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ABSTRACT Software-Defined Network (SDN) has been developed to reduce network complexity through
control and manage the whole network from a centralized location. Today, SDN is widely implemented
in many data center’s network environments. Nevertheless, emerging technology itself can lead to many
vulnerabilities and threats which are still challenging for manufacturers to address it. Therefore, deploying
Intrusion Detection Systems (IDSs) to monitor malicious activities is a crucial part of the network architec-
ture. Although the centralized view of the SDN network creates new opportunities for the implementation
of IDSs, the performance of these detection techniques relies on the quality of the training datasets.
Unfortunately, there are no publicly available datasets that can be used directly for anomaly detection
systems applied in SDN networks. The majority of the published studies use non-compatible and outdated
datasets, such as the KDD’99 dataset. This manuscript aims to generate an attack-specific SDN dataset and
it is publicly available to the researchers. To the best of our knowledge, our work is one of the first solutions
to produce a comprehensive SDN dataset to verify the performance of intrusion detection systems. The new
dataset includes the benign and various attack categories that can occur in the different elements of the SDN
platform. Further, we demonstrate the use of our proposed dataset by performing an experimental evaluation
using eight popular machine-learning-based techniques for IDSs.

INDEX TERMS Dataset, Intrusion detection system (IDS), OpenFlow, SDN, Security, Threat Vectors,
Machine Learning

I. INTRODUCTION

IN conventional distributed networks, the functionality of
decision making processes known as control plane and,

the forwarding of network traffic (data plane) are imple-
mented within the network devices (e.g. routers or switches).
The network operators configure traffic policies (e.g. routing,
switching, quality of service) on each device independently.

Recently, SDN has come to prominence to solve the in-
herent problems of conventional distributed networks. The
key benefits of SDN is making the network more flexible
and easy for management by decoupling the control plane
and data plane. Thus, the new paradigm can control the
entire system from a centralized remote device named the
controller. The benefits of SDN encourage many commercial
and industrial companies to deploy SDN solutions in their
network environment for several reasons, including:

• Separating the control plane from the data plane facili-
tates network system management. Besides, the network
becomes easier for any change or update, and therefore
reducing the human mistakes.

• IT administrators can implement network devices or

upgrade the network infrastructure easily without any
restraint to a specific vendor.

• Centralized view of the entire network allows the SDN
controller to provide a global view of the whole net-
work.

• Developers can deploy various applications in the upper
layer of the SDN system to perform network services in
a virtual environment [1].

• The underneath infrastructure devices do not need any
programming language. As a result, the operation cost
will be decreased significantly compared to the conven-
tional network. These enormous benefits of SDN are
making its market continuously growing. As a result, it
achieved more than $9.5 billion at the end of 2019 [2],
and this value is expected to reach $13.8 billion by 2021,
as shown in Fig. 1.

Despite the numerous benefits of SDN technology, SDN is
susceptible to new security threats that can be exploited by
attackers to perform different malicious tasks. If the attacker
successfully accesses the SDN controller, the whole system
can be exposed to critical threats. Therefore, deploying IDS
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FIGURE 1: SDN market size prediction [2].

techniques to detect anomalies in the SDN network traffic is
an essential part of the network architecture. Generally, IDSs
can be one of two approaches: signature-based or anomaly-
based solutions. While signature-based is widely used in
commercial products due to its high detection rate and low
false alarms, it fails to discover the new or unknown network
attacks that are produced daily. In contrast, the anomaly-
based detection system has gained the attention of many
academic researchers due to its ability to discover novel
attacks. Despite existing work conducted on the anomaly
detection systems for the SDN network, unfortunately, there
are still many challenges for developing efficient IDS sys-
tems on the SDN standard. One of the significant challenges
for deploying IDS is the fact that there is no public dataset
generated directly from SDN networks and can be used for
training and evaluation of anomaly detection systems. Most
of the research community uses intrusion detection datasets,
which are generated for conventional networks. However,
the virtualized behavior of the SDN makes the network
susceptible to new attacks, which are different from those
found in the conventional network.

Although some previous efforts [3]–[8] have been tried
to simulate the SDN network and generate an acceptable
dataset, the existing datasets only outline a few types of
attacks i.e. only focus on DoS/DDoS threats without consid-
ering the different attack classes existing in the SDN network.
In addition, these datasets describe intrusions that can be
generated in one element of the SDN network without repre-
senting attack vectors in different SDN layers. In this work,
we address the lack of available SDN datasets by generating
a comprehensive dataset that contains full network traces
and reflects Internet traffic. We consider the common attack
classes in conventional networks, besides the new attacks
data that are generated in SDN during its centralized design.
The ultimate goal of this work is to create a public dataset
that can be used to evaluate IDSs for the SDN environment.
The contributions of this paper are summarized as follows:

• Reviewing and classifying attacks in different SDN
layers.

• Studying the limitations of the existing IDS datasets.
• Proposing a virtualized network testbed to generate a

new SDN dataset, namely InSDN.
• Generating a significant dataset covers various attacks

that can be found in all SDN elements from the proposed
network testbed. Further, the impact of the generated
attacks on the different elements of SDN is reviewed.
This can help the researchers to identify potential holes,
and therefore, they can propose several countermeasures
based on these requirements.

• Demonstrating how to use the new dataset with popular
Machine Learning (ML) techniques applied in anomaly
detection systems for the SDN network.

II. BACKGROUND
A. LITERATURE REVIEW
This section reviews the existing publicly datasets generated
from conventional networks. These datasets are widely used
for intrusion detection in conventional networks, and they
have been used for evaluating ML algorithms designed for
anomaly detection approaches in SDN networks.

• KDD’99 [9] [10]: one of the most well-known datasets
which is used widely for intrusion systems evaluation.
KDD’99 was derived from the DARPA packet traces.
The dataset contains 41 traffic features which are clas-
sified into three groups: basic features, traffic features
and content features. In addition, the dataset contains
four attack categories, besides the normal data. The ma-
licious traffic can be one of the following classes Denial
of Service (DoS), Remote to Local (R2L), User to Root
(U2R), or probe attacks. One of the inherent problems
in the KDD’99 dataset is the redundancy records, where
the duplicated records in the training set reached to 78%
and about 75% in the testing file. The high degree of
duplication data prevents the detection techniques to
give high accuracy for low attack categories like R2L
and U2R. Thus, the detection systems are biased toward
frequent records like DoS attacks.

