicity we fixed

the sample size paramter S at 25 for all instances of this program.

We also needed to give each individual instance of this program (each individual

simulated participant) values for the parameters PI(A), PI(B) and PI(A ∧ B) (values

representing the ‘true’ observed probability of those events). We assume that these ‘true’

values vary from participant to participant (due to different experience with the events

in question), and so should vary from instance to instance. Since we do not have access

to these ‘true’ probabilities of these events, we dervied suitable input probabilities for

a given event pair A B using the mean and standard deviation of probability estimates

given by actual experimental participants for that pair. For a given pair A B, we ob-

tained MP (A), SDP (A), MP (B), SDP (B) and MP (A∧B), SDP (A∧B) (the means and standard

deviations of participants’ estimates for those events in Experiments 1 or 2) . For each

instance of our program (each simulated participant), we drew a random sample EA from

a Gaussian distribution with parameters MP (A), SDP (A), a random sample EB from a

Gaussian distribution with parameters MP (B), SDP (B), and a random sample EA∧B from

a Gaussian distribution with parameters MP (A∧B), SDP (A∧B). We then transformed these

sample estimates to underlying ‘true’ probabilities, using the expressions

PI(A) =
EA − d
1− 2d
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PI(A) =
EB − d
1− 2d

PI(A ∧B) =
EA∧B − (d+ ∆d)

1− 2(d+ ∆d)

where d and ∆d represent the values of the noise parameters for the current simulated

participant (the current instance of the program). To ensure that these ‘true’ probabilities

were consistent with the requirements of probability theory, if the obtained value for

PI(A ∧ B) was greater than the minimum of PI(A) and PI(B), or was less than either 0

or PI(A) + PI(B) − 1 (and so was inconsistent with probability theory’s requirements),

we adjusted PI(A ∧B) to the closest value that satisfied these requirements.

These expressions for PI(A), PI(B) and PI(A ∧ B) represent the inverse of our ex-

pressions for the average value of a noisy probability estimate (Equation 3 and 5), and so

with these input probabilities the average estimate produced by a given simulated par-

ticipant should equal the original sampled values EA EB and EA∧B for that participant.

Since these sampled values EA, EB and EA∧B are drawn from Gaussian distributions with

Means and Standard Deviations matching those seen in the experiments, this simulation

procedure produces a set of simulated participants (individual instances of the simulation

program) with different noise rates d and ∆d and with different ‘true’ probabilities PI(A),

PI(B) and PI(A ∧ B), but for which the Mean and Standard Deviation of estimates for

some probability P (A) across these simulated participants should agree with the observed

Mean and Standard Deviation for estimates for P (A) given by actual participants in the

experiments.

7.1 Simulation results

We tested this simulation by applying it to experimental data from the combined set

of 21 event pairs from Experiments 1 and 2 (the 12 A,B pairs listed in Table 1, plus
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the 9 pairs in Table 4).4 For each pair we generated 10, 000 instances of the simulation

program (10, 000 simulated participants) with randomly selected values for parameters d

and ∆d, with the sample size parameter set at 25, and with input probabilities drawn

from Gaussian distributions with Means and SDs of participants’ probability estimates

for the event pair in question. Each of these instances generated individual probability

estimates pe(A), pe(B),pe(A ∧ B),pe(A ∧ ¬B), and so on. We compared the Means and

SD of these simulation estimates against the Means and SDs of of participants estimates

in the experiments. For each instance we recorded whether these estimates produced a

conjunction fallacy (pe(A ∧B) greater than pe(A) or pe(B)): we compared the simulated

conjunction fallacy rate for each event pair (the percentage of instances that produced a

conjunction fallacy) with the observed fallacy rate for that pair in the experiments. For

each instance we also calculated values for identities 1 to 4 (values which, in the noise

model, represent an estimate for the noise parameter d): the distribution of values for

these identities across the full set of pairs was compared with the observed distribution

of these values seen in the experiments.

