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Abstract

Energy Performance Certificates (EPC) provide an
indication of buildings’ energy use. The creation of an
EPC for individual building requires information sur-
veys. Hence, these ratings are typically non-existent
for entire building stock. This paper addresses
these information gaps using machine-learning mod-
els. Developed models were evaluated with Irish EPC
data that included approximately 650,000 residential
buildings with 199 inputs variables. Results indi-
cate that the deep learning algorithm produces results
with highest accuracy level of 88% when only 82 input
variables are available. This identified approach will
allow stakeholders such as authorities, policymakers
and urban-planners to determine the EPC rating for
rest of the building stock using limited data.

Introduction

Over the past decades, energy use worldwide has in-
creased significantly, and building sector is one of the
largest energy consumers. This sector is responsi-
ble for approximately 40% of the total energy de-
mand and one-third of CO2 emissions (EU-Energy,
2018; EESI, 2018). One of the main reasons be-
hind this is the below average energy performance
exhibited by the current building stock. European
member states have devised mandatory policies for
building energy ratings to examine buildings’ energy
performance. Building energy ratings encourages ur-
ban planners and energy policymakers to formulate
sustainable and energy conservation measures (Jones
et al., 2001). The European Union (EU) has man-
dated the Energy Performance of Buildings Directive
(EPBD) that aims to reduce CO2 emissions (EU,
2018). The member states of EPBD must develop
minimum energy performance standards and Energy
Performance Certificates (EPCs) for both commercial
and residential buildings. Their goal is to set mini-
mum energy performance standards for new buildings
and large existing buildings subjected to major reno-
vation (Fokaides et al., 2017).

Building EPC rating requires extensive data collected
through surveys in order to perform rating calcula-

tions. The main parameters required for performance
calculations are daylighting, internal heat gains, ther-
mal insulation, heat gains through glazed openings,
ventilation, heating system, domestic hot water sys-
tem, indoor climate, renewables, etc. Collecting this
information for each building is a time-consuming and
challenging task (Collins and Curtis, 2018).

In recent years, numerous approaches have been used
for predicting energy demand of the building stock
(Zhao and Magoulès, 2012; Amasyali and El-Gohary,
2018; Wei et al., 2018). These approaches are di-
vided between as physics-based and data-driven ap-
proaches (Rahman et al., 2018). Physics-based ap-
proaches estimate energy use by using dynamic equa-
tions; the most common tools are EnergyPlus (Craw-
ley et al., 2001) and TRNSYS (Trnsys, 2000). How-
ever, these tools require a large number of input
parameters to estimate the energy demand , conse-
quently, often do not scale to complex scenarios. The
data-driven approaches use statistical and machine
learning (ML) techniques to predict energy demand
(Kapetanakis D., 2017). These approaches provide
an accurate prediction of energy demand when the
models are treated with an enriched training dataset
(Li and Wen, 2014).

Generally, machine learning algorithms are divided
into two main categories such as supervised and unsu-
pervised Learning (Amasyali and El-Gohary, 2018).
Supervised learning can be further grouped into re-
gression and classification algorithms. A classification
algorithm is used when the output variable is a label,
such as energy rating and building type (Kontokosta
and Tull, 2017). Regression algorithms are used when
the output variable is a real value such as energy con-
sumption (Deb et al., 2017; Yildiz et al., 2017). Some
common supervised learning algorithms include the
nearest neighbor, naive Bayes, rule induction, deep
learning, Support Vector Machines (SVM) and neu-
ral networks, etc. Unsupervised learning is used when
there are no corresponding output variables for the
input data (Ali et al., 2018). Some common unsuper-
vised learning algorithms include k-means clustering,
association rules, etc.



This work introduces a methodology to facilitate the
prediction of EPCs using different supervised ma-
chine learning algorithms. The main objective of this
paper is to formulate an intelligent machine learning
model that can be used to predict building energy
performance. As there exists a multitude of machine
learning algorithms, this research also compares these
different algorithms in terms of prediction accuracy
when applied to predict building energy ratings using
existing EPCs for the building stock. Furthermore,
the research also investigates the importance of clas-
sification and identification of key variables that in-
fluence building energy performance in the feature
selection process.

The paper is organized as follows: Section 2 pro-
vides detailed discussion on methodology for residen-
tial building energy performance rating prediction.
Section 3 discusses the case study of Irish building
stock and compares different machine learning algo-
rithms in term of prediction performance. Finally,
conclusions are discussed in Section 4.

