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Determination of Road Profile Using Multiple Passing Vehicle 

Measurements 

This paper describes a novel method to determine a road profile through the analysis of 

accelerations in a passing vehicle. A direct integration algorithm is proposed to determine 

the profile from the measured vehicle acceleration response. A sprung mass model and 

a half-car model are used to represent the vehicles in separate analyses. Combining the 

direct integration algorithm with the Cross Entropy (CE) optimisation method, a vehicle 

fleet monitoring concept is proposed for the monitoring of roads and/or bridges. In this 

approach, the profile can be calculated using accelerations from multiple vehicles 

without prior knowledge of the vehicle properties. Numerical results show that calculated 

profiles are the same as the ‘true’ profiles which were used to generate the ‘simulated 

measured’ accelerations. 

Keywords: Roads & highways, Infrastructure, Damage assessment, Health & safety, 

Monitoring, Optimization 

Introduction  

Over time, roads and bridges often become damaged due to vehicle overloading, bridge strikes 

and due to environmental effects. Undoubtedly, this damage may impact the safe running of 

the transportation network and consequently, infrastructure monitoring is an important area of 

research. Road profiles are often monitored using profilometers, particularly for highways and 

major roads but these specialist vehicles are expensive and do not run frequently. Highway 

structures such as bridges are most commonly monitored by visual inspection that requires 

large numbers of inspectors and significant cost. Furthermore, due to human subjectivity and 

differing experience, it is often difficult to achieve consistency in the results.  

Recently, the concept of sensor-based monitoring of road structures has become 

popular in the literature. It can be divided into two types: direct and indirect monitoring. Direct 

monitoring measures the response directly using sensors installed in the structure. This method 

requires multiple sensors to be mounted on a bridge, got example, which can be more expensive 



than traditional visual inspections. It also results in a significant amount of data being collected, 

stored, transmitted and processed. Furthermore, the direct sensing method is specific to the 

infrastructure in which the sensors are installed; these sensors cannot be subsequently reused 

in another structure.  As a result, the concept of indirect monitoring (the ‘drive-by’ method) is 

proposed by Yang, Lin, &  Yau (2004), Yang and Lin (2005) and González, OBrien, Li, &  

Cashell (2008). This family of methods uses inertial sensors installed in a passing vehicle to 

assess the condition of pavement, railway track or a bridge indirectly. There is no need for 

sensors to be installed in the road or on the bridge. This paper proposes a new method of drive-

by monitoring to determine the surface profile. For a road pavement or railway track, this can 

be used directly as a measure of pavement/track condition. For a bridge, the profile experienced 

by the vehicle includes elements of bridge deflection and, as such, can be used as an indication 

of the bridge condition. Compared to the direct method, indirect monitoring has a number of 

advantages; it is easy to operate, efficient, economic, and no power supply is needed in the 

infrastructure.  

The drive-by technique is often used in bridge monitoring. Malekjafarian, McGetrick, 

&  OBrien (2015) present a review of the state-of-the-art for highway bridges. Most indirect 

methods infer dynamic characteristics of the bridge from responses measured on the vehicle, 

such as natural frequency, damping or mode shapes (McGetrick, González, & Obrien, 2009; 

Yang, Li, & Chang, 2014; Yang, et al., 2004). Many researchers extend these concepts in 

laboratory experiments and field tests to verify the drive-by inspection approach for bridges 

(Kim et al., 2011; Lin and Yang, 2005). Some methods seek to detect bridge damage directly 

according to the profile. OBrien and Keenahan (2015) introduce the concept of ‘apparent 

profile’. The results show that the time-shifted difference in the apparent profile can be used as 

a damage indicator for the bridge. Elhattab, Uddin, &  OBrien (2016) use truck acceleration 



histories to calculate the Bridge Displacement Difference Profile (BDDP) which is shown to 

be sensitive to structural damage.  

In recent years, different methods have been proposed to measure road surface profiles 

using drive-by techniques. The concept of using crowd sourcing to detect potholes or bumps 

in pavements is already established in the ‘Street Bump’ app in operation in Boston. However, 

this is a very simple empirical approach, most likely using an acceleration threshold in the 

smartphone, above which a bump is registered. There are also some challenges with this 

concept. For example, the quality of devices can limit the quality of the gathered information, 

compromising the precision (O'Leary, 2013). Souza, Giusti, &  Batista (2018) introduce a new 

system, Asfault, to evaluate and monitor road pavement condition using smartphone sensors. 

These sensors can measure the vehicle vibration while driving and use the data to evaluate 

pavement condition. This system classifies road quality into 4-classes: Good, Average, Fair, 

and Poor, as well as identifying the occurrence of obstacles on the road. Zang, Shen, Huang, 

Wan, &  Shi (2018) use GPS and accelerometer sensors on bicycle-mounted smartphones to 

measure the road surface roughness of pedestrian and bicycle lanes. However, smartphone-

based sensing has the challenges of low frequency and low detection accuracy (Sattar, Li, & 

Chapman, 2018). Sayers and Karamihas (1996), (1998) discuss inertial profilometers, that can 

measure profiles at highway speeds. A typical inertial profilometer consists of a vehicle 

equipped with a height sensing device, such as a laser, which measures pavement elevations at 

regular intervals. The effects of the vehicle can be removed from the elevation measurements 

using accelerometer(s) mounted on the vehicle. High resolution profile measurements can be 

provided, but at significant cost because of the laser-based technology. Ergun, Iyinam, &  

Iyinam (2005) also measure road surface macrotexture with a laser profilometer. Ma et al. 

(2018) review developments in mobile laser scanning (MLS) techniques which introduce many 



MLS technology applications and show that this technology is can achieve accurate road 

condition detection.  

With considerably greater precision (and cost), Flintsch et al. (2012) identify 

continuous deflection devices such as traffic speed deflectometers (TSD’s), as valuable tools 

in pavement analysis. Using a set of velocity-sensing lasers, the TSD measures the pavement 

deflection velocity based on the Doppler principle. Malekjafarian, Martinez, &  OBrien (2017) 

use a vehicle pavement interaction model to illustrate the functionality of a TSD. The pavement 

is represented by a Winkler model and pavement deflections are calculated from the simulated 

TSD measurements. The deflections compare well to those from a numerical model. Later, 

OBrien and Keenahan (2015) propose a TSD-type vehicle containing two displacement sensors 

to measure pavement deflection. Using data collected from sensors in the TSD, the ‘apparent 

profile’ is calculated and the time-shifted difference in the apparent profile is used to indicate 

bridge damage. Numerical simulation suggests that this method can be used as a damage 

indicator in the presence of noise. It is shown to be economical, efficient and free from the 

influence of other heavy traffic on the bridge.  