• NSL-KDD [11]: NSL-KDD is the modified version of
KDD’99 dataset. It was produced to solve some inherent
problems in the KDD’99 dataset, such as duplicate
records. NSL-KDD contains two subsets, training set
and testing set. The distribution of attacks in the testing
set is higher than the training one, with an additional
17 attacks that are not represented in the training set.
Although many studies have employed KDD’99 and
NSL-KDD in the domain of intrusion detection, both
datasets are not realistic to represent the current network
traffic since they were generated two decades ago and
cannot reflect the current attack trends. Besides, the
original DARPA dataset was generated using an out-
dated version of the TCP protocol. Using the old TCP
version makes the header field "IPv4 Type of Service
(ToS)" invalid according to modern standards [12].
Besides the previous limitations of KDD’99 and NSL-
KDD datasets for IDS evaluation, they also have a large
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set of features that are not relevant to SDN networks.
For example, some of the previous works [13] and [14]
used six out of 41 features when deploying the NSL-
KDD dataset under the SDN context. The both studies
selected subset features that can be derived directly
through the SDN OpenFlow protocol. However, the
performance of the classifier model indicates a low
detection rate and a high false alarm as the used features
are not being able to find the suspicious behavior of
malicious traffic. In addition, we can find most of the
previous works in SDN networks deployed KDD’99 and
NSL-KDD datasets to identify DoS attacks only. This is
because the other attack traffic like U2R and R2L are
embedded in the packet’s data, and the content features
are required to identify these types of attacks. However,
the content features are not directly accessible in the
current OpenFlow protocol.

• Kyoto dataset 2006+ [15]: was collected from hon-
eypot servers in Kyoto University. It contains the real
network traffic in the period between (Nov. 2006 to
Aug. 2009). Kyoto dataset comprises of 24 statistical
features, 14 of them are shared with the KDD dataset.
The background or normal traffic was created simul-
taneously with malicious traffic by deploying an addi-
tional server in the same honeypots network to produce
a more realistic dataset. The imbalanced class distribu-
tion of the dataset is considered the main limitation of
Kyoto 2006+ since the traffic data was obtained from
honeypot servers, and the majority of the traffics data
are malicious. Besides, the attack types in the dataset
are unknown. The shortcoming to identify the attack
types gives a limited view to evaluate intrusion detection
performance when using this dataset. Furthermore, the
normal traffic in Kyoto 2006+ covered only the mailing
and DSN traces. In addition, the size of normal traffic
in the dataset, i.e. between 3% and 4% of the whole
dataset, does not reflect the Internet traffic. Besides,
normal and malicious traffics were created in two dif-
ferent environments causing to the dataset being unreal-
istic and uncorrelated [16]. Although the Kyoto 2006+
dataset was built on real traffic data, it does not consider
any information regarding the dataset attacks types. As
a result, we can find difficulties in evaluating the impact
of these attacks on the SDN network services.

• ISCX2012 [17]: The authors used two profiles to gen-
erate data traffic based on a simulated network envi-
ronment. The Alpha-profiles are used to create attack
traffic and Beta-profiles for normal traffic generation.
The dataset includes two main types of network attacks,
DoS and brute force attacks with 20 collected packet
features. However, the diversity of the DoS attacks
in the data is slightly small and does not cover the
vulnerabilities that can be happened in different OSI
layers. Furthermore, the dataset includes only HTTP
traffic, which does not reflect modern traffics, where the
majority of current Internet traces are based on HTTPS

traffic [18]. Again, similar to KDD’99 and NSL-KDD
datasets, the number of features that can be extracted
from the OpenFlow protocol are not enough for machine
learning eveluation.

• CICIDS 2017 [18]: This dataset is the closest one to our
study due to it covers a comprehensive range of attack
scenarios that are not addressed in the previous datasets,
besides it contains the same number of gathered flow-
based features. Although the CICIDS 2017 dataset
is considered one of the recent datasets that attracts
many researchers to develop and analyze their new
models, it contains many problems and shortcomings
as the following: (i) Firstly, the CICIDS 2017 dataset
was released based on the foundation of ISCX2012,
published in 2012. The significant difference between
both datasets is the total number of extracted features.
Where the CICIDS 2017 dataset contains more than 80
flow-based features compared to 20 packet features in
ISCX2012. In addition, the HTTPS Beta profile was
added to the CICIDS 2017 dataset to keep the adoption
of HTTPS growth on the web. (ii) Secondly, normal
traffic behavior was generated based on profile scripts.
However, applying the concept of profiling could be
problematic due to their innate complexity [19]. Fur-
thermore, Panigrahi et al. (2018) highlighted some prob-
lems and shortcomings in CICIDS 2017 data [20]. The
dataset has 288602 missing class labels and 203 miss-
ing information instances. In addition, the size of the
CICIDS 2017 dataset is extremely huge and contains
many redundant records that seem to be irreverent for
any IDS training.

• CSE-CIC-IDS2018 [21]: The dataset is the result of a
collaborative project between the Communications Se-
curity Establishment (CSE) and the Canadian Institute
for Cybersecurity (CIC). Similar to CICIDS 2017 but
instead, it was implemented on AWS (Amazon Web
Services) computing platform. The notion of profiles
is used to generate the dataset in a systematic manner.
Where this dataset has two general classes of profiles,
B-profiles is used to generate the normal traffic, and M-
Profiles is used for attack scenarios. The dataset covers
the same attack scenarios as in CICIDS 2017 dataset.
However, the dataset suffers from the same inherent
problems of CICIDS 2017, and also the use of synthetic
traffic.

In addition to datasets described above, many data repos-
itories have been published to cover various security do-
mains, such as botnets [22], [23], Malware [24], [25], Port
scans [26], etc. While the structure and the type of those
repositories are different, we exclude them from our com-
parison. More details about these datasets descriptions and
discussion properties can be found in [27], [28].

An important note is that although all datasets described
above are normally used for IDS research on SDN network-
based, these datasets were not generated from SDN plat-
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forms. This would cause a compatible problem since the
conventional network and SDN are different in nature. In
addition, each dataset has its own requirements for security
systems and benchmark datasets should be adapted to the
specific environment [27]. This means that the deployment
of the attack vectors should consider the new architecture.
Besides, each dataset emphasizes different properties. For
example, some datasets represent certain attack types such
as DDoS attack, while other datasets are concerning on the
label accuracy such as ISCX2012 dataset, etc.