Methodology

The prediction of building energy performance using
intelligent machine learning algorithms requires the
steps described in Figure 1. The methodology starts
with data pre-processing followed by feature selec-
tion, data splitting for training and testing purposes,
implementation of analysis learning algorithms and
finally the results validation.

Figure 1: Methodology for residential building energy
performance rating prediction using machine learning
algorithm.

Data Pre-processing

The first step of methodology is data pre-processing
of the EPC data; this is used as input to the learning
algorithms. The building EPC data obtained through
extensive surveys, and as a result, contains many in-
complete, missing or inconsistent information includ-
ing essential variables. Therefore, the data needs to
be cleaned to remove noise, errors or outliers before

it is suitable as input to machine learning algorithms.
Data pre-processing enhances the accuracy of predic-
tion results (Molina-Solana et al., 2017). Some of the
important pre-processing techniques are data clean-
ing, data transformation, outlier detection etc. (Ali
et al., 2016).

Data transformation is the process of converting data
types, for example, nominals to numerics. Outliers
are data points that posses exceptionally different dis-
tribution information and deviate from the majority
of the data. Outlier detection is an essential step be-
fore executing a learning algorithm (Molina-Solana
et al., 2017). The most common outlier detection
techniques are distance-based, density-based and Lo-
cal Outlier Factor (LOF). In this paper, the LOF al-
gorithm is used for detecting the outliers from the
EPC dataset because this algorithm is viable for large
datasets (Tang et al., 2001). LOF measures the den-
sity of objects between each another using the nearest
neighbors distance formula (Breunig et al., 2000).

Feature Extraction

Feature extraction is an essential step before training
the learning model. The primary goal is removal of
irrelevant or redundant variables and determination
of features which are most important for predicting
the model performance. The feature selection proce-
dure reduces the dimensionality of model inputs that
in turn reduces the model complexity and compu-
tational load, and also improves learning accuracy.
Feature selection is usually performed using statis-
tical and engineering methods. Statistical methods
use various statistical or data mining algorithms such
as ANOVA, Chi-Square, SVM, genetic algorithms,
etc (Gao and Malkawi, 2014; Fan et al., 2017; Feng
et al., 2017). Engineering methods are informed by
engineering judgment and existing practices in the
literature (Famuyibo et al., 2012; Egan et al., 2018;
Kapetanakis et al., 2015). In this paper, engineering
methods are used for feature selection.

Data splitting

Data splitting is the process of dividing the dataset
into two subsets; a training set (a subset to train a
model) and a test set (a subset to test the trained
model) (Picard and Berk, 1990). Generally, data
splitting applies one of two techniques, random data
splitting and cross-validation. In random data split-
ting, the random data is split into training and test
sets, according to a 80/20 split respectively. Cross-
validation is the most common technique to achieve
balance between minimal bias and variance of the
training model. In cross-validation, the data is first
divided into k of subsets and then the data splitting
process is applied to each sub-sets. In each kth iter-
ation, a different subset is used for testing while the
other k-1 are used for training.



Learning Algorithms

Learning algorithms are used to predict the class of
given set of data points; classes are also known as
labels or categories. In this paper, six different learn-
ing algorithms are used for rating prediction. These
six algorithms offer excellent performance when used
for energy forecasting as evident from previous stud-
ies (Wei et al., 2018; Amasyali and El-Gohary, 2018).
The following sub-sections describe each of these in
detail.

kNN

k-Nearest-Neighbours (kNN) is a non-parametric
classification method that classifies objects based on
closest training data in the feature space. The clas-
sification depends on the value of k, and the type of
distance algorithm. This algorithm is robust to noisy
and large training datasets. However, computational
time is quite high, and it is considered to be a lazy
learner.

Rule Induction

Rule induction is based on the set of formal rules ex-
tracted from a set of training data. The algorithm
iteratively prunes rules until the error rate is greater
than 50% of data and there are no positive examples
left. This algorithm is simple to implement. Further-
more, the algorithm is quite efficient when dealing
with large datasets. However, the algorithm doesn’t
respond well to noisy datasets.

Neural Network

Neural networks, also known as Artificial Neural Net-
works (ANN), is a learning model based on the struc-
ture and functional aspects of biological neural net-
works. Neural networks are widely recognized as a
powerful learning algorithm. These networks can be
trained with any number of layers and inputs, as well
as a hidden layer consisting of units that transform
the input into the output layer. This algorithm func-
tions efficiently with nonlinear training data with a
large number of inputs. Often, this algorithm is com-
putationally expensive when used to train models.