Accelerometer(s) mounted on the vehicle provide an accurate means to monitor road 

profile at low cost. Imine, Delanne, &  M'Sirdi (2006) present a method to estimate road profile 

by analysing the measured dynamic response of an instrumented vehicle. In this method, a full 

car sprung mass model is used to determine the road profile from the vertical wheel 

accelerations and vertical displacement and rotation of the vehicle body. González, et al. (2008) 

collect data from accelerometers fitted to a vehicle and use this data to estimate the condition 

of a road. This approach uses the relationship between vehicle accelerations and the power 

spectral densities of road surfaces using a transfer function. The road condition is classified 

using Fourier analysis to calculate the power spectral density (PSD) function of the surface. 

The result shows that road profile roughness can be accurately classified using axle and body 



accelerations from a range of simulated vehicle–road dynamic scenarios. Harris, Gonzalez, 

OBrien, &  McGetrick (2010) describe a novel method for the characterisation of road surface 

profiles using measurements of vehicle acceleration. The method proposes the use of a 

combinatorial optimisation technique to determine the road profile which causes a set of 

observed responses in a known vehicle model. The parameters of the half-car model are 

determined using road profiles and known accelerations. The algorithm is numerically 

validated for different road profiles and, while computationally intensive, the calculated road 

profile heights are found to provide a good fit to the true profiles. OBrien, McGetrick, &  

Gonzalez (2014) present a method to monitor transport infrastructure (such as bridges and 

pavements) by analysing vehicle accelerations. Using the vehicle response, an algorithm is 

developed to identify the dynamic vehicle-bridge interaction forces. It is proposed that this 

method could be used to identify the global bending stiffness of the bridge and to predict the 

pavement roughness. Fauriat, Mattrand, Gayton, Beakou, &  Cembrzynski (2016) use a data 

processing algorithm to estimate road profiles from the dynamic responses measured on a 

vehicle. This algorithm, based on Kalman filtering theory, aims at solving a so-called inverse 

problem, in a stochastic framework. The application of Kalman filters was investigated to 

classify road condition by Wang et al. (2016). Fox, Kumar, Chen, &  Bai (2017) develop a 

novel crowd-sourced system to monitor the road. This method uses accelerometer data from 

embedded vehicle sensors to detect and localize potholes in multi-lane environments. An 

Independent Component Analysis (ICA) technique is used to identify the road profile knowing 

the dynamic responses of the system (Ben Hassen et al., 2019). 

Cross Entropy (CE) optimisation is sometimes used to solve optimisation problems in 

Civil Engineering. Walsh and González (2009) use CE optimisation to estimate the stiffness 

distribution of a structure, given a set of displacements. Harris, et al. (2010) use CE 

optimisation to infer the parameters of a vehicle model by examining the vertical acceleration 



response of the vehicle to a known excitation. Li, Jiang, Wang, &  Zhu (2014) develop an 

optimization method to identify 1st frequency and stiffness of the bridge based on a 

Generalized Pattern Search Algorithm (GPSA). OBrien and Keenahan (2015) use CE 

optimisation to determine the apparent profile, where displacements recorded by the sensors 

are the assumed inputs. Quirke, Cantero, OBrien, &  Bowe (2016) use the CE optimisation 

technique to determine the track stiffness profile of a railway track. This method generates a 

vehicle response that best fits the measured vertical accelerations of a railway carriage bogie.  

While the use of CE optimisation methods represents a step forward in solving 

engineering problems, the computational effort of doing so is a significant drawback. It is often 

grossly inefficient to solve engineering problems using optimisation in a brute-force manner. 

This paper introduces a new indirect method of back-calculating the road profile from vehicle 

accelerations. Firstly, the paper presents the direct integration algorithm for calculating the road 

profile using the vehicle acceleration histories. The work is then expanded to introduce the 

concept of using a fleet of vehicles to find the road profile more accurately, ever without prior 

knowledge of the vehicle properties. This fleet-based monitoring method uses the direct 

integration and the CE algorithms together.  

MODEL DESCRIPTION 

Vehicle model  

In this study, a variety of vehicle models are used. Initially, the work considers a sprung mass 

model, then a half-car model to represent vehicles travelling on profiles. 

Sprung mass model  

Firstly, the vehicle is represented as a sprung mass model, as shown in Figure 1. This simple 

dynamic system consists of a mass and a spring. The general equation of this single degree of 



freedom dynamical system can be expressed as: 

                                                              𝑚𝑢̈ + 𝑘𝑢 = 𝐹                                                            (1) 

where 𝑚 and 𝑘 are the mass and stiffness of the vehicle, respectively, 𝑢̈ and 𝑢 are the vehicle 

acceleration and displacement respectively, and 𝐹 is the applied force at the vehicle degree of 

freedom, ie, the force in the spring. 𝐹 is related to profile 𝑦(𝑡) and can be expressed as: 

                                                          𝐹(𝑡) = 𝑘 ×  𝑦(𝑡)                                                           (2) 

 

Figure 1. Sprung mass and profile model. 

 Half-car model  

The vehicle is later extended to a 4 degree-of-freedom half-car model travelling on the road 

(Figure 2). The four independent degrees of freedom correspond to sprung mass bounce 

displacement, 𝑢𝑠 sprung mass pitch rotation, 𝜃𝑠 and axle hop displacements of the unsprung 

masses at axle 1 and axle 2, 𝑢𝑢1 and 𝑢𝑢2 respectively. The sprung mass, 𝑚𝑠  represents the 

vehicle body and 𝐼𝑠 is the sprung mass moment of inertia. The unsprung masses, 𝑚𝑢,1 and 𝑚𝑢,2 

represent the axle components. The sprung mass connects to the axle masses via a combination 

of springs and dampers. The stiffness of springs is 𝐾𝑠,𝑖 and damping coefficients of viscous 

dampers are 𝐶𝑠,𝑖 which represent the suspension components for the front and rear axles (𝑖 =



1,2). The axle masses connect to the road surface via springs with linear stiffnesses, 𝐾𝑡,𝑖 which 

represent the tyre components for the front and rear axles (𝑖 = 1,2). Finally, the distances from 

the axles to the centre of gravity are 𝐷1 and 𝐷2.  