Across all these event pairs there was little difference between participants’ average

estimates for P (A),P (B) and P (A∧B) and the simulation’s average estimates (Root Mean

Squared Difference between experimental and simulated probability estimates was 0.03,

correlation between experimental and simulated probability estimates was r = 0.99, p <

0.00001). Similarly, there was little difference between the SD of participants’ estimates for

P (A),P (B) and P (A∧B) and the SD of simulated estimates (RMSD between experimental

and simulated SD was 0.04, correlation between experimental and simulated SDs was

r = 0.27, p < 0.05).

4We do not apply this simulation to Experiments 3 and 4 because Experiment 3 does not provide
enough data to confidently estimate SD values (which are required for the simulation) and because
Experiment 4 does not provide probability estimates or SD values.
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Across all event pairs there was little difference between participants’ conjunction

fallacy rates and the simulation’s fallacy rates: on average, the simulated fallacy rate

for a given pair differed from the observed fallacy rate by around 7 percentage points

(the average absolute difference between experimental and simulated fallacy rates was 7.2

percentage points), and there was a reliable correlation between observed and simulated

fallacy rates (r = 0.64, p = 0.0016).
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Figure 2: Frequency of occurrence of different values for Identities 1 . . . 4 in the simulation,
grouped into ‘bins’ from v − 0.025 . . . v + 0.025 for v from −0.5 to +1.5 in steps of 0.05.
The distribution of these values follows the pattern of distribution of these values in
the Experiments (compare with Figure 1), showing a noticable rightward skew and the
occurence of a tail of values less than 0. The mode of this distribution was 0.1, the median
0.14, and the average 0.19.

The distribution of simulated values for identities 1 to 4 is shown in Figure 2. This

distribution had a form similar to that seen for values for these identities in Experiment

2 (see Figure 1): both distributions are noticably skewed to the right with a tail of values

falling below 0. Despite the noise rate d being constrained to fall between 0 and 0.25 for

all simulated participants, values for d estimated from identities 1 to 4 in this simulation
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could fall below 0 or above 0.5, purely due to random variation in estimates (just as seen

in the results from Experiment 2).

These simulation results show that this set of simulated ‘normative but noisy’ partici-

pants produce probability estimates that match the patterns seen in people’s probability

estimates in our experiments (agreeing with people in terms of the Means and SDs of

estimates, in terms of the rate of conjunction fallacy occurrence, and in terms of the dis-

tribution of values for identities 1 to 4). It is important to stress that every ‘participant’

(each individual program instance) in this simulation was constrained to have a set of

‘true’ underlying probability values that were fully consistent with all the requirements of

standard probability theory (that were fully normative). This simulation shows, in other

words, a set of simulated participants who are fully normative in their underlying ‘true’

probability representations (but subject to random noise), can give an accurate account

of the general patterns of response seen in our experiments. In particular this simula-

tion shows that random noise in an otherwise normatively correct reasoning process can

produce deviations from the requirements of probability theory (in terms of conjunction

fallacy occurence and in terms of values for identities 1 to 4) that match the deviations

seen in our experimental results.

8 General Discussion

We can draw a number of specific conclusions from the results of these 4 experiments.

First, these results give strong evidence against the quantum probability model’s predic-

tions about relationship between people’s probability estimates (that is, about the values

of identities formed from those estimates). That model predicts that, when people’s

probability estimates are combined in the identities shown in Table 2, the resulting values

for most of those identities will be 0 (irrespective of the compatibility or incompatibil-
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ity of events). This is because, even for incompatible events, most these identities will

not involve any quantum interference term and so will have values of 0 as required by

standard probability theory. For incompatible events, two of these identities will involve

interference terms and so will have non-zero values. For these identities the quantum

model predicts values of opposite signs (because these two identities both involve the

same quantum interference term, but with opposite signs). Contrary to these predictions,

the results show that when people’s probability estimates are combined in these identities,

the values obtained are reliably positive for all identities and all event pairs: no identities

have values equal to 0, and no values have opposite signs. This is contrary to the quantum

model, but is just as predicted by the probability theory plus noise model.