It should also be noted that each attack has different work-
ing principles. For example, “IPsweep” and “Portscan” at-
tacks are not considered as DDoS attacks by the conventional
intrusion detection techniques [29]. However, the aforemen-
tioned attacks can be utilized to generate an extensive amount
of network flows and exhaust the SDN component resources
(e.g., the bandwidth of the southbound interface gets satu-
rated). In addition, decoupling the control plane and data
plane brings some new threats that are unique to SDN.
Thus, selecting the improper features can lead to a signifi-
cant drawback on the performance attainable by most well-
known classifiers. For better illustration, Santos et al. [30]
demonstrated that the SDN controller attacks have the worst
classifications results achieved by different machine learning
algorithms. This return to the fact that some of the important
features used to detect the new SDN attack types are similar
to normal traffic patterns due to the unique SDN architecture.
For example, flow duration, which implies alive connection
time (in nanoseconds), is equal to normal flow in case of
SDN controller attacks. Although this attribute is widely used
in the conventional networks to detect different attack types
such as bandwidth attacks, this solution is inefficient to detect
the SDN controller attacks.

The comparison between the public datasets and InSDN
dataset is described in Table 1, while the information of
attack types and their used tools are reported in Table 2.

B. REVIEWER-2: COMPARISON OF EXISTING
TESTBEDS WITH PROPOSED MODEL
We created the InSDN testbed to generate a benchmark
dataset for SDN. This section compares this InSDN testbed
with the existing methods in the literature. The testbed is
an environment designed that can incorporate real network
facilities and real traffic [31]. Table 3 represents the different
testbeds that are introduced in the literature to the one we
developed and used to create an attack traffic dataset.

Braga et al. (2010) simulated the SDN network to test
ML models against DDoS flooding attacks [32]. In their
work, they used 16 GB RAM and Xeon server to create an
SDN testbed in order to generate an SDN intrusion dataset.
The simulated network composites of three virtual Open-
Flow switches connected to the SDN NOX controller. The
Stacheldraht tool was used to generate the DDoS flooding
attacks, where the total number of extracted samples are
32425 and 39071 for DDoS and normal traffic, respectively.
Although the significant amount of samples are generated

for normal and attack traffic, the collected data is limited to
DDoS flooding attacks.

Amaral et al. (2016) created a testbed with a small topol-
ogy to collect network traffic data using an OpenFlow pro-
tocol for ML-based traffic classification solutions [33]. The
authors used HP VAN SDN controller with a single HP
E3800 OpenFlow-enabled switch to generate their dataset.

The switch is connected to the non-SDN network to re-
ceive copies of the upstream-link traffic through the mirror-
ing port. Two different datasets were created from the testbed
to represent various traffic applications such as YouTube,
Vimeo, Facebook, LinkedIn, etc. The first dataset is relatively
small and labeled under a controlled environment to repre-
sent eight different application traffic. The second dataset
is unlabeled and contains all traffic data generated from
the monitored room. However, the collected data highlights
only normal application traffic without any representation for
attack scenarios. The intrinsic dataset should cover normal
and malicious traffic.

Ajaeiya et al. (2017) Used the RYU SDN controller with
a single Open vSwitch (OVS) for the experimental pur-
pose [34]. The authors used publicly available PCAP files,
which were collected from different experiments for their
work. TCP Replay tool was used to replicate the network
traffic into the SDN network, while the Wireshark tool was
used to capture the traffic samples. The authors successfully
collected 16,624 and 36,654 samples for normal traffic and
attack traffic, respectively. The attack samples include the
Brute Force credential attack, TCP DoS, ICMP Flood, and
port san traffic. However, their work is mainly focused on
re-modeling traffic replay instead of addressing actual traffic
generation.

In 2018, Cheng et al. created a testbed network topology
using the Mininet tool on the Ubuntu server [5]. Five hosts
are used to create network traffic. Two hosts act as bots, and
two different hosts are dedicated to normal traffic, while the
last host represents the victim machine. Hping3 tool is used
to generate different types of flooding attacks such as ICMP
flood, UDP flood, and TCP SYN food. The same tool is also
used to create the normal traffic. More than 30000 samples
are collected to train the ML-based models. However, their
proposed work is limited for DDoS flooding attacks only.

In 2018, Prakash et al. used the Mininet tool to build a
topology from four virtual hosts and two virtual switches in
order to generate a dataset for ML classification purposes [3].
TCPDump tool is used to collect the network traffic, while
the Hping3 tool is utilized to simulate DDoS attacks. In
their work, 2000 and 4000 samples are collected for normal
and attack traffic, respectively. However, this work focused
mainly on DDoS attacks without any consideration of other
attacks that can happen in the SDN network.

In 2019, Santos et al. created an SDN testbed to generate
the attack traffic dataset for analyzing the performance of
some ML techniques [30]. The SDN network was simulated
using the POX controller and Mininet tool. Scapy, a packet
generation tool, is utilized to generate both normal and
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TABLE 1: Comparison between produced dataset and publicly available datasets according to the principal objectives.

Dataset Year Realistic
Traffic Label

Attack
Diversity Meta-data Balanced Type of

Network

No. of
Attributes Format Network

Environment

KDD’99 [9] 1998 No Yes Yes No No Small network 41 Other conventional Network
NSL-KDD [11] 2009 No Yes Yes No No Small network 41 Other conventional Network
Kyoto [15] 2006 - 2009 Yes Yes No No No honeypots 24 Other conventional Network
ISCX2012 [17] 2012 Yes Yes Yes Yes No Small network Not known Packet, Flow conventional Network
CICIDS 2017 [18] 2017 Yes Yes Yes Yes No Small network 83 Packet, Flow conventional Network
CSE-CIC-IDS2018 [21] 2018 Yes Yes Yes Yes No Small network 83 Packet, Flow AWS platform
Proposed (InSDN) Since 2020 Yes Yes Yes Yes No Small network 83 Packet, Flow SDN Network

TABLE 2: Attacks vectors between generated dataset and public datasets with the used tools if available.