 

Figure 2. Half-Car and road model. 

The equations of motion of the vehicle are obtained by imposing equilibrium of all 

forces and moments acting it: 

                                                          𝑀𝑣𝑢̈𝑣 + 𝐶𝑣𝑢̇𝑣 + 𝐾𝑣𝑢𝑣 = 𝑓𝑣                                            (3) 

where 𝑀𝑣 , 𝐶𝑣, and 𝐾𝑣 are the mass, damping and stiffness matrices of the vehicle respectively:  

                                           Mv = [

𝑚𝑠 0 0 0
0 𝐼𝑠 0 0
0 0 𝑚𝑢,1 0

0 0 0 𝑚𝑢,2

]                                                          (4) 

                              𝐶𝑣 =

[
 
 
 
 

𝐶𝑠,1 + 𝐶𝑠,2 𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2 −𝐶𝑠,1 −𝐶𝑠,2

𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2 𝐷1
2𝐶𝑠,1 + 𝐷2

2𝐶𝑠,2 −𝐷1𝐶𝑠,1 𝐷2𝐶𝑠,2

−𝐶𝑠,1 −𝐷1𝐶𝑠,1 𝐶𝑠,1 0

−𝐶𝑠,2 𝐷2𝐶𝑠,2 0 𝐶𝑠,2 ]
 
 
 
 

                 (5)                           



                        𝐾𝒗 =

[
 
 
 
 

𝐾𝑠,1 + 𝐾𝑠,2 𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 −𝐾𝑠,1 −𝐾𝑠,2

𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2 𝐷1
2𝐾𝑠,1 + 𝐷2

2𝐾𝑠,2 −𝐷1𝐾𝑠,1 𝐷2𝐾𝑠,2

−𝐾𝑠,1 −𝐷1𝐾𝑠,1 𝐾𝑠,1+𝐾𝑡,1 0

−𝐾𝑠,2 𝐷2𝐾𝑠,2 0 𝐾𝑠,2+𝐾𝑡,2]
 
 
 
 

           (6)                            

The vectors, 𝑢̈𝑣 , 𝑢̇𝑣  and 𝑢𝑣  are vehicle accelerations, velocities and displacements 

respectively. The displacement vector of the vehicle is: 

𝑢𝑣 = {𝑢𝑠, 𝜃𝑠, 𝑢𝑢1, 𝑢𝑢2}
𝑇                                                 (7) 

The time-varying dynamic interaction force vector is: 

 𝑓𝑣 = {0,0, 𝐹𝑡1, 𝐹𝑡2}
𝑇                                                    (8) 

The dynamic interaction force at wheel 𝑖 is: 

 𝐹𝑡𝑖 = 𝐾𝑡,𝑖 × 𝑦𝑖                                                          (9) 

𝑖 = 1,2, where 𝑦𝑖  is the road profile. 

Road model 

In this research, a 100 m road profile is generated by Monte Carlo simulation according to the 

ISO standard (ISO 8608: 1995) . A class ‘A’ road is used which is a ‘very good’ profile and 

expected in a well-maintained highway. It has a geometric spatial mean of 16 × 10−6𝑚3/

 cycle. A moving average filter is applied to the generated road profile heights, 𝑦𝑖. It is over a 

distance of 0.24 m to simulate the attenuation of short wavelength disturbances by the tyre 

contact patch (Harris, OBrien, & González, 2007; OBrien, et al., 2014). 

Direct solution of profile calculation  

In vehicle-road-interaction, the forward problem uses the coupled vehicle-road model to find 

vehicle accelerations, velocities and displacements for a specified road profile. By contrast, the 

inverse problem takes measured accelerations from a vehicle traversing a road, 𝑢̈ and uses this 



signal to find the road profile.  

In previous research, the road profiles are back-calculated from vehicle-mounted sensor 

data (accelerations) using an optimisation procedure (e.g., OBrien and Keenahan, 2015). This 

method involves finding the profile elevations that give a best fit to the measured acceleration 

data. In this section, a new direct integration approach is developed and used to solve the 

inverse problem of finding the road profile from vehicle acceleration histories. The dynamic 

systems are solved in MATLAB using the Newmark-Beta integration scheme for sprung mass 

and half-car models.  

Sprung mass model 

For the sprung mass vehicle, the inverse problem is solved using the Newmark-Beta method. 

A value of 𝛾 = 0.8 is used to ensure unconditional stability of the algorithm. In the Newmark-

Beta method, the integration constants are listed: 

Time step, 𝛥𝑡 = 0.001，𝛾 = 0.8, 𝛽 =  0.25 × (0.5 + 𝛾)2 

𝑎0 = 1 (𝛽 × 𝛥𝑡2)⁄ , 𝑎1 = 𝛾 (𝛽 × 𝛥𝑡)⁄ , 𝑎2 = 1 (𝛽 × 𝛥𝑡)⁄ ,  

𝑎3 = 1 (𝛽 × 2)⁄ − 1, 𝑎4 = 𝛾 𝛽⁄ − 1,                                     (10) 

𝑎5 = 𝛥𝑡 2⁄ × (𝛾 𝛽⁄ − 2), 𝑎6 = (1 − 𝛾) × 𝛥𝑡, 𝑎7 =  𝛾 × 𝛥𝑡 

At the first time step, the mass, 𝑚, spring stiffness, 𝑘, time step, 𝛥𝑡, initial displacement and 

velocity of the mass,  𝑢0, 𝑢̇0,  are deemed to be known. The acceleration of the mass 𝑢̈  is 

measured so it is also known for each time step. Here the displacement and velocity of the mass 

at each time step can be calculated using the Newmark-Beta method:  

 𝑢𝑡+𝛥𝑡 = (𝑢̈𝑡+𝛥𝑡 + 𝑎2 × 𝑢̇𝑡 + 𝑎3 × 𝑢̈𝑡) 𝑎0⁄ + 𝑢𝑡                    (11) 

𝑢̇𝑡+𝛥𝑡 = 𝑢̇𝑡 + 𝑎6 × 𝑢̈𝑡 + 𝑎7 × 𝑢̈𝑡+𝛥𝑡                                      (12) 



Using the displacement, velocity and acceleration of the mass, the force being applied to the 

mass can be determined.  