The results also give evidence against the quantum probabilty model’s account of the

conjunction fallacy in people’s probability estimates. That model predicts that, when

event A in some way causes event B, the conjunction fallacy should only occur relative

to the caused event B and should never occur relative to the causing event A. This is

because, in the quantum probability model, the conjunction fallacy arises as a consequence

of quantum interference effects, which only occur for the caused event B. Contrary to

this prediction, results from experiments studying conjunction fallacy rates for events

specifically designed so that A in some way causes B show that the conjunction fallacy

arises just as frequently for causing events as it does for caused events. This is just as

predicted by the probability theory plus noise model.

It is important to note, however, that conjunctive fallacy rates were not especially high

in these events overall (as a necessary consquence of the causal design). This may leave the

way open for some extension of the quantum model (possibly involving noise) to account

for conjunction fallacy occurrence in both causing and causal events. Such an extension

would face two serious challenges. First, to explain why fallacy rates are approximately
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equal in causing and caused events in our experiments, an extended quantum model would

need to somehow counteract the effect of the quantum interference term (which applies

only to caused events) to produce the observed equality. Second, to explain why identities

1 and 3 (and 2 and 4) have positive values for all events in our experiments even though

the quantum model predicts that they will have opposite signs, such an extended model

would need to reverse the effect of the quantum interference term for one identity while

leaving the effect unchanged for the other identity. It is not clear to us how such an

extension to the quantum model can be produced.

These results support, or at least do not contradict, our theoretical proposal in the

probability theory plus noise model, which is that human probabilistic reasoning is based

on a fundamentally rational process (one that follows frequentist probability theory) that

is subject to random noise. It is important to stress that we not suggesting that people

are consciously aware of the equations of probability theory when estimating probabilities.

That is clearly not the case, given the high rates of conjunction fallacy occurrence in peo-

ple’s judgments for some events. Instead we propose that people’s probability judgments

are derived from a ‘black box’ that estimates the probability of an event by retrieving

(some analogue of) a count of instances of that event from memory. Such a mechanism

is necessarily subject to the requirements of set theory and therefore embodies the rules

of probability theory.

It is equally important to stress that we are not suggesting that people’s probabil-

ity estimates are themselves rational. Again, this is clearly not the case: there is very

extensive evidence demonstrating that people’s probability estimates are systematically

biased away from the requirements of probability theory. We argue that these biases are

a consequence of the influence of random noise on the probability estimates generated by

an underlying rational process. While this noise is random, it has systematic, directional
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effects: for example, our noisy model’s expected averages for probability estimates are

systematically biased away from the ‘true’ probability values, in a way that seems to

match the biases seen in people’s estimates.

Finally, we must be clear that we do not propose this model as fully-complete and final

account of probabilistic reasoning. Instead, we see this model as one step in a series of

approximations which will, hopefully, describe probabilistic reasoning in increasing detail

and precision. As such, the model is clearly open to criticism. Some criticisms have

already been presented (see Nilsson et al., 2016, Crupi and Tentori, 2015) and addressed

(see Costello and Watts, 2016c). Further possible criticisms are worth addressing here.

The first concerns the model’s parameters d and ∆d, representing the rate of random error

in the frequentist counting process behind probability estimation. This noise rates are

an assumption of the model: it seems relatively reasonable that there would be random

error in the cognitive processes of probability estimation, but we have no direct evidence

that such random error actually occurs. Our attempt to estimate noise rates via values

of the identities 1 . . . 4 is quite indirect: one aim for future work is to investigate the rate

of noise in probability estimation more directly.

A second criticism concerns order effects in sequential judgment. Recall that one of

the contributions the quantum probability model makes is to provide an account for order

effects in people’s judgments, where, for example, people give one value for P (A) when

asked questions in the order P (A) and then P (B), but a different value when asked in

the order P (B) and then P (A). The probability theory plus noise model clearly does not

account for (and is not intended to account for) such sequential effects: it assumes each

probability estimate is a single judgment, produced by sampling a random set of items

from memory and counting the proportion of A’s in that sample, that is independent

and separate from all other judgments. There are various ways in which the noise model
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can extend to address sequential judgment effects. One way would be to introduce the

possibility of error in the production of random samples, whereby items that have recently

been used are ‘primed’ and so having a higher chance of being accidentally included in

such a random sample. Such an extension to the sampling process would allow the

estimate given for some probability P (A) to be influenced by judgment order in a natural

way, within the overall framework of approximation that the probability theory plus

noise model provides. Another aim for future work is to extend the model in this way

(by providing a more accurate approximation of the processes of random sampling in

sequential judgments).