DataSet Attacks Traffic
KDD’99 [9] DoS, Probe (Probing Attack), R2L, U2R
NSL-KDD [11] DoS, Probe (Probing Attack), R2L, U2R
Kyoto dataset 2006+ [15] not specified (e.g. various attacks against honeypots )

ISCX2012 [17] HTTP DoS (executed through Slowloris), DDoS using an IRC botnet,
SSH brute force (executed through brutessh), infiltration (executed through Metasploit)

CICIDS 2017 [18]
botnet (executed throughAres), DoS (executed through Hulk, GoldenEye, Slowloris, and Slowhttptest),
DDoS (executed through LOIC), cross-site-scripting, SSH brute force (patator), SQL injection,
heartbleed, infiltration, portscan (executed through NMap)

CSE-CIC-IDS2018 [21]
botnet (executed throughAres), DoS (executed through Hulk, GoldenEye, Slowloris, and Slowhttptest),
DDoS (executed through LOIC), cross-site-scripting, SSH brute force (patator), SQL injection,
heartbleed, infiltration, portscan (executed through NMap)

Proposed (InSDN)

botnet (executed through Ares),
DoS attacks (executed through LOIC, slowhttptest, HULK, torshammer, Nping, Metasploit framework),
DDoS (executed through Hping3), web Attacks (executed through Metasploit framework, sqlmap),
Password Brute-Forcing attack (executed through Burp Suite, hydra, Metasploit framework),
probe (Nmap, Metasploit framework), exploitation (executed through Metasploit framework)

malicious traffic. The network topology is composed of a
single OpenFlow switch and six hosts. The same hosts are
used to generate normal and malicious traffic in two different
experiments. The normal traffic represents HTTP and ICMP
traffic only, while the malicious traffic is limited to DDoS
attacks. The data flow size is 20000 samples, with 10000 for
each traffic type.

Similar to the previous work, the SDN testbed is created
to simulate two types of flooding attacks: UDP flooding and
SYN flooding attacks [6]. Scapy tool is used to create 2000
samples for each attack type. The Miniedit (GUI editor for
Mininet emulator tool) is used on the Ubuntu server to create
different virtual hosts for normal and attack scenarios. The
authors utilized scapy tool also to generate both normal and
attack traffic. However, their work is limited to DDoS attacks
only.

In 2020, Polat et al. created a testbed using six virtual
hosts, two virtual machines (VM) switches, and one OVS
switch to generate a normal and malicious dataset for ML
training purposes [35]. They used Ubuntu 18.04 server with
1 GB RAM and I CPU on VirtualBox-KVM. The generated
dataset has 65000 samples for DDoS attacks and 64,000
samples for normal traffic with 12 feature attributes and one
labeled class. Hping3 tool was used to generate three DDoS
attack traffic packets TCP, UDP, and ICMP flooding attacks.
Again, the generated dataset is limited to DDoS attacks only.

Hence, it is clear from the studies mentioned above that
there have not been real attempts to generate a comprehensive
dataset for the SDN environment. The current works focus

only on creating a dataset that can assist researchers in
deploying ML techniques to effectively analyze and detect
security problems in one element of the SDN network. One
of the significant shortcomings of these methods is that the
simulated data is limited to one or two activities (mostly for
DoS/DDoS attack) without considering various attack types
that can occur in SDN networks. In addition, their works
experienced several concerns, such as out of data, representa-
tion of modern attacks, data corruption, inconsistencies, and
traffic verity.

The main differences between the previous testbeds and
InSDN one are the attack variety and the realistic of traffic
traces. We used Kali Linux to perform various attack scenar-
ios and create different attack classes such as DoS, DDoS,
Web attacks, Password-Guessing, Botnet, Exploitation, and
Probe attacks. Furthermore, the normal traffic covers various
popular application services that were not represented in the
previous works except [33].

C. ATTACK VECTORS IN SDN ELEMENTS
The centralized design of SDN architecture introduces new
vulnerabilities that can make the SDN network vulnerable
to various types of security threats [36]–[38]. In fact, all
SDN layers are unavoidably susceptible to different types of
attacks. Some of these attacks are specific for the SDN i.e. as
a result of separating the data and control plane functionality.
These attacks can occur in the SDN controller or on the
communication channels between the control and data plane
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TABLE 3: Comparison of existing testbeds and their characteristics

Testbeds Traffic Generator Normal Traffic Attack Traffic Attack Variety Environment
Braga et al. [32] Stacheldraht tool Yes Yes No Virtualised
Amaral et al. [33] Not stated Yes No No Physical
Ajaeiya et al. [34] TCP Replay Yes Yes Limited Virtualised
Cheng et al. [5] Hping3 tool Yes Yes No Virtualised
Prakash et al. [3] Hping3 tool Yes Yes No Virtualised
Santos et al. [30] Scapy tool Yes Yes No Virtualised
Myint et al. [6] Scapy tool Yes Yes No Virtualised
Polat et al. [35] Hping3 tool Yes Yes No Virtualised
InSDN Testbed Various tools Yes Yes Yes Virtualised

devices. Beside, there are various attacks that are common
between SDN standard and the conventional networks i.e.
the attacks on the application layer or data plane elements.
While some attacks are frequent and have a mild or moderate
impact against the conventional networks, the impact of these
attacks is escalated in the SDN. For example, in the case
that the attacker successfully gets unauthorized access to a
vulnerable machine or application in a conventional network,
a single machine or a small portion of this network is affected
by this attack. The attacker needs to escalate his privilege or
uses the victim machine to start new attacks against different
machines or the subnets [39]. Therefore, there is a need for
different mitigation techniques to deal with them. Kreutz et
al. (2013) defined various attack vectors that can tamper the
SDN architecture [40]. [41]–[46] consider the security issues
in OpenFlow. In this section, we outline the comprehensive
attack vectors that have a critical impact on different elements
of SDN. Figure 2 summarizes the attack vectors inside the
SDN network. We classify the main attacks against the SDN
network into four-vectors as following:

1) Attacks on the data plane. The network elements
itself can be a target of the intruder. The attacker can
gain unauthorized access to vulnerable hosts in the
SDN network to initiate different attacks. Besides, the
attacker can generate malicious traffic, using a hosting
machine or connected switch to flood the network
components. The main goal of these attacks is to
consume the controller resources or flow table-space
of any OpenFlow switch. In addition, the attacker can
cause damages in the network resources by deploying
a fake switch in the SDN network in order to deviate
the network traffic or for stealing purposes. The in-
truder can manipulate the flow entries rules of Open-
Flow switch to reroute the legitimate network traffic.
Furthermore, he can use the fraud switch to produce
forget-requests to overwhelm the controller or to slow
down the network traffic. Additionally, the virtualized
view of the SDN network encourages the enterprise
administrators to implement software switches such as
OVS switch on their network infrastructure. Although
virtual switches are software-based and run on the
host servers, they can also be a target for attackers.