The effective stiffness matrix is found using: 

  𝐾̅ = 𝑘 + 𝑎0 × 𝑚                                                              (13) 

The effective force is found using: 

𝐹̅𝑡+𝛥𝑡 = 𝐾̅ × 𝑢𝑡+𝛥𝑡                                                      (14) 

𝐹𝑡+𝛥𝑡 = 𝐹̅𝑡+𝛥𝑡 − 𝑚 × (𝑎0 × 𝑢𝑡 + 𝑎2 × 𝑢̇𝑡 + 𝑎3 × 𝑢̈𝑡)                     (15) 

Finally, the profile is calculated using: 

                        𝑦𝑡+𝛥𝑡 = 𝐹𝑡+𝛥𝑡/𝑘                                                              (16) 

Figure 3 shows a sample ‘calculated’ profile using this direct-integration inverse method, and 

the ‘true’ profile which was used to generate the accelerations in the forward problem. In both 

cases, the mass of the vehicle is 15 000 kg and stiffness of the spring is 3 500×103 Nm-1. The 

results clearly demonstrate that the calculated profile is the same as the ‘true’ profile. 

 

Figure 3. Calculated profile and true profile of sprung mass model. 
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Half-Car model 

In later simulations, the vehicle is represented with a half-car model, and the inverse problem 

is also solved using the Newmark-Beta method. The approach assumes knowledge of the 

sprung mass bounce acceleration, 𝑢̈, and the sprung mass pitch rotational velocity 𝜃̇𝑠. Also, the 

vehicle properties M𝑣, 𝐶𝑣, K𝑣  are taken to be known. Then, using the Newmark-Beta 

integration scheme, the displacement and velocity of the sprung mass can be calculated. The 

unsprung mass displacement can be calculated using the equations of motion of the sprung 

mass. Then, the acceleration and velocity of the unsprung mass can be found. Finally, using 

the Newmark-Beta integration scheme, the time varying interaction forces applied by the 

vehicle and the profile can be calculated. There are five steps in the process as follows: 

Step1: 

Using the Newmark-Beta integration scheme, the sprung mass bounce displacement, 𝑢𝑠, and 

velocity,  𝑢̇𝑠 , sprung mass pitch rotational displacement, 𝜃𝑠 , and accelerations, 𝜃̈𝑠 , can be 

calculated: 

 𝑢𝑠,𝑡+𝛥𝑡 = (𝑢̈𝑠,𝑡+𝛥𝑡 + 𝑎2 × 𝑢̇𝑠,𝑡 + 𝑎3 × 𝑢̈𝑠,𝑡) 𝑎0⁄ + 𝑢𝑠,𝑡                    (17) 

𝑢̇𝑠,𝑡+𝛥𝑡 = 𝑢̇𝑠,𝑡 + 𝑎6 × 𝑢̈𝑠,𝑡 + 𝑎7 × 𝑢̈𝑠,𝑡+𝛥𝑡                                      (18) 

𝜃𝑠,𝑡+𝛥𝑡 = (𝜃̇𝑠,𝑡+𝛥𝑡 + 𝑎4 × 𝜃̇𝑠,𝑡 + 𝑎5 × 𝜃̈𝑠,𝑡)/𝑎1 +  𝜃𝑠,𝑡                    (19) 

𝜃̈𝑠,𝑡+𝛥𝑡 = 𝑎0 × ( 𝜃𝑠,𝑡+𝛥𝑡 −  𝜃𝑠,𝑡) − 𝑎2 × 𝜃̇𝑠,𝑡 − 𝑎3 × 𝜃̈𝑠,𝑡                  (20)                   

Step2: 

According to Equations (3) to (9), the equations of motion of the sprung mass can be found: 

𝑚𝑠 × 𝑢̈𝑠,𝑡+𝛥𝑡 + (𝐶𝑠,1 + 𝐶𝑠,2) × 𝑢̇𝑠,𝑡+𝛥𝑡 + (𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2) × 𝜃̇𝑠,𝑡+𝛥𝑡 − 𝐶𝑠,1 × 𝑢̇𝑢1,𝑡+𝛥𝑡 



−𝐶𝑠,2 × 𝑢̇𝑢2,𝑡+𝛥𝑡 + (𝐾𝑠,1 + 𝐾𝑠,2) × 𝑢𝑠,𝑡+𝛥𝑡 + (𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2) × 𝜃𝑠,𝑡+𝛥𝑡 

  −𝐾𝑠,1 × 𝑢𝑢1,𝑡+𝛥𝑡−𝐾𝑠,2 × 𝑢𝑢2,𝑡+𝛥𝑡 = 0                                                       (21) 

𝐼𝑠 × 𝜃̈𝑠,𝑡+𝛥𝑡 + (𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2) × 𝑢̇𝑠,𝑡+𝛥𝑡 + (𝐷1
2𝐶𝑠,1 + 𝐷2

2𝐶𝑠,2) × 𝜃̇𝑠,𝑡+𝛥𝑡 

−𝐷1𝐶𝑠,1 × 𝑢̇𝑢1,𝑡+𝛥𝑡+𝐷2𝐶𝑠,2 × 𝑢̇𝑢2,𝑡+𝛥𝑡 + (𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2) × 𝑢𝑠,𝑡+𝛥𝑡 

+(𝐷1
2𝐾𝑠,1 + 𝐷2

2𝐾𝑠,2) × 𝜃𝑠,𝑡+𝛥𝑡−𝐷1𝐾𝑠,1 × 𝑢𝑢1,𝑡+𝛥𝑡+𝐷2𝐾𝑠,2 × 𝑢𝑢2,𝑡+𝛥𝑡 = 0                     (22) 

The terms, 𝑢̇𝑢2,𝑡+𝛥𝑡 and 𝑢𝑢2,𝑡+𝛥𝑡 can be removed by combining Equations (22) with Equations 

(21), scaled by 𝐷2: 

𝐷2𝑚𝑠 × 𝑢̈𝑠,𝑡+𝛥𝑡 + 𝐷2(𝐶𝑠,1 + 𝐶𝑠,2) × 𝑢̇𝑠,𝑡+𝛥𝑡 + 𝐷2(𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2) × 𝜃̇𝑠,𝑡+𝛥𝑡 + 𝐷2(𝐾𝑠,1 +

