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Particle shape quantification using rotation-invariant spherical
harmonic analysis
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A three-dimensional (3D) particle surface can be mathematically represented by a spherical harmonic
(SH) coefficient matrix through surface parameterisation and SH expansion. However, this matrix
depends on not only the particle shape but also the size, position and orientation. This study adopts
a rotation-invariant analysis to explore the relationship between SH coefficient matrices and particle
shape characteristics. Particle shapes are quantified at different scales (i.e., form, roundness and
compactness). These methods are applied to two groups of particles (i.e., Leighton Buzzard sand
(LBS) particles and LBS fragments) with distinct shape features. By using rotation invariants, the
multi-scale nature of particle shape is illustrated, and two novel shape descriptors are defined. The
results in this paper serve as a starting point for the generation of particle shapes with prescribed
shape features using spherical harmonic.
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INTRODUCTION
The studies on particle shape characterisation and reconstruc-
tion in granular mechanics mainly have two objectives. The first
one is to classify and quantify particle shapes, which has been
used to relate shape characteristics with performance properties
(e.g., mechanical behaviour of granular materials) (Cho et al.,
2006) or to understand the phenomena involving shape evo-
lution (e.g., weathering and fragmentation) (Domokos et al.,
2015; Zhao et al., 2015; Zhao & Wang, 2016). The simplest
way to obtain shape parameters (e.g., aspect ratio, roundness
and compactness) is to form dimensionless indices with prin-
cipal dimensions, surface area, volume or local curvature, etc.
The second objective is to generate particle shapes for numeri-
cal simulation (e.g., Mollon & Zhao, 2012, 2014). Discrete ele-
ment method and molecular dynamic method have been widely
used to investigate the influence of particle shapes on granular
mechanics (e.g., Lu & McDowell, 2007; Pena et al., 2007; Zhou
et al., 2013). However, these studies consider particle shapes by
using clusters of discs/spheres and polyhedrons, which are very
different from realistic particle shapes.

Mathematical shape representation methods provide a more
precise and robust way to accurately generate particle shapes.
For example, Mollon & Zhao (2012) used Fourier descriptors
to generate two-dimensional (2D) particle shapes with different
levels of irregularity. Spherical harmonic (SH) analysis is the
extension of Fourier analysis on a unit sphere. This method has
been widely used to reconstruct particle shapes (e.g., Garboczi,
2002). Particle shapes were generated based on the statistical
properties of SH coefficients obtained from real particles (e.g.
Grigoriu et al., 2006; Liu et al., 2011; Zhou et al., 2014;
Zhou & Wang, 2015). However, the relationship between SH
coefficients and particle shape characteristics is still not well
understood. Therefore, it remains a challenge to “randomly”

Manuscript received. . .
Published online at www.geotechniqueletters.com
∗Department of Architecture and Civil Engineering, City
University of Hong Kong, Hong Kong

generate particle shapes with prescribed shape features using
SH method. “Randomness” here means that a large variance of
particle morphology characteristics can be retained by using the
same set of shape parameters to generate particles.

In this paper, surface parameterisation and SH decomposi-
tion are used to obtain SH coefficient matrices from particle
surfaces. Particle shapes are quantified at form, roundness and
compactness. The rotation-invariant representation is defined
from SH coefficient matrices on each spherical degree. These
methods are applied to analyse Leighton Buzzard sand (LBS)
particles and LBS fragments. Two novel shape descriptors are
defined from rotation invariants and compared with existing
shape parameters to assess their performance in evaluating
particle form, roundness and compactness.

There are four sections in the following part. The first
section introduces surface parameterisation, SH decomposition
and shape quantification. The second section defines rotation-
invariant descriptors at each spherical degree. The third one
applies these methods on LBS particles and LBS fragments
to illustrate the multi-scale nature of particle shape and define
novel shape descriptors from SH coefficients. In section four, a
summary of results and a discussion on topics for future work
are provided.