Naive Bayes

Naive Bayes learning algorithms are based on Bayes’
theorem with the strong (naive) conditional indepen-
dence assumption between the given features. This
algorithm is a low-variance classifier with high-bias.
It is relatively simple to implement and has good per-
formance with small datasets. Its major limitation
is the assumption that every feature in the training
dataset is independent, which isn’t always the case.

SVM

A Support Vector Machine (SVM) is a discriminative
classifier. In other words, given a set of labeled train-
ing data, the algorithm outputs a model that assigns
existing categories to the new examples, thus, mak-
ing a non-probabilistic binary linear classifier. It uses
a subset of training points and is a highly accurate
technique. Its major limitation is that the training
time can be high for larger datasets. It can also be-
come less effective on overlapping classes with noisier
datasets.

Deep Learning

Deep learning, also known as deep structured learn-
ing, uses neural network architectures. It is based on
a multi-layer artificial neural network, and the net-
work can contain a large number of hidden layers con-
sisting of neurons, output labels, and epochs that are
trained with a set of propagation formulae. The ma-
jor difference between the neural network and deep
learning techniques is that deep learning includes an
unlimited number of layers and neurons. The deep
leaning technique admits higher levels of abstraction
and gives higher prediction accuracy. The major limi-
tation is that the complexity of the model is increased
when applied to large datasets.

Performance Analysis

To examine the effectiveness of the learning predic-
tion models, adopted performance indices such as
the Root Mean Squared Error (RMSE), ACCuracy
(ACC), and Classification Error (CE) are used (Wei
et al., 2018). These are computed as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ci − c̄i)2 (1)

ACC =
TP + TN

P + N
(2)

CE = 1 − TP + TN

P + N
(3)

The most common way to evaluate the performance
of the prediction algorithm is by using accuracy. Ac-
curacy is a percentage of the correct number of pre-
dictions from all results. RMSE shows the differences
between actual and predictions outcomes. CE is the
percentage of the incorrect predictions out of all re-
sults.

Results and Discussion

The main objective of this paper is to develop an en-
ergy rating prediction system for energy policymak-
ers. The proposed methodology is applied to the pub-
licly available Irish residential Building Energy Per-



Figure 2: Learning algorithms’ accuracy comparison of the detail building EPC rating prediction.

Table 1: The Irish building stock’s EPC simple and
detailed rating labels with primary energy consump-
tion (kWh/m2/year) for classification algorithms.

Detailed
Rating

Energy
KWh/m2/yr

Simple
Rating

Energy
KWh/m2/yr

A1 25 or less A 75 or less

A2 26-50

A3 51-75
B1 76-100 B 76-150

B2 101-125

B3 126-150

C1 151-175 C 151-225

C2 176-200

C3 201-225
D1 226-260 D 226-300

D2 261-300

E1 301-340 E 301-380

E2 341-380

F 381-450 F 381-450

G
451 or
more

G
451 or
more

formance Certificate (EPC) dataset. An EPC rat-
ing is given to a building based on the overall en-
ergy building performance measured in terms of en-
ergy and carbon dioxide emissions. The building en-
ergy rating varies on a scale of A1 to G, with A1
and G being the most and least energy efficient rat-
ings respectively. A building’s energy rating is cal-
culated using Ireland’s official Dwelling Energy As-
sessment Procedure (DEAP) software. The publicly
available EPC dataset contains more than 695,000
Irish residential buildings’ data with 199 inputs vari-
ables such as building physics, energy, and CO2 in-
formation. There are more than 1,983,715 residen-

tial building in Ireland, however, the EPC data is
available for only ≈ 39% of residential building stock
(SEAI, 2018). This paper focuses on predicting the
energy rating of the rest 70% of the stock with lim-
ited variables using machine learning algorithms. For
the case study, the learning algorithms are trained
and tested on Dublin city’s EPC data that represents
30% of the EPC building stock in Ireland.

After EPC data collection, the next step is data pre-
processing. The EPC data is based on surveys and
questionnaires. Therefore there are a lot of incon-
sistent, missing, irrelevant and incomplete values in
the dataset. During pre-processing, missing or zero
values are removed or replaced with their averages
and irrelevant values are filtered out from the data.
Machine learning algorithms generally work with nu-
meric values, hence, categorical or nominal values
must be converted into numerical values. To remove
inconsistent values or outliers from the data, the LOF
algorithm is used to clear out these outliers (by using
Euclidean distance). The energy rating is the label
or output variable that is used for the classification.
In this paper, energy rating is divided into two cate-
gories: simple rating and detailed rating. The simple
rating includes the 7 rating labels, such as A, B, C,
D, E, F and G. The detailed rating includes 15-rating
labels, such as A1, A2, A3 etc. A summary of imple-
mented ratings is shown in Table 1. Irish EPC rating
is based on a detailed rating chart with different band
and sub-band levels. To generate the simple rating,
we further aggregated the same letter sub-band rat-
ings (A1, A2 and A3) into a single letter band rating
(A). This kind of classification would help to iden-
tify the effects of aggregated and detailed ratings on
model accuracy.