𝐾𝑠,2) × 𝑢𝑠,𝑡+𝛥𝑡 + 𝐷2(𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2) × 𝜃𝑠,𝑡+𝛥𝑡 + 𝐼𝑠 × 𝑢̈𝑠,𝑡+𝛥𝑡 + (𝐷1𝐶𝑠,1 − 𝐷2𝐶𝑠,2) ×

𝑢̇𝑠,𝑡+𝛥𝑡 + (𝐷1
2𝐶𝑠,1 + 𝐷2

2𝐶𝑠,2) × 𝜃̇𝑠,𝑡+𝛥𝑡 + (𝐷1𝐾𝑠,1 − 𝐷2𝐾𝑠,2) × 𝑢𝑠,𝑡+𝛥𝑡 + (𝐷1
2𝐾𝑠,1 +

𝐷2
2𝐾𝑠,2) × 𝜃𝑠,𝑡+𝛥𝑡=(𝐷2𝐶𝑠,1+𝐷1𝐶𝑠,1) × 𝑢̇𝑢1,𝑡+𝛥𝑡 + (𝐷2𝐾𝑠,1+𝐷1𝐾𝑠,1) × 𝑢𝑢1,𝑡+𝛥𝑡 

         (23)                                                     

In the Newmark-Beta method,  

𝑢̇𝑢1,𝑡+𝛥𝑡 = 𝑎1 × (𝑢𝑢1,𝑡+𝛥𝑡 − 𝑢𝑢1,𝑡) − 𝑎4 × 𝑢̇𝑢1,𝑡 − 𝑎5 × 𝑢̈𝑢1,𝑡                            (24)                   

Substituting (24) into (23), the unsprung mass displacement can be found: 

𝑢𝑢1,𝑡+𝛥𝑡 = (𝐷2𝑚𝑠 × 𝑢̈𝑠,𝑡+𝛥𝑡 + 𝐼𝑠 × 𝜃̈𝑠,𝑡+𝛥𝑡 + (𝐷2𝐶𝑠,1 + 𝐷1𝐶𝑠,1) × 𝑢̇𝑠,𝑡+𝛥𝑡 + (𝐷2𝐷1𝐶𝑠,1 +

𝐷1
2𝐶𝑠,1) × 𝜃̇𝑠,𝑡+𝛥𝑡 + (𝐷2𝐾𝑠,1 + 𝐷1𝐾𝑠,1) × 𝑢𝑠,𝑡+𝛥𝑡 + (𝐷2𝐷1𝐾𝑠,1 + 𝐷1

2𝐾𝑠,1) × 𝜃𝑠,𝑡+𝛥𝑡 +

(𝐷2𝐶𝑠,1+𝐷1𝐶𝑠,1) × (𝑎1 × 𝑢𝑢1,𝑡 + 𝑎4 × 𝑢̇𝑢1,𝑡 + 𝑎5 × 𝑢̈𝑢1,𝑡))/(𝐷2𝐾𝑠,1+𝐷1𝐾𝑠,1 +

(𝐷2𝐶𝑠,1+𝐷1𝐶𝑠,1) × 𝑎1)                                                 (25)                                                         



Step3: 

Using the Newmark-Beta method, unsprung mass acceleration and velocity can be calculated: 

𝑢̈𝑢1,𝑡+𝛥𝑡 =  𝑎0 × (𝑢𝑢1,𝑡+𝛥𝑡 − 𝑢𝑢1,𝑡) − 𝑎2 × 𝑢̇𝑢1,𝑡 − 𝑎3 × 𝑢̈𝑢1,𝑡           (26)                                                                       

𝑢̇𝑢1,𝑡+𝛥𝑡 = 𝑢̇𝑢1,𝑡 + 𝑎6 × 𝑢̈𝑢1,𝑡 + 𝑎7 × 𝑢̈𝑢1,𝑡+𝛥𝑡                             (27) 

Step4: 

Use Newmark-Beta to calculate 𝑓𝑣,𝑡+𝛥𝑡 at time step, 𝑡 + 𝛥𝑡, 

The effective stiffness matrix is:  

𝐾̅ = 𝐾𝑣 + 𝑎0 × 𝑀𝑣 + 𝑎1 × 𝐶𝑣                                        (28)           

The effective force is: 

𝑓𝑣̅,𝑡+𝛥𝑡  = 𝐾̅ × 𝑢𝑣,𝑡+𝛥𝑡                                                 (29) 

and, 

𝑓𝑣,𝑡+𝛥𝑡  = 𝑓𝑣̅,𝑡+𝛥𝑡 − M𝑣 × (𝑎0 × 𝑢𝑣,𝑡 + 𝑎2 × 𝑢̇𝑣,𝑡 + 𝑎3 × 𝑢̈𝑣,𝑡)   

−𝐶𝑣 × (𝑎1 × 𝑢𝑣,𝑡 + 𝑎4 × 𝑢̇𝑣,𝑡 + 𝑎5 × 𝑢̈𝑣,𝑡)                                 

(30) 

According to Equation (8), 𝑓𝑣,𝑡+𝛥𝑡 = {0,0, 𝐹𝑡1,𝑡+𝛥𝑡, 𝐹𝑡2,𝑡+𝛥𝑡}
𝑇
, and 𝐹𝑡𝑖,𝑡+𝛥𝑡 is known.                                                     

Step5: 

Finally, the profile can be calculated using Equation (9): 

𝑦𝑖,𝑡+𝛥𝑡 = 𝐹𝑡𝑖,𝑡+𝛥𝑡/𝐾𝑡,𝑖                                                 (31)                                                

Using this direct integration approach, the profile can be calculated step by step. For a specified 



profile, the forward problem is used here to calculate the accelerations and rotational velocities 

in the usual way. All the vehicle property values are listed in Table 1. These accelerations and 

rotational velocities are then used as the ‘measurements’ in a test of the inverse problem. The 

inverse problem is solved to back-calculate the profile using these signals. Figure 4(a) presents 

the calculated profile and the true profile. Figure 4(b) shows a detail in the 45 m to 55 m zone. 

As expected, the results show that the profile is found with a high degree of accuracy. The 

profiles are calculated using this approach directly. However, in the optimisation method the 

profiles are split into a number of phases to be calculated separately (OBrien and Keenahan, 

2015). In each phase, a large population of unknows is generated and regenerated for many 

generations. This direct integration approach is much more efficient than an optimisation 

algorithm and allows the calculation to be completed in a fraction of the time. 

Table 1. Vehicle parameters of half-car model. 