RESEARCH METHODOLOGY
Surface parameterisation
SH originally used radial representation (i.e., r(θ, φ)), which
is restricted to star-shaped surfaces (Ballard & Brown, 1982).
This limitation was eliminated by a surface parameterisation,
which defines a continuous and one-to-one mapping from the
surface of the original object to a unit sphere (Brechbühler
et al., 1995). Parameterisation can be considered as a
constrained optimisation problem that embeds the object
surface onto the surface of a unit sphere while minimise
the distortion of the surface net. The surface of arbitrarily
shaped simply connected objects can be parametrized. The
obtained two parameters (θ and φ) for each vertex correspond
to an equal area separation on particle surface instead of polar
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Fig. 1. Surface parameterisation and reconstruction of a typical
LBS particle: (a) original surface; (b) surface parameterisation
on a unit sphere; (c) reconstruction with lm = 5; (d)
reconstruction with lm = 10

coordinates. This process could be applied for both voxel
assemblies (Brechbühler et al., 1995) and triangular meshes
(Shen & Makedon, 2006). In this study, the Control of Area
and Length Distortions (CALD) method proposed by Shen &
Makedon (2006) for triangular meshes is used.

In the CALD algorithm, θ ∈ [0, π] and φ ∈ [0, 2π] are taken
as the latitudinal and longitudinal coordinate, respectively. The
process to obtain θ and φ of each vertex is briefly illustrated as
follows. Firstly, two vertices with the longest projections onto
the principal axis of the object are chosen as the north pole (θ =
0) and the south pole (θ = π). Secondly, the latitudes (θ) and
longitudes (φ) for all the mesh vertices are initially determined
by requiring each vertex value to be the weighted average of
its neighbours, where weights are proportional to its distances
from the neighbours. Then, the mesh vertices are relocated
to reduce the the area and length distortions through a local
smoothing method and a global smoothing method. The result
of the CALD algorithm is a bijective mapping between each
vertex on a surface (v = (x, y, z)T ) and a pair of coordinates (θ
and φ). It is performed on each component of v independently,
which results in v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T . Figs. 1
(a-b) illustrate the surface parameterisation of a typical LBS
particle onto a unit sphere.

Spherical harmonic expansion
The theory of spherical harmonics (SH) indicates that any
spherical scaler function (f(θ, φ)) can be decomposed as the
sum of SH:

f(θ, φ) =

∞∑
l=0

m=l∑
m=−l

cml Y
m
l (θ, φ), (1)

where Yml and cml are called the spherical harmonic and
coefficient at degree l and order m, respectively. The definition
of SH follows Press et al. (1992). The coefficients cml up to
a user-defined maximum SH degree (lm) can be estimated by
solving a set of linear equations in a least square fashion.

After surface parametrisation, spherical harmonic analysis
is performed on the three components of v(θ, φ) (i.e.,

(x(θ, φ), y(θ, φ), z(θ, φ))T ). Thus, the SH coefficient has three
components, i.e., cml = (cmxl, c

m
yl, c

m
zl)

T . Figs. 1 (c-d) show the
reconstructed surfaces of a typical LBS particle with lm equal
to 5 and 10, respectively.

Shape quantification
The approach proposed by Zhao & Wang (2016) is used
to quantify triangular surface mesh on form, roundness and
compactness. The three principal dimensions of a particle (p1 ≥
p2 ≥ p3) are determined by principal component analysis
(PCA). A 3D particle has two aspect ratios, i.e., elongation
index (EI = p2/p1) and flatness index (FI = p3/p2). Particle
form is quantified with the representative aspect ratio (AR)
defined as the average value of EI and FI. To evaluate
particle roundness, the surface is simplified to a certain number
of triangular meshes which represents the cut-off between
roundness and roughness. This study uses the particle surface
with 1500 triangular meshes since particle corners are well
identified and preserved at this level of simplification (Zhao &
Wang, 2016). Then, particle roundness index (RM ) is defined
from local mean curvature values at corners. The corners of
a particle surface are defined as the part that has a larger
local mean curvature than its maximum inscribed sphere.
Particle compactness is an overall shape parameter that can be
influenced by both particle form and roundness (Zhao & Wang,
2016). Two parameters (i.e., sphericity and convexity) are used
to characterise particle compactness. Sphericity (S) is defined
as the ratio between the surface area of a particle’s volume-
equivalent sphere and that of the particle. Convexity (CX ) is
defined as the ratio between the volume of the particle and that
of its convex hull.

ROTATION-INVARIANT REPRESENTATION
The vector of all spherical harmonics for a spherical degree l

Yl = (Y −ll , Y −l+1
l , · · · , Y l−1l , Y ll )

T (2)

forms the basis for a (2l + 1)-dimensional subspace. This
subspace is invariant under rotation, which means

Yl(θ + θ0, φ+ φ0) = RθφYl(θ, φ), (3)

where Rθφ is a rotation matrix on the parameter space. The
parameter-space rotation results in a different parameterisation
of the same object at the same position.