The EPC data has 199 inputs variables, which are



Figure 3: Learning algorithms’ accuracy comparison of the simple building EPC rating prediction.

used to calculate the energy rating of a building.
Feature selection processes groups similar types of
variables based on the engineering method approach.
The groups includes the variables that are most used,
building physics parameters, energy consumption val-
ues, CO2 emissions and a combination of all these
variables. The 199 input variables constitute of 65 de-
tailed floor level variables (33%), 52 variables (26%)
with minimum variations or missing values and the
remaining 82 most likely used variables (41%). We
ignored the first batch of the detailed 65 floor level
variables and used average value of each variable per
building. Similarly, We also ignored the second batch
of 52 variables with missing values. The rest 82
variables were identified to be the most likely used
in energy simulations. These 82 variables were fur-
ther segregated into groups according to building fea-
tures, namely, building physics parameters, energy
consumption values, CO2 emissions and a combina-
tion of all these variables

The most likely used variables were identified based
on existing literature. Studies by Famuibo at al. and
Egan et al. have identified variables that are rele-
vant and would influence the building’s energy per-
formance of the Irish building stock (Famuyibo et al.,
2012; Egan et al., 2018). Building physics variables
include U-values, area, fuel type, etc. CO2 emissions
are analyzed based on emissions from different sources
that include CO2 emissions from lighting use, equiv-
alent emissions from water usage, etc. Energy vari-
ables include consumption of lighting, main space,
water, etc.

The data is split into two parts after the feature se-
lection process to create training or testing data. The
cross-validation algorithm is used for data splitting.
The EPC data is partitioned into 10 subsets of equal

size.

The EPC data is trained and compared using six dif-
ferent algorithms and a robust model input is chosen
to evaluate the sensitivity of the learning algorithms.
For the deep learning algorithm, two hidden layers
are used for the size of 50. The dataset is iterated
10 times to achieve the best results. The layer size
for the neural network algorithm is calculated from
the number of input attributes for the training data.
500 training cycles are used for neural network train-
ing with 0.3 weights at each step. For the K-NN al-
gorithm, the Euclidean distance measure is used for
distance calculation. For the Navie Bayes algorithm,
a value of 0.9 is used as the sample ratio to train the
dataset (for growing and pruning). To examine the
performance of all of the learning models, the results
are calculated for the simple and detailed ratings as
shown in Figure 2 and Figure 3.

In the simple building EPC rating prediction (Figure
3), all the variable groups except CO2 and Energy-
CO2 groups yield accuracy levels of more than 75%.
On the other hand, the prediction accuracy of de-
tailed building EPC rating is quite lower for all vari-
able groups (Figure 2) when compared to simple
building EPC rating mainly because of detailed la-
bel classification. Furthermore, it can also be in-
ferred that the building physics variable group has the
strongest influence on the prediction accuracy of sim-
ple rating when compared to other variable groups,
namely, Energy, CO2, and Energy and CO2. The ac-
curacy is further improved when the building physics
variable group is combined with CO2 and Energy
variable groups.

The best algorithm with the highest accuracy and
minimum RMSE for each group of feature types is
shown in Table 2. The results show that deep learn-



Table 2: Best learning algorithms performance analysis for energy rating prediction by using different feature
groups types.

Features Types Input Variables Algorithm
Simple Rating Detail Rating
ACC RMSE ACC RMSE

All 199 Deep Learning 89.11% 0.284 78.84% 0.399
Most Used 82 Deep Learning 88.48% 0.292 75.79% 0.427
Building Physics 39 Deep Learning 77.30% 0.411 54.91% 0.612
Energy 18 K-NN 81.49% 0.417 47.79% 0.417
CO2 16 K-NN 63.88% 0.601 47.05% 0.728
Building Physics &
Energy