 

Property Unit Symbol Value 

Body mass kg 𝑚𝑠 16200 

Axle mass kg 
𝑚𝑢1 700 

𝑚𝑢2 1100 

Suspension stiffness Nm−1 
𝐾𝑠,1 4×105 

𝐾𝑠,2 1×106 

Suspension damping N sm−1 
𝐶𝑠,1 1×104 

𝐶𝑠,2 2×104 

Tyre stiffness Nm−1 
𝐾𝑡,1 1.75×106 

𝐾𝑡,2 3.5×106 

Pitch moment of inertia kg m2 𝐼𝑠 93457 

Distance of axle to centre of gravity m 
𝐷1 2.375 

𝐷2 2.375 



(a)  

(b)  

Figure 4(a). Calculated profile and true profile of half-car model (0 to 100 m). 

(b). Calculated profile and true profile of half-car model (45 to 55 m). 

Vehicle fleet monitoring concept 

It is shown in the previous section that road profiles can be found, knowing the vehicle 

accelerations and the vehicle properties. In this section, a vehicle fleet monitoring concept is 

introduced to calculate profiles from vehicle accelerations without prior knowledge of the 

vehicle properties. For a single vehicle, either the profile or the vehicle properties can be found, 

but not both. But all vehicles in a fleet are subject to the same profile. This feature is exploited 

here to find the profile. To solve the fleet problem, the direct integration approach and the Cross 

Entropy (CE) optimisation technique are used together. Like the genetic algorithms (Goldberg 
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and Holland, 1988), CE is a population-based method of optimisation (Rubinstein and Kroese, 

2004). A population of trial solutions is generated randomly using Monte Carlo simulation. 

Each solution in the population is assessed and an ‘elite set’ of the best solution identified. 

Discarding all other solutions, the vector mean and standard deviation of the ‘elite set’ is used 

to generate a new population of solution and the process repeated until convergence. It can 

occur that the CE algorithm converges prematurely and not converge to the true optimum.  A 

method called ‘injection’ is used to address this problem, proposed by Botev and Kroese 

(2004). Injection resets the standard deviation in the Monte Carlo simulation to restart the 

algorithm. The first two injections reset the standard deviations at their initial values. Then the 

magnitude of the following ones decrease in inverse proportion to the number of injections 

(Casero, González, & Covián, 2014). 

The responses to a group of vehicles whose properties are unknown provide the data 

used in this method. Applying CE, a population of vehicle properties are randomly generated 

from a normal distribution. For each vehicle in this population, the responses are used to 

calculate the profile using the direct integration approach. These calculated profiles will not, 

generally, be correct as incorrect vehicle properties have been used. However, the sets of 

properties for some vehicles will be better than for others and these can be identified as the 

corresponding profiles will be similar. The objective function for the 𝑗𝑡ℎ trial solution, 𝑂𝑗, is 

therefore the sum of squared differences of the profile its mean values. 

𝑂𝑗 = ∑∑(𝑟𝑖,𝑗,𝑘 − 𝑟̅𝑗,𝑘)
2

𝑘𝑖

                                             (32) 

                                                         

where 𝑟𝑖,𝑗,𝑘 is the 𝑘𝑡ℎ profile elevation in the 𝑗𝑡ℎ trial of the 𝑖𝑡ℎ vehicle in the fleet, 

and 𝑟̅𝑗,𝑘 is mean profile in the 𝑗𝑡ℎ trial of the 𝑛𝑖 vehicles of the fleet: 



𝑟̅𝑗,𝑘 =
1

𝑛𝑖
∑𝑟𝑖,𝑗,𝑘 

𝑖

                                                           (33) 

 

The objective functions are then ranked and the 10% best of the trial vehicle property sets are 

selected. Through the normal CE method, Monte Carlo simulation is used to generate the next 

generation of trial vehicle properties from the means and standard deviations of this elite set, μ 

and σ. Figure 5 illustrates the workflow of the algorithm presented in this paper.  

Results for sprung mass modal 

For this investigation a very small population of just 6 vehicles is selected to illustrate the 

procedure (𝑛𝑖 = 6). The parameters for these 6 vehicles are chosen randomly and used in the 

forward problem to generate the responses that would be measured. The six sets of parameters 

are given in Table 2. Using these parameters, the forward problems are solved to determine the 

acceleration histories. These accelerations are used as inputs to solve vehicle fleet problem. 

The profile is calculated using these accelerations without knowledge of the vehicle properties. 

Table 2. Vehicle parameters. 

 

 

 

 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

m (kg) 15 614 12 365 18 115 13 081 13 609 13 975 

k (N m-1) 2 655×103 4 138×103 2 123×103 4 402×103 1 108×103 1 917×103 



Figure 5. CE optimisation method algorithm. 

 

Generate 300 (𝑗) trial properties for each vehicle (𝑖)  

Calculate profile each using direct integration approach, 𝑟𝑖,𝑗,𝑘  

Calculate mean profile of every trial   

𝑟̅𝑗,𝑘 =
1

𝑛𝑖
∑𝑟𝑖,𝑗,𝑘 

𝑖

 

 

Yes 

Identify elite set (top 10%) of trial properties that 

give the lowest objective function value are 

identified for each vehicle 

 

Calculate vector mean and standard deviations  

of elite set properties for each vehicle 

 

Repeat generate new trial properties using 

mean and standard deviation 

 

No 

If max 𝑂𝑗 <

ε threshold 
Profile found 

Given: sprung mass bounce acceleration, 𝑢̈, the sprung 

mass pitch rotational velocity 𝜃̇  response to 𝑛  vehicles 

Calculate objective function of every trial  

 

𝑂𝑗 = ∑∑(𝑟𝑖,𝑗,𝑘 − 𝑟̅𝑗,𝑘)
2

𝑘𝑖

 

 



The initial mean of mass and stiffness are 10000 kg and 300×103 Nm-1 respectively. 

The calculated profiles are shown in Figure 6 and can be seen to be the same as the true profile. 

The calculated parameters (𝑚 and 𝑘) for the six vehicles are highly inaccurate, as shown in 

Table 3 (However 𝑚/𝑘 ratio is found with good accuracy). 

Table 3. Calculated vehicle parameters. 