Spherical descriptors
The three components of v(θ, φ) are projected onto the
subspace Yl as

vl(θ, φ) =
(
vx,l(θ, φ), vy,l(θ, φ), vz,l(θ, φ)

)T
=

c
−l
x,l c−l+1

x,l · · · clx,l

c−ly,l c−l+1
y,1 · · · cly,l

c−lz,l c−l+1
z,1 · · · clz,l




Y −ll (θ, φ)

Y −l+1
l (θ, φ)

...
Y ll (θ, φ)


= ClYl(θ, φ),

(4)
where Cl is a 3× (2l + 1)-dimensional matrix including
spherical coefficients of degree l.

The rotation of a particle surface in the object space requires
the matrix multiplication Rxyzvl(θ, φ). The rotation of a
projection on subspace Yl on both the object space and the
parameter space is fulfilled by applying the rotation matrices:

Rxyzvl(θ + θ0, φ+ φ0) = RxyzClYl(θ + θ0, φ+ φ0)

= RxyzClRθφYl(θ, φ) = C′lYl(θ, φ), (5)
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where C′l is the new coefficient matrix after rotation.
Since rotation matrices are real orthogonal matrices, it is

easy to obtain that∥∥C′l∥∥2F = tr(C′lC
′
l
∗
) = tr(RxyzClRθφ(RxyzClRθφ)

∗)

= tr(RxyzClRθφR
T
θφCl

∗RTxyz) = tr(ClCl
∗) = ‖Cl‖2F , (6)

where ‖·‖2F is Frobenius norm, and ∗ denotes conjugate
transpose. It proves that ‖Cl‖2F is rotation-invariant. This factor
is usually referred to as “spherical descriptor” (dl), which
is a generalisation of the Fourier descriptor. The spherical
descriptor can be formulated as

dl =
∑

i∈(x,y,z)

l∑
m=−l

∥∥cmi,l∥∥ =
∑

i∈(x,y,z)

l∑
m=−l

cmi,lc
m
i,l
∗
. (7)

The spherical descriptor indicates the energy stored in each
degree, which has been widely used to retrieve 3D shapes
from large databases (e.g., Kazhdan et al., 2003). Due to
the orthogonality of spherical harmonic functions, Parseval’s
theorem can be used to calculate the mean squared distance
(MSD) from SH coefficients

∮
‖vl(θ, φ)‖dθdφ =

∑
i∈(x,y,z)

l∑
m=−l

∥∥cmi,l∥∥ = 4πMSD, (8)

where MSD is evaluated from the origin of the coordination
system. Therefore, the spherical descriptor equals to the mean
squared distance times 4π.

Principal components of spherical descriptor
The matrix calculated from ClCl

∗ is referred to as El. El
is a positive semi-definite Hermitian matrix. Cl has to be a
row full-rank matrix, otherwise the surface represented by Cl
is degenerated. Therefore, El is a positive definite Hermitian
matrix that has three real positive eigenvalues (el,1 ≥ el,2 ≥
el,3).

According to Eq. 5, an arbitrary rotation changes El into
E′l = RxyzElR

T
xyz . Assume that E′l has three eigenvectors ui

corresponding to el,i for i ∈ [1, 3], which means

E′lui = el,iui. (9)

It is then obtained that
RxyzElR

T
xyzui = el,iui

ElR
T
xyzui = RTxyzel,iui

ElR
T
xyzui = el,iR

T
xyzui

. (10)

Therefore, El and E′l have the same eigenvalues, and the
eigenvectors of El equal to RTxyzui. The three eigenvalues
of El are rotation-invariant and referred to as the “principal
components” of spherical descriptor.

Surface parameterisation decomposes spherical descriptor
into three components on Cartesian axes:

∑l
m=−l

∥∥cmi,l∥∥ for
i ∈ (x, y, z). By triangulating El, the surface on the object
space is actually rotated so that

RxyzElR
T
xyz =

el,1 0 0
0 el,2 0
0 0 el,3

 . (11)

Appendix B shows that this rotation makes the main axes of the
ellipsoid represented by C1 coincide with coordinate axes.