54 Rule Induction 79.26% 0.39 68.77% 0.545

Building Physics &
CO2

52 K-NN 79.59% 0.388 52.66% 0.688

Energy & CO2 24 K-NN 65.18% 0.59 47.19% 0.727
Building Physics,
Energy & CO2

67 Deep Learning 80.14% 0.383 57.75% 0.581

ing, K-NN and rule induction algorithms performed
best for the different type of features. The highest ac-
curacy achieved for the simple rating was 89% with
0.28 RMSE while that for the detailed rating was 78%
with 0.4 RMSE. However, these accuracy values are
achieved when all the variables are used for training
and testing. The best results with minimum number
of variables (82) for the simple rating is 88% with
0.29 RMSE while that for the detailed rating is 76%
with 0.42 RMSE shown in Figure 4. Results indicate
that intelligent machine learning algorithms require
only 82 variables to predict a building’s energy rating.
Furthermore, the results establish that the model ac-
curacy obtained using the simple rating is higher than
the one obtained using the detailed rating.

Figure 4: Comparison of performance analysis of
simple vs detail rating using deep learning algorithm
with most used features.

Conclusions and Future Work

EPC provides an overview of the building stock en-
ergy performance that helps the stakeholders to for-
mulate policy measures for reducing the energy con-
sumption and CO2 emissions. EPC rating calcula-
tion for a building is a time consuming, and complex
task and a number of important variables are required

for the calculation. The number of resources, re-
quired to perform the analytical, extensive, and time-
consuming calculation, are significantly increased at
an urban scale. The devised methodology in this
research implements machine learning algorithms to
identify the building energy rating for an entire ur-
ban building stock. The proposed methodology is
able to calculate a building’s current energy perfor-
mance even with a limited knowledge of the build-
ing dynamics. The feature selection method identifies
key variables influencing the building energy perfor-
mance. For instance, the Irish EPC data uses 199
variables to classify buildings based on their energy
rating. However, the proposed methodology requires
only 82 variables to predict a building’s energy rat-
ing. The values obtained for accuracy are 88% and
79% for simple and detailed ratings respectively by
using the deep learning algorithm.

Currently, EPC data covers ≈ 30- 50% of entire build-
ing stock. This identified approach will allow stake-
holders such as the local authorities, energy policy-
makers and urban planners to determine the EPC
rating for the rest of the building stock by using lim-
ited data. As such, the stakeholders will be able to
make informed decisions when planning retrofit mea-
sures at a large scale.

As the proposed methodology is only tested with
DEAP energy performance calculation software, vari-
ations that might occur with other software. The per-
formance of the proposed best algorithm might turn
out to be different for other energy performance cal-
culation software, for instance, EnergyPlus. However,
the nature of features required for all energy perfor-
mance calculation software is consistent.

Currently, the methodology implements the feature
selection procedure based on engineering judgment or
existing literature to predict the rating. Future work
will consider the hybrid approach by using sensitiv-
ity analysis and data-driven feature selection methods



with the current proposed methodology to achieve
more robust prediction results.
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Nomenclature

TP number of true positives
FP number of false positives
FN number of false negatives
P number of positives in ground truth
N number of negatives in ground truth
K training or testing samples
ci predicted value
c̄i target value
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Romero, and M. J. Mart́ın-Bautista (2017). Data
science for building energy management: A review.
Renewable and Sustainable Energy Reviews 70,
598–609.

Picard, R. R. and K. N. Berk (1990). Data splitting.
The American Statistician 44 (2), 140–147.

Rahman, A., V. Srikumar, and A. D. Smith (2018).
Predicting electricity consumption for commercial
and residential buildings using deep recurrent neu-
ral networks. Applied Energy 212, 372–385.

SEAI (2018). Energy in the residential sector re-
port. https://www.seai.ie. [Online; accessed 01-
February-2019].

Tang, J., Z. Chen, A. W.-c. Fu, and D. Cheung
(2001). A robust outlier detection scheme for large
data sets. In In 6th Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining. Citeseer.

Trnsys, A. (2000). Transient system simulation pro-
gram.

Wei, Y., X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu,
M. Han, and X. Zhao (2018). A review of data-
driven approaches for prediction and classification
of building energy consumption. Renewable and
Sustainable Energy Reviews 82, 1027–1047.

Yildiz, B., J. I. Bilbao, and A. B. Sproul (2017). A re-
view and analysis of regression and machine learn-
ing models on commercial building electricity load
forecasting. Renewable and Sustainable Energy Re-
views 73, 1104–1122.

Zhao, H.-x. and F. Magoulès (2012). A review on the
prediction of building energy consumption. Renew-
able and Sustainable Energy Reviews 16 (6), 3586–
3592.

https://www.seai.ie