  
True m 

(kg) 

True k 

(Nm-1) 

True ratio 

m/k 

Calculated 

m (kg) 

Calculated 

k (Nm-1) 

Calculated 

ratio m/k 

Vehicle 1 15 614 2 655×103 0.0059 2 098 356 920 0.0059 

Vehicle 2 12 365 4 138×103 0.0030 1 933 645 469 0.0030 

Vehicle 3 18 115 2 123×103 0.0085 4 221 495 372 0.0085 

Vehicle 4 13 081 4 402×103 0.0030 1 663 558 487 0.0030 

Vehicle 5 13 609 1 108×103 0.0123 5 524 449 414 0.0123 

Vehicle 6 13 975 1 917×103 0.0073 3 832 523 167 0.0073 

 

 

Figure 6. True profile and calculated profiles for vehicles of the fleet. 

 

To investigate the accuracy issue, different vehicle fleets are generated. For every 

(𝑚0, 𝑘0) pair, a local vehicle fleet of just four vehicles is generated in the immediate vicinity. 
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The four vehicles are (𝑚0 + ∆𝑚, 𝑘0), (𝑚0, 𝑘0 − ∆𝑘), (𝑚0 − ∆𝑚, 𝑘0), (𝑚0, 𝑘0 + ∆𝑘), where 

∆𝑚 =1000 kg and ∆𝑘=100 000 Nm-1. The pairs are generated by varying the mass, 𝑚0, from 

11 000 kg through 20 000 kg in increments of 1000 kg and the stiffness 𝑘0 is generated in the 

immediate vicinity from 3.2 × 106 Nm-1 through 5 × 106 Nm-1 in increments of 200 000 Nm-

1. Using these known vehicle fleets, the objective function of Equation (32) is calculated. The 

accelerations used are calculated by the forward problem and the true (𝑚0, 𝑘0) pair for all cases 

is (14 000, 3.5 × 106) whose 𝑚0/𝑘0 ratio is 0.0040.  

Contours of the objection function contouring are shown in Figure 7. It can be seen that 

there are equally good solutions for all (𝑚0, 𝑘0) pairs for which the 𝑚0/𝑘0 ratio is 0.0040, 

showing that there is insufficient information to find unique value for 𝑚0 and 𝑘0. Two points 

are chosen to solve the inverse problem to find the profiles. Point A is (18 000, 4.5 × 106) and 

has the same 𝑚0/𝑘0 ratio as the true vehicle. Point B (13 000, 3.8 × 106), on the other hand, 

has a different 𝑚0/𝑘0 ratio.  

 

Figure 7. Objective function contours. 

 



The calculated profiles and true profiles (0 to 100 m) are shown in Figures 8(a) and 

9(a). Figures 8(b) and 9(b) show the detail in the 45 m to 55 m zone. The profile calculated at 

Point A is the same as the true profile even though the 𝑚 and 𝑘 values are different. The profile 

calculated at Point B is different from true profile and significantly, the 4 profiles are different 

from each other.  

 

 

 

(a)  
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(b) 

Figure 8(a). Calculated profile and true profile at Point A (0 to 100 m). 

(b). Calculated profile and true profile at Point A (45 to 55 m). 

 

(a) 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

45 46 48 50 52 53

P
ro

fi
le

 (
m

)

Position (m)

True profile Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 4 9 13 18 22 27 31 36 40 44 49 53 58 62 67 71 76 80 84 89 93 98

P
ro

fi
le

 (
m

)

Position (m)

True profile Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4



 

(b) 

Figure 9(a). Calculated profile and true profile at Point B (0 to 100 m). 

(b). Calculated profile and true profile at Point B (45 to 55 m). 

 

Results for half-car model 

The half-car model is further used to investigate the vehicle fleet concept. Vehicle properties 

for a fleet of six vehicles are randomly generated and are shown in Table 4. The forward 

problems are calculated to get sprung mass bounce acceleration and sprung mass pitch 

rotational velocity. From this the vehicle fleet problem is solved using these acceleration and 

velocity histories. The initial values for the properties of all vehicles are also shown in the table.  

The calculated profiles are shown in Figure 10. Figure 10(a) is the calculated profile for Vehicle 

1 and the true profile. A detail in the 45 m to 55 m zone is shown in Figure 10(b).  The 

calculated profiles for all six vehicles in the fleet and the true profile as shown in Figure 10(c).   
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Table 4. Vehicle properties and initial values. 

(a)  

(b)  
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 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 
Initial 

values 

Is (kg m2) 99 535 105 768 99 601 91 093 107 784 103 181 80 000 

ms (kg) 17 254 18 334 17 265 15 790 18 683 17 885 8000 

mu,1 (kg) 790 723 719 698 701 765 300 

mu,2 (kg) 1 223 1 228 1 156 1 120 956 1 110 800 

Ks,1 (Nm-1) 381 764 390 569 408 043 378 317 380 460 383 341 300 000 

Ks,2 (Nm-1) 1 053 990 974 042 993 026 1 055 407 1 097 135 1 121 343 800 000 

Kt,1 (Nm-1) 1 763 507 1 648 493 1 957 895 1 848 174 1 924 673 1 537 987 1 000 000 

Kt,2 (Nm-1) 3 694 467 3 340 706 3 666 718 3 392 386 3 271 068 3 960 334 2 000 000 

Cs,1 (N sm-1) 11 720 9 178 10 633 10 037 9 605 9 119 9 000 

Cs,2 (N sm-1) 16 367 21 888 21 262 20 034 23 745 17 528 10 000 

D1 (m) 2.375 2.375 2.375 2.375 2.375 2.375 2 

D2 (m) 2.375 2.375 2.375 2.375 2.375 2.375 2 



(c)  

Figure 10(a). Calculated profiles of vehicle 1 and true profile (0 to 100 m). (b).  Calculated 

profiles of vehicle 1 and true profile (45 to 55 m). (c). Calculated profiles of vehicle 1 to 6 

and true profile (0 to 100 m). 

 

Table 5 shows the calculated properties and error for each vehicle and the optimal set 

of properties. The errors for each vehicle are also illustrated in Figure 11. Like the sprung mass 

model results, the calculated vehicle properties are highly inaccurate though the calculated 

profiles are close to the ‘true’ profile. This method gives the best fit group of properties for 

every vehicle which successfully calculates the profiles. In Figure 11 the errors vary from -

22% to +80%. Some results are consistent in their inaccuracy – for example D1 is out by the 

same 9% for all vehicles. Others are highly variable – for example, mu,2 varies from 24% to 

80%. 
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Table 5. Calculated properties and error for each vehicle and properties. 