FIGURE 2: The attack vectors in different layers of SDN. We
classify the SDN threats into four attack vectors. The attack
vectors number 1 and 4 are shared with the conventional
network, while attack vectors number 2 and 3 are particular
for SDN paradigm.

In contrast, it is significantly difficult to physically
compromise the hardware switches in the conventional
network and modify its forwarding tables.

2) Attacks on Control plane Communication. In the
SDN network, the controller can handle the data plane
devices through communication channels. Logically,
each device has a separate channel with the controller,
but physically, all these channels share the same phys-
ical link. Running the flooding attack from spoofed
sources can cause congestion in the channel links. Con-
sequently, breaking down the communication between
the controller and data plane elements can isolate the
SDN controller from the whole network elements.
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Furthermore, the attacker can exploit the trust between
the OpenFlow switches and the controller to launch a
man-in-the-middle attack, sniff valuable information,
or gain full access to the controller plane [47].

3) Attacks on SDN Controller. The controller acts as the
brain of the SDN network. Gaining access or bringing
down the SDN controller can consequently disrupt the
whole system. In addition, the controller is vulnerable
to the same vulnerabilities as the operating system in-
stalled on it. In some cases, the attacker can use his own
controller and forward the node traffics based on his
setup. Furthermore, the attacker can control the whole
network and create his own policy if he successfully
exploits the vulnerable Northbound API (i.e., the API
resides in between the controller and the application
layer).

4) Attacks on the application plane. The attacker can
run a malicious application to violate the security pol-
icy or to bypass firewall and IDS Apps.

It is noticed that the attacks numbers 2 and 3 are specific to
SDNs, resulting from decoupling the data and control plane,
while the attacks 1, and 4 are common in both SDN and
conventional network.

D. ATTACK PHASES
The main objective of attackers is to control the network
system by gaining unauthorized access to network resources.
He can steal vital information or disturb the network oper-
ation, causing damage in the entire system. There are five
attacking steps that can be performed by malicious intruders,
as follows:

1) Reconnaissance: The first step for the attacker before
initiating his attack. In this phase, the attacker can
gather some information about the target system, such
as IP addresses, operating system versions, running
applications, etc.

2) Scanning: The attacker uses the collected information
from the reconnaissance phase to discover the system
vulnerabilities. Consequently, he can perform different
attack scenarios against the target system.

3) Gaining Access: In this phase, the attacker can ex-
ploit the existing vulnerabilities to gain system control.
There are several methods to access the target system
(eg., buffer overflow, password cracking, and session
hijacking). Once the attacker successfully obtains ac-
cess to the target system, he can raise his privilege to
gain full access to the victim machine.

4) Maintaining Access: The attacker keeps his system
access by installing remote shell connections using
Trojans, Backdoors, Rootkits, etc. He can employ the
compromised system for different purposes, such as
stealing vital information or starting a new attack
against different systems.

5) Clearing Tracks: After gaining access to the target
machine, the attacker can work to hide any malicious

activities in order to avoid the detection (eg., deleting
the system log).

In this research work, the aforementioned attacking steps
were carefully examined to generate a more realistic dataset
for IDS. In addition, we have also studied the previous work
in [17], [18], [48]–[50] to generate a comprehensive dataset
and to take into consideration the setting up of the new
environment and the different attack methodologies inside
the SDN network.

III. PROPOSED SDN ARCHITECTURE
As mentioned in Section II, the attacker can exploit the
vulnerable elements of the SDN network and launch several
attacks such as scanning, spoofing, DoS, etc. To generate a
significant dataset, we need to deploy various applications
services in the testbed environment. The produced dataset
should reflect the nowadays Internet attacks that can be
launched in the current SDN networks. Additionally, the at-
tack scenarios must cover the current attack vectors in differ-
ent SDN elements. Furthermore, several attack scenarios are
considered from different sources coming from both outside
and inside the SDN network. Besides, the normal traffic in the
generated data includes various popular application services
such as HTTPS, HTTP, DNS, Email, FTP, SSH. We repre-
sent our topology by creating four virtual machines (VMs)
using VMware Workstation on Windows 10. The first virtual
machine is Kali Linux and represents the attacker server. The
secondary machine is Ubuntu 16.4 and acts on the ONOS
(Open Network Operating System) controller. The third is an
Ubuntu 16.4 machine to serve a Mininet and OVS switch.
The forth virtual machine is a Linux based on Metasploitable
2 to provide vulnerable services for demonstrating common
vulnerabilities. Fig. 3 shows the testbed network architecture
for the proposed solution.

The architecture of the proposed solution composes of a
single OVS switch, including three OVS bridges. One of
the OVS Bridges (br1) is connected to the attacker VM
machine (Kali Linux). The second OVS Bridge (br2) is
connected to the vulnerable Linux machine (Metasploitable2
Server). The last bridge (S1) is attached to Mininet virtual
hosts. The open-source tool ONOS [51] is used to represent
the SDN controller. The ONOS software is installed in a
separate VM. The communication between all virtual hosts is
done by L3 switching connectivity. Additionally, four virtual
hosts are created using the Mininet network emulator [52],
[53] to generate legitimate and malicious network traffics.
Mininet is widely used by researchers to create a realistic
virtual network with virtual switches, hosts, and links on
a single Linux kernel virtually. Further, we used the Damn
Vulnerable Web Application (DVWA) software to represent
a PHP/MySQL webserver for a better description of different
attacks inside the SDN network. The DVWA is independently
installed from the operating system, using docker containers
in the same OVS host.

The OVS switch is configured to function as L3 switching
by combining the OVS software with Linux kernel routing.
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FIGURE 3: Virtual SDN testbed network architecture. The Virtual topology was created using four separated VM machines.
The OVS switch and SDM controller were installed on two different machine, while the Kali Linux and Metasploitable 2 are
representing the attacker machine and the vulnerable Linux server respectively.

In this case, all the virtual hosts can communicate with each
other using different subnets. Fig. 4 shows the logical topol-
ogy of the virtual testbed and its configuration in Fig. 5. The
following process indicates how to map from L2 switching to
L3 switching using the OVS switch.

• Install OVS switch and Mininet software on the same
VM.

• Create four adapters in the OVS-VM to represent four
different network subnets. In our setup, the created
interfaces were named ens38, ens39, ens40, and ens41.