Finally, a third criticism concerns the role of ‘inductive confirmation’ in the conjunction

fallacy. As we noted earlier, Tentori et al. (2013) provide experimental evidence suggesting

that the degree of inductive confirmation between the constituents of a conjunction (or

between some framing scenario and one of those constituents) is the prime determinant

of conjunction fallacy occurrence. This ‘inductive confirmation’ proposal clearly goes

against our model’s account, in which the conjunction fallacy arises due to regression

in conjunctive probability judgments (caused by purely random noise), and in which

inductive confirmation plays no explicit role. This inductive confirmation account is

currently somewhat controversial in the literature, with both Busemeyer et al. (2015)

and Costello and Watts (2016c) pointing to various experimental results that seem to

contradict the inductive confirmation proposal, and with Costello and Watts (2016c)

showing that Tentori et al.’s ‘inductive confirmation’ results can arise in the probability

theory plus noise model, at least for a certain range of values for the noise parameters d and

∆d. This last result, while it shows that the noise model is at least potentially consistent

with Tentori et al.’s results, is to some extent unconvincing without some theoretical

justification for these noise parameter values. An aim for future work is to investigate the
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inductive confirmation account more fully both in terms of its experimental predictions

and, more specifically, in terms of theoretical motivation for the range of noise parameter

values that produce inductive confirmation results in the noise model.

More generally, our proposal has broader implications for research on patterns of bias

in aspects of people’s probabilistic decision-making. A common pattern in such research

is to identify a systematic bias in people’s probability estimates, and to then take that

bias as evidence that people do not reason via the rules of probability theory but instead

use some alternative, normatively incorrect, heuristic process. The conjunction fallacy

is a major locus of this pattern. Our results, however, suggest that this leap from an

observed bias to an inferred heuristic (motivated by, and intended to explain, that bias)

is premature. This is because random noise in reasoning can cause systematic biases in

people’s responses even when people are using normatively correct reasoning processes,

and so there is little need to propose an alternative heuristic to explain those biases

(see Budescu et al., 1997, Erev et al., 1994, for similar arguments). To demonstrate

conclusively that people are using heuristics, researchers must show that observed biases

cannot be explained as the result of systematic effects caused by random noise.

This position leads to a particular view on the motivation for alternative theories of

probability estimation, such as the quantum probability model. It seems to us that such

accounts are motivated by the assumption that the observed biases and errors seen in

people’s probability judgments cannot be explained by probability theory. This motiva-

tion arises because probability theory is the normative model against which these biases

and errors are assessed. If researchers had not taken those biases and errors as evidence

that people don’t reason using probability theory, they would have had no reason to

propose those alternative accounts. However, our model suggests that these biases do

not, in fact, count as evidence that people don’t reason using probability theory. Such
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alternative models thus lose their fundamental motivation: there is no reason for moving

from probability theory to those alternative accounts in an attempt to explain human

probabilistic reasoning. There is, in contrast, an underlying motivation for the probabil-

ity theory plus noise model: the probability of events in the world necessarily follow the

rules of probability theory, and our reasoning processes are necessarily subject to noise.

The fundamental idea in our model is that people’s process for estimating probabilities

follows the requirements of probability theory, and that the systematic biases away from

probability theory seen in people’s judgments are simply the consequence of random

error in that process. In other work we’ve shown that this model can explain biases

such as conservatism, subadditivity, and binary complementarity. We’ve also shown that,

for expressions in which this model predicts bias should be cancelled, people’s probability

estimates agree closely with the requirements of probability theory just as predicted by the

model (Costello and Watts, 2014, 2016b). Here we’ve shown further experimental evidence

that supports this model and goes against a competing formal model based on quantum

probability. Taken together, our results give evidence against the popular idea that people

estimate probabilities using heuristics that do not follow the normative requirements

of probability theory (Ariely, 2009, Gigerenzer and Gaissmaier, 2011, Kahneman, 2011,

Shafir and Leboeuf, 2002).
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