 

 Vehicle 4 Error Vehicle 5 Error Vehicle 6 Error 

Is (kg m2) 62 577 31% 68 551 36% 64 603 37% 

ms (kg) 10 406 34% 10 074 46% 10 204 43% 

mu,1 (kg) 399 43% 345 51% 414 46% 

mu,2 (kg) 779 30% 217 77% 217 80% 

Ks,1 (kNm-1) 299 588 21% 259 326 32% 274 102 28% 

Ks,2 (kNm-1) 795 842 25% 681212 38% 662 886 41% 

Kt,1 (kNm-1) 1 026 031 44% 924710 52% 745 038 52% 

Kt,2 (kNm-1) 1 598 121 53% 1893572 42% 1 748 962 56% 

Cs,1 (N sm-1) 8 382 16% 6 958 28% 7 206 21% 

Cs,2 (N sm-1) 11 317 44% 12 213 49% 14 346 18% 

D1 (m) 2.16 9% 2.16 9% 2.17 9% 

D2 (m) 2.56 -8% 2.90 -22% 2.69 -13% 

 Vehicle 1 Error Vehicle 2 Error Vehicle 3 Error 

Is (kg m2) 60 943 39% 69 047 35% 63 113 37% 

ms (kg) 10 259 41% 10 830 41% 10 043 42% 

mu,1 (kg) 418 47% 394 45% 373 48% 

mu,2 (kg) 929 24% 735 40% 699 39% 

Ks,1 (kNm-1) 273 152 28% 289 817 26% 289 971 29% 

Ks,2 (kNm-1) 704 855 33% 614 989 37% 682 622 31% 

Kt,1 (kNm-1) 869 180 51% 827 021 50% 993 243 49% 

Kt,2 (kNm-1) 1 799 818 51% 2 520 133 25% 2 454 087 33% 

Cs,1 (N sm-1) 9 050 23% 7 460 19% 7 968 25% 

Cs,2 (N sm-1) 11 621 29% 8 773 60% 9 686 54% 

D1 (m) 2.16 9% 2.16 9% 2.16 9% 

D2 (m) 2.54 -7% 2.73 -15% 2.69 -13% 



 

Figure 11. Errors in vehicle properties. 

Implications of noise in accelerations 

In this section, Additive White Gaussian Noise (AWGN) is added to allow for inaccuracy in 

the acceleration measurements. Noise is added to the accelerations according to Equation (34) 

(Lyons, 2011): 

𝐴𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 = 𝐴 + 𝐸𝑛𝑜𝑖𝑠𝑒 × 𝑁𝑜𝑖𝑠𝑒                                          (34) 

where 𝐴𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑  is the acceleration with noise, 𝐴 is the original acceleration without noise, 

𝑁𝑜𝑖𝑠𝑒 is a standard normal distribution vector with zero mean and unit standard deviation and 

𝐸𝑛𝑜𝑖𝑠𝑒 
2 is the square of the energy in the noise. The 𝐸𝑛𝑜𝑖𝑠𝑒 

2 is calculated from the definition of 

the SNR given by Equation (35): 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑣𝑎𝑟(𝐴)

𝐸𝑛𝑜𝑖𝑠𝑒 
2                                                          (35) 

which is the ratio of the power in the signal to the power in the noise, where 𝑣𝑎𝑟(𝐴) is the 

variance of the acceleration signal. Here, the ‘measured’ accelerations are contaminated 
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assuming 1% noise (signal-to-noise ratio, SNR=100). Figure 12 (a) shows the calculated profile 

for Vehicle 1 while Figure 12 (b) shows the calculated profiles for all six vehicles in the fleet. 

A detail in the 45 m and 55 m zone is shown in Figure 12 (c). The true profile is also shown in 

all figures. While the noise clearly has an influence, the calculated profile is reasonably close 

to the true one. Figure 12 (b) shows that the profiles inferred from the population of six vehicles 

are similar. This is a feature of the strategy described in Equation (32), namely, that similar 

profiles are assumed to be more likely to be correct. Furthermore, different levels of noise are 

added to accelerations to study its effects. The calculated profiles are determined and analysed 

by Root Mean Square Error (RMSE). The RMSE for each calculated profile under different 

noise are calculated using the equation: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑟𝑡𝑟𝑢𝑒,𝑘 − 𝑟̅𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑘)2

𝑁

𝑘=1

 

where 𝑟𝑡𝑟𝑢𝑒,𝑘 is the true profile at the 𝑘𝑡ℎ point, 𝑟̅𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑,𝑘 is the mean of 6 calculated profiles 

at the 𝑘𝑡ℎ point. RMS errors for different noise levels are calculated using this equation and 

the results are shown in Figure 13. It can be seen that the RMS errors increase with increasing 

noise level, but a reasonable level of accuracy is maintained. It is felt by the authors that the 

influence of noise will be much reduced when larger populations are considered.     
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Figure 12 (a). Calculated profiles of vehicle 1 and true profile in the presence of noise. 

(b). Calculated profiles of vehicle 1 to 6 and true profile in the presence of noise (0 to 100 m). 

(c). Calculated profiles of vehicle 1 to 6 and true profile in the presence of noise (45 to 55m). 

 

Figure 13. RMS errors of calculated profile for different noise levels. 

Conclusions and future work 

This paper introduces a novel method of inferring road or rail surface profiles from inertial 

measurements. A new direct integration approach is proposed to determine the profiles using 

accelerations measured in passing vehicles. The acceleration histories are simulated here using 

a vehicle/road dynamic interaction model. Sprung mass and half-car models are tested 

separately. The results show that the calculated profiles are the same as the true profiles used 

in the forward problem to generate the accelerations. The direct integration approach is much 

more efficient than optimization and allows the calculation to be completed rapidly. 

The work is expanded to introduce the concept of using a fleet of vehicles to determine 

a profile. Using several vehicles, the profiles can be calculated without prior knowledge of the 

vehicle properties in a process that combines the direct integration approach with CE 

optimisation. The results show that the algorithm is successful in predicting profiles that are 
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similar to the true profile. The vehicle properties are inaccurate when estimated from the road 

profile, but some characteristics such as mass and stiffness ratios in the sprung-mass model are 

accurately captured, which results in good accuracy for road profile estimation. 

To process data from a vehicle fleet will require the solution of an inverse dynamics 

problem, the calibration of a fleet of vehicles and the use of the database of accelerations to 

determine bridge conditions in the future. 
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