• Create two OVS bridges on the same OpenFlow switch
named br1 and br2.

• Assign each data plane interface to its proper bridge.
We assigned ens40 to br1 and ens38 to br2 bridge. In
addition, we assigned ens41 interface into S1 bridge,
which is created by default on OVS switch.

• Remove the IP address from each data plane interface
or assign it to zero. Later the removed IP address will
be assigned to the created bridges. For example, we
remove the configured IP address from ens40 interface
and assign it to its connected bridge (br1). The same
configuration is performed for br2 and S1 bridges.

• Connect the Kali Linux VM with the same adapter of
br1, and Metasploitable2 Server with the same adapter
of br2.

• Enable IP forwarding on the OVS Linux machine.
• Create a Mininet topology that contains four virtual

hosts (h1 to h4). The virtual hosts of Mininet are at-
tached to S1 Bridge. The configuration of S1 bridge is
similar to previous setups of br1 and br2. We add the
IP address of S1 bridge as a default gateway for each
virtual host in Mininet topology.

• Connect ONOS controller to all created bridges (br1,
br2, and S1)

• Now, we are able to ping between all hosts in different
subnets.

IV. METHODOLOGY FOR DATA GENERATION
A. DATASET ATTACK SCENARIOS
This section presents our approach to generate the SDN
network traffic data by using different attack scenarios.

The centralized view of the SDN network and separation
of the data plane from the control plane creates a new oppor-
tunity for the attacker to carry out various types of attacks
compared to the conventional network. The nature of these
attacks in SDN is different from those commonly affecting
the conventional network [54]. For example, the attacker can
generate new malicious traffic to attack the SDN controller or
even the communication links between the SDN controller
and OpenFlow switches. Furthermore, compromised users
can be employed to start a new attacks after the traffic flow is
established. Besides, the SDN applications can have different
vulnerabilities such as buffer overflow, command injection,
SQL injection, etc. These vulnerabilities can create attack op-
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FIGURE 4: Logical Network topology. The independent OVS bridges are configured using L3 switching and connected to
SDN controller

FIGURE 5: The testbed network configuration. We created four adapters to represent four different network subnets. All hosts
can communicate through integrating OVS bridges with Linux kernel routing.

portunities, and help the attacker to bypass the authentication
mechanism, gain access to the controller through installing
a malicious script. If the attacker successfully gains access
to the controller, he can start new attacks such as flow rules
manipulation, launching DoS attack, and eavesdropping on
the data/control traffic.

Table 4 represents the attack classes and the used tools in
this virtual environment, as well as the source attack machine
and the victim device IPs.

1) DoS attacks: Is one of the most common attacks inside
the SDN architecture. It does not only damage the
victim machine but can also overwhelm the SDN con-
troller resource in a short time. Besides, the SDN con-

troller is the brain of the SDN network, and in the case
of DoS attacks, the whole system becomes unavailable
for legitimate users. It turns the entire network into a
‘body with no brain’. DoS attack can flood the victim
machine with a huge amount of spoofed packets that
have no matched rules inside flow tables switches.
Thus, the OpenFlow switch will send these flows to the
SDN controller in the form of packet-In message
for further processing. When packet-In message
rates are increased up to a certain limit, SDN controller
resources can be overwhelmed by a large number of
unprocessed packets. There are two main types of DoS
attacks [55] as the following:
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• Network DoS attacks: The main objective of
these attacks is to overwhelm the benign users by
flooding the network bandwidth or victim machine
by a large amount of spoofed packets. The attacker
often uses different protocols like UDP, TCP, or
ICMP. DoS attacks can also disturb the SDN con-
troller or its channels due to the significant number
of forwarded packets to the controller.

• Application DoS attacks: Despite the fact that
these attacks do not require high bandwidth, how-
ever, it can cause serious damage to the target
server and consume its resources in a short time. It
mainly targets the top application layer or services
such as HTTP. The application layer attack is not
easy to detect since the intruder is connected to the
victim server in an authorized manner.

The InSDN dataset includes several types of DoS at-
tacks that can be driven in different OSI model layers.
Kali Linux is used to carry out various DoS attacks
against a victim web server, which is represented by
h4 virtual host. Several DoS attacks such as TCP, UDP,
and HTTP flood attacks are executed by using Low
Orbit Ion Canon (LOIC) tool.
Further, we implemented different slow rate DoS ap-
plication attacks such as Slowloris, slow-rate HTTP
POST, slowhttptest, using HULK, and torshammer
tools. In addition, we handled the TCP and Slowloris
based DoS attacks using the Metasploit framework on
Kali Linux against Metasploitable 2 server.

2) DDoS attacks: InSDN dataset also includes several
DDoS attacks scenarios such as TCP-SYN Flood, UDP
Flood, and ICMP Flood attacks. The Hping3 tool,
which considered one of the most publicly tools is used
for DDoS attacks, where the attacker machines are h1
and h2, and the victim machines are h4 web server and
Metasploitable 2 server.

3) Password-Guessing Attacks: It implies to obtain ac-
cess to the victim machine through breaking the user-
name and password credentials. Two different scenar-
ios of Password-Guessing Attacks are considered in the
InSDN dataset. In the first scenario, the dictionary at-
tack is involved by creating a dictionary for all possible
users and passwords and then try each of them. The
attacker machine is Kali Linux, and the victim server
is the DVWA web server. Burp suite and Hydra tools
are used to launch this attack to get the username and
password credentials. In the second scenario, we use
auxiliary scanner tool from the Metasploit framework
to discover the valid credentials on the Apache Tomcat
Web server, which runs on Metasploitable 2 server.

4) Web application attacks: Based on the Symantec
report in 2018 [56], one in ten analyzed URLs ware
vulnerable with malicious code, with a 56% increase
compared to 2017. In web application attacks, we im-
plemented the most frequent application attacks such

as Cross-site scripting (XSS) attack and SQL injection.

• XSS attack: The attacker can bypass the access
controls of the client machine by injecting mali-
cious code into the trusted website. Once the client
access the web application site, the malicious
script will be executed. As a result, the attacker
can obtain sensitive information from the client
machine, such as session tokens, cookies, and so
on. We tried to Gain Shell Access by preparing
our malicious PHP file and uploaded it to the
vulnerable web server. The skillful msfvenom tool,
which combines Msfpayload and Msfencode tools
into one single framework is used to create the
PHP codes. Once the client starts to access the
vulnerable web server, the uploaded PHP file will
be executed. As a consequence, the attacker ma-
chine can access the infected client using a reverse
connection.