Fig. 2. Reconstruction of LBS particles (a and b) and LBS
fragments (c and d) with lm = 15 along with shape parameters

APPLICATION TO LBS PARTICLES AND LBS
FRAGMENTS
In this section, the rotation-invariant analysis is performed on
the surfaces of 80 LBS particles and 45 LBS fragments. The
LBS particles are mainly composed of quartz. Their shapes are
round and smooth due to the geological transition process. The
minimum dimensions of these particles are between 1 mm and
2 mm. The LBS fragments were generated from single particle
crushing tests (Zhao et al., 2015). They are more elongated and
angular due to the fracture process. They have volume between
0.001 mm3 and 1 mm3. These particles were scanned with X-
ray micro-tomography (µCT), and the original grey-level CT
images were processed into smooth triangular surfaces through
3D median filter, thresholding segmentation and the generalised
Marching Cubes algorithm (Zhao & Wang, 2016).

In this study, the original surface of each particle consists
of 10,000 triangular meshes. The SPHARM-MAT Toolbox
(available at http://www.iu.edu/∼shenlab/software.html) is
used to perform surface parameterisation and SH expansion to
obtain their SH coefficient matrices. The maximum spherical
degree is set to be 15. As shown in Fig. 2, the main features of
both LBS particles and LBS fragments are well characterised
with this degree level. Then, spherical descriptors and their
principal components are calculated from SH coefficient
matrices. Fig. 2 also includes the shape parameters of these
particles.

Shape scales
Particle shape is a multi-scale property. Barrett (1980) defined
particle shapes in three scales, i.e., form, roundness and
roughness. Form describes the proportion of a particle;
roundness describes variation at corners; and roughness reflects
the surface texture at corners and between corners. However,
it remains difficult to determine the threshold between these
scales.

SH analysis mathematically decomposes shape features into
different scales by performing the projection on to different SH
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Fig. 3. The values of spherical descriptors at each degree for
(a) LBS particles and (b) LBS fragments (solid line: mean value;
dash line: mean value ± standard deviation)

subspaces (i.e., Yl). Spherical descriptors indicate the energy
of surface features stored in each degree. The coefficients of
degree zero are only related to particle position since Y 0

0 is a
constant equals to

√
1/4π. Therefore, c0x,0, c0y,0, and c0z,0 for all

particles are set to zero. To eliminate the influence of particle
size, the normalised spherical descriptors are defined as Dl =
dl/
∑15
i=1 di. Fig. 3 shows the distribution of Dl for all LBS

particles and LBS fragments. Spherical descriptor decreases
sharply with the increase of spherical degree, which indicates
that the coefficients at a higher spherical degree describe finer
shape features. For example, there is an average 80% reduction
from D1 to D2. The relationship between spherical descriptors
and spherical degrees forms a linear relationship in a log-log
scale for 2 ≤ l ≤ 15.

The surfaces of all LBS particles and LBS fragments were
reconstructed with the maximum spherical degree increasing
from 1 to 15. Each reconstructed surface is represented
by 1280 triangular surface meshes which serve as the cut-
off between roundness and roughness. These surfaces were
quantified in terms of form, roundness and compactness. The
shape parameter (i.e., L ∈(AR, RM , S, CX )) of the surface
reconstructed with maximum SH degree l is referred to as Ll.
A relative error of shape parameter is defined as

Re(Ll) = |Ll − L15|/L15. (12)

The average relative errors for LBS particles and LBS
fragments (Re(Ll)) are shown in Fig. 4. As the spherical
degree increases, the relative errors of all shape parameters
gradually reduce. It is assumed that shape features are well
characterised when the corresponding shape parameter has a
relative error below 5%. For LBS particles, form (AR) and
roundness (RM ) are well characterised when the maximum SH
degree increases to one and eight, respectively. Compactness
(i.e., S and CX ) needs a slightly higher spherical degree
than form. LBS fragments need slightly higher maximum SH
degree since they are more elongated. Their roundness and
compactness are well characterised by a maximum SH degree
of about eight.

Shape parameters
In general, particle form is well characterised with coefficients
of degree one (Fig. 4). The spherical harmonics of degree
one determine an ellipsoid, which is referred to as the
first degree ellipsoid (FDE). As shown in Appendix B, the
principal dimensions of FDE are directly related to the principal
components of d1, i.e., p2i /4 = 3

4π e1,i for i ∈ (1, 2, 3). The
aspect ratio of FDE is calculated by

ARl=1 = (
√
e1,2/e1,1 +

√
e1,3/e1,2)/2. (13)
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Fig. 5. The shape parameters of first degree ellipsoids
and original surfaces (a, c-d) and the evolution of principal
dimensions of a typical LBS surface reconstructed with
increasing maximum SH degree (b)

Particle roundness becomes well characterised as the maximum
SH degree increases to eight (Fig. 4). A relative energy factor is
defined to evaluate the contribution of SH degrees between two
and eight d2−8/d1 =

∑8
l=2 dl/d1.