• SQL injection attack: The attacker can use ma-
licious quarries to manipulate the database behind
the web application, allowing the attacker to get
the content of the entire SQL database. The at-
tacker can obtain unauthorized access to any web
application or sensitive data on the website. The
SQL attack in InSDN dataset is executed using an
automatic SQL injection (sqlmap) tool against the
DVWA web server. The Burp Suite tool is used to
capture the user cookies, which are needed during
the SQL injection attack.

5) Probe attacks: This is the most essential phase for an
attacker before starting his attack. The attacker scans
the target system to discover some information that
can assist him in exploiting the remote system such
as the operating system versions, open ports, etc. We
use open-source Nmap tools with different flags to run
the probing attack, using Kali Linux against all virtual
Mininet hosts (h1, h2, h3, and h4). Furthermore, the
Metasploit framework is employed to find the open
ports and the variabilities of web applications in the
Metsaploitable 2 server.

6) Botnet attack: Although many devices or things ac-
cess the Internet, the provided security does not guar-
antee the optimum functioning to prevent infiltration
attacks. The intruder can control several infected de-
vices, referred to botnet to run different malicious
activities such as stealing information, fraud attack,
launching DDoS against victim server, or web ap-
plications server. The Botnet attack is performed in
the InSDN dataset by using the Ares tool, where the
attacker is from the Kali Linux machine and the two
hosts (h1 and h2) represent the infected bots.

7) U2R (Exploitation) attack: The remote exploitation
and backdoor attacks are considered to represent the
U2R scenario in the InSDN dataset. These malicious
activities are more similar to normal traffic and can
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cause a serious risk on the network system, so it is
essential to detect these attacks earlier as possible [57].
In the produced dataset, we consider four vulnerable
services that are running on Metsapoltable 2 server i.e.,
Vsftpd, distcc, UnreaIRCD, and samba applications.
These services are operating on corresponding ports
21, 3632, 6667, and 445, respectively. The Metasploit
framework from the Kali Linux machine is used to get
root access on the victim machine.

8) Normal traffic: We consider real Internet traffic using
different protocols such as HTTPS, HTTP, SSH, mail,
DNS, etc. To generate more intrinsic traffic, h3 host is
connected to the Internet and run different applications
like YouTube, Facebook, Email, Skype voice. Besides,
several services on Metsploitable2 server are accessed
to generate various samples for normal traffic such as
SSH, FTP, Telnet, etc.

B. SDN SPECIFIC ATTACKS
This section analyzes several examples of attacks that can
be launched in SDN elements and disrupt their normal ser-
vices. We also demonstrate how these attacks can impact
the SDN network severely and easily consume its resources.
While some of these attacks are common with conventional
networks, other attacks are more specific to SDN.
Although the SDN can be afflicted with similar attacks
presented in the conventional network, the solutions that
are generally applied to the current environments are not
applicable for SDNs [58]. Decoupling the control plane from
the data plane can bring new security threats that have never
appeared in the conventional network i.e. all the unmatched
packets in OpenFlow switches are forwarded to the controller
in the form of Packet-In message. Thus, it is very easy
for an intruder or even the end-user to poison the network
by generating forget messages, which are relayed to the
controller. If the SDN switch does not find any matching
rule for the received packets in its flow tables, the switch
will extract the packet header and encapsulates it using
OpenFlow protocol and sent to the controller in the format
of Packet-In message. Then, the controller encapsulates
the processed flow and returns it to the OpenFlow switch
in the format of Packet-Out message. The parameters in
Packet-Outmessage, as shown in Fig. 6 are used to install
the flow entry in the OpenFlow switch. The attacker can em-
ploy huge amounts of malicious requests, which will exhaust
the system resources resulting in a degradation of controller
performance or increasing the communication overhead.

Although the Transport Layer Security (TLS) protocol has
been considered as optional to secure the communication
links between the SDN controller and switches, TLS cannot
protect the network from the spoofing packets.
This manuscript does not emphasize all attack types in the
SDN context; instead, some attacks, which are relevant to
the InSDN dataset are reported in the following paragraphs.
Rather, interested readers may refer to previous studies [54],
[59]–[62] for more detailed information.

• Data-to-control plane saturation attack [63], [64]:
Different from the conventional network, unmatched
packets in flow tables are forwarded to the control
plane for forwarding decisions. Since the SDN con-
troller implements the packet forwarding decisions, the
attacker can exploit this vulnerability by launching a
dedicated denial of service attacks to flood the network
resources. He can produce an extensive amount of table-
miss Packet-In messages to exhaust the controller’s
resources (eg., CPU, memory) in a short time. This
can cause a reduction or complete shutdown of the
controller service. As a result, the normal delivery of
packets will be interrupted.

• Link Flooding Attack (LFA) [65], [66]: The strategy
of LFA attack in the SDN context is different from those
commonly targeting conventional networks. The goal
of this attack is to disconnect the controller from the
data plane elements. A skilled adversary can take the
chance of continuous communication between the data
and the control plane to obstruct this communication.
For example, the attacker can generate normal packets
with low rate traffic by employing malicious bots to
congest the channel links by anomalous traffic, and
this can impede the legitimate traffic towards the target
network. However, the conventional techniques fail to
mitigate it due to the centralized strategy of the SDN
architecture in managing the network traffic. Besides,
LFA mimics the same normal behavior during its low
rate nature and can flood the whole network, without
any further detection [65].

• Flow-Rule Flooding Attack: The attacker can flood
the OpenFlow switch by creating a large amount of
unmatched flow, which triggers the switch to install
invalid flow rules in its entry tables. After a while, the
flow tables capacity becomes full, and the OpenFlow
switch is not able to install the new rules. This can
deplete the switch resources and cause exhaustion in
the data plane. Besides, normal users could not be able
to install their flow traffic, and legal traffic cannot be
forwarded.

• Password-Guessing Attacks [43]: An attacker residing
on a non-SDN element can use random or systematic
guessing of passwords to achieve unauthorized access
to SDN elements. For example, an intruder might be
successful in accessing a management console to launch
attacks on the network managed by the SDN controller
or in the controller itself.

• Remote application exploitation [54]: The attacker
can achieve unauthorized access to a victim system or an
SDN component by exploiting a software vulnerability
in one of SDN components. For example, he can exploit
software vulnerabilities in the application server and
gain its access. If the attacker succeed to achieve unau-
thorized access to the application server, he can poison a
controller’s view of the network topology. Furthermore,
the attacker can carry out a variety of other attacks such
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TABLE 4: Dataset Attack Classes Generated in Virtual Environment.