Fig. 5(a) shows that the form values of FDE and original
surface are highly correlated. In general, FDE has a slightly
smaller AR value than the original surface. The lower AR value
of FDE is mainly due to its lower intermedia and minimum
principal dimensions (Fig. 5(b)). FDE seems to be irrelevant
with the original surface on particle roundness (Fig. 5(c)). Most
LBS particles have smaller roundness value than their FDEs.
For LBS fragments, the sphericity values of FDE and original
surface are highly correlated (Fig. 5(d)), which indicates that
particle form has a more significant influence on particle
compactness than particle roundness. The compactness values
of all FDEs are equal to one.

Fig. 6 shows the relationship between d2−8/d1 and the shape
parameters of original surfaces. This factor is not related to
particle form (Fig. 6 (a)), while it tends to have a negative
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Fig. 6. The relationship between d2−8/d1 values and shape
parameters of original surfaces

influence on particle roundness (Fig. 6 (b)). The roundness
value decreases with the increasing energy stored in degrees
between two and eight. For LBS particles, the relative energy
factor has a negative influence on S and CX (Figs. 6 (c-d)),
which shows the influence of roundness on compactness. The
scattered data points in Fig. 5 and Fig. 6 are mainly due to the
distinct surface features of LBS particles and LBS fragments.
For example, LBS fragments have many flat fracture planes. A
further study is needed to explore the ability of SH analysis to
represent these features.

CONCLUSION
A theoretical and experimental study was performed to
investigate the relationship between SH coefficient matrices
and particle shapes. In theory, rotation-invariant descriptors
were identified from SH coefficient matrices, i.e., spherical
descriptors and their principal components. Then rotation-
invariant SH representation and shape quantification were
applied on LBS particles and LBS fragments. The multi-scale
nature of particle shape was investigated. Particle form is
mainly characterised by spherical degree one, while roundness
is characterised by spherical degrees between two and eight.
Two shape factors were defined directly from SH coefficient
matrices, namely the AR value of first degree ellipsoid (ARl)
and the relative energy factor (d2−8/d1). ARl and d2−8/d1 are
closely related to the shape parameters on particle form and
roundness.

Based on these findings, the next step is to randomly
generate SH coefficient matrices with prescribed particle
form and roundness. The rotational invariant properties
(i.e., spherical descriptors) help to define the amplitude of
scale-dependent features. Surface parameterisation enables
control these features at three perpendicular directions. The
randomness of generated particle shape can be achieved by
introducing random orientations of the principal directions at
different scales.
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APPENDIX A: FIRST DEGREE ELLIPSOID (FDE)
The projection of v(θ, φ) on the subspace Y1 can be
transformed into Cartesian system through

v1(θ, φ) = C1Y1(θ, φ) = C1M1(u, v, w)
T , (14)

where M1 is a 3× 3-dimensional matrix that represents
the spherical harmonics of degree one (Y1) in Cartesian
system. The spherical harmonics in Cartesian system are
y−11 =

√
3/8π(u− iv), y01 =

√
3/4πw and y11 =

√
3/8π(u+

iv), which means

M1 =

√
3

8π

 1 i 0

0 0
√
2

−1 i 0

 . (15)

The matrix A1 = C1M1 represents an ellipsoid, which is
referred to as first degree ellipsoid (FDE). The principal
directions of FDE are the eigenvectors of A1A

∗
1. The three

eigenvalues of A1A
∗
1 are the square of half lengths of the three

principal dimensions of FDE (i.e., p21/4, p22/4 and p23/4 with
p1 ≥ p2 ≥ p3). Since M1M

∗
1 = 3/(4π)I, it is easy to obtain

that
A1A

∗
1 = C1M1(C1M1)

∗ =
3

4π
C1C

∗
1 . (16)

If the three eigenvalues of C1C
∗
1 are e1,1 ≥ e1,2 ≥ e1,3, the

three principal dimensions of FDE can be calculated by

p2i /4 =
3

4π
e1,i, (17)

for i ∈ (1, 2, 3).
By performing a rotation matrix R on FDE (Rv1(θ, φ)),

triangulate C1C
∗
1 can be triangulated as:

RC1C
∗
1R
∗ =

e1,1 0 0
0 e1,2 0
0 0 e1,3

 . (18)

This rotation also triangulate A1A
∗
1 and makes the main axes

of FDE coincide with the coordinate axes, putting the longest
FDE axis along x and the shortest one along z.
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