Attack Classes Description of Activities Attack Tools Attacker Machine Victim-Network

DoS
TCP-ACK flood , UDP flood,

HTTP flood, slow-rate,
HTTP POST, Slowloris

LOIC,slowhttptest,
HULK, torshammer

Kali-Linux:
200.175.2.130

Vhost(h4):
192.168.20.134

Slowloris, TCP flood
Nping, Metasploit

framework
Kali-Linux:

200.175.2.130
Metasploitable 2:

192.168.3.130

DDoS
TCP-SYN Flood,

UDP Flood, ICMP Flood Hping3
h1:192.168.20.131
h2:192.168.20.132

h4: 192.168.20.134
Metasploitable 2:

192.168.3.130

Web Attacks XSS, Sql Inject
Metasploit framework,

sqlmap
Kali-Linux:

200.175.2.130
Web server (DVWA):

172.17.0.1

R2L Password-Guessing Attack Burp Suite, hydra
Kali-Linux:

200.175.2.130
Web server (DVWA):

172.17.0.1

Metasploit framework
Kali-Linux:

200.175.2.130
Metasploitable 2:

192.168.3.130

Malware Botnet attack ARES
Kali-Linux

200.175.2.130
h1:192.168.20.131
h2:192.168.20.132

Probe
version scan, Port Scan,

discover services Nmap
Kali-Linux:

200.175.2.130

h1:192.168.20.131
h2:192.168.20.132
h3:192.168.20.133
h4:192.168.20.134

Port Scan,
vulnerability scan (WMAP) Metasploit framework

Kali-Linux:
200.175.2.130

Metasploitable 2:
192.168.3.130

U2R (Exploitation)
Vsftpd,IRCd,

Samba and distcc Metasploit framework
Kali-Linux:

200.175.2.130
Metasploitable 2:

192.168.3.130

as destruction of information, compromise of integrity,
deviate network traffic, exploitation, and unauthorized
disclosure.

V. USAGE AND AVAILABILITY
A. DATASET DESCRIPTION
We divided the dataset into three groups based on the traf-
fic types and the target machines. The first group includes
normal traffic only. The second group contains the attack
traffics that target Mealsplotable-2 server. In the last group,
attacks on the OVS machine are considered. The Tcpdump
tool is used to capture the traffic traces for each category
at the target machine and the SDN controller interface. In
addition, the CICFlowMeter tool [67] is used to extract the
flow features for the InSDN dataset. The reason we decided
to use the CICFlowMeter in our work despite many available
tools in literature such as Argus 1 and Bro-IDS 2 is the fact
that none of these tools exclusively consider the time-based
features [68]. However, different applications have different
time constraints. As a result, it is more important to calculate
the statistical time-related features for the flow traffics.

The CICFlowMeter was generated by the Canadian In-
stitute of Cybersecurity team and has been written in Java
to create network flow traffics from the PCAP file. The
generated flows are calculated in Bidirectional, where the

1http://qosient.com/argus/index.shtml.
2https://www.bro.org/index.html.

first packet in the flow determines the flow direction (forward
or backward). The output of the CICFlowMeter is more than
80 statistical features in CSV file format such as Protocol,
Duration, Number of bytes, Number of packets, etc. The list
of extracted features and details are available in the appendix
(Table 13). We collected more than 80 features with 56
categories from our experiments. For simplicity, we divided
the entire features into eight groups as the following:

• Network identifiers attributes: these features contain
the common information that used to define the source
and destination flow. For example, IP address, Port
number, protocol type.

• Packet-based attributes: these features hold the infor-
mation related to the packets such as the total number of
packets in a forward and backward direction.

• Bytes-based attributes: these features hold the infor-
mation related to the bytes i.e. total number bytes in the
forward and backward direction.

• Interarrival time attributes: these features show the
information related to the interarrival time in both for-
ward and backward directions.

• Flow timers attributes: these features hold the infor-
mation related to the time of each flow i.e. active and
inactive.

• Flag attributes: these features hold the information
related to the flags like SYN Flag, RST Flag, Push flag,
etc.
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FIGURE 6: Wireshark: OpenFlow packet encapsulation.

• Flow descriptors attributes: these features contain the
traffic flow information (eg., the number of packets and
bytes in both forward and backward direction).

• Subflow descriptors attributes: these features show
the information related to subflows, such as the number
of packet and bytes in forwarding and backward direc-
tions.

For labeling processing, we use some features information
such as Source IP and Destination IP. The total number of
dataset instances are 343,939 for normal and attack traffic.
Where the normal data brings a total of 68424, and attack
traffic contains 275,515 instances. Table 5 represents the
attack classes for each group with its total size. Furthermore,
the name of PCAP files under each attack group is chosen
based on the target protocol layer or the tools that are used to
create each file.

B. USAGE NOTES
1) The InSDN dataset includes different attacks that can

strike the data, control, and application layers.
The source of attacks in the dataset is classified into
two categories.

a) Internal: These attacks come from internal users,
who have full access to the SDN network. Al-
though internal attacks are rare in the produc-

tion systems, these attacks become more severe
and can cause malicious actions for network ele-
ments. In many cases, the attacker is not able to
target network servers directly since these servers
might have a high level of security protection. In
this case, the attacker tries to exploit weaknesses
on the individual users inside the network system,
and then start new attacks on different target
servers. In the InSDN dataset, the compromised
hosts (i.e. h1 and h2) are used to launch various
attacks from internal SDN network.

b) External: These attacks commonly are launched
from the outside network. The attacker is mainly
altering the SDN network using different mali-
cious activities such as code exploits, DoS, mal-
ware, etc. We assume the majority of attacks in
the dataset are created from an outside network
to mimic the real attack scenarios.

2) We predict the effect of dataset attacks on various
SDN elements. Thus, it can help to provide a better
countermeasure approach. Table 6, shows the impact
of attacks in the dataset on different SDN layers. It can
be seen that the majority of the attacks in the dataset
might cause damage to the SDN controller. The cen-
tralized control element displays the main differences
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TABLE 5: Total Number of Data Instances and its Size.

Data Group Traffic Distribution Total Number of
Instances Total % PCAP Size

Normal Group

Skype, Facebook,
File Transfer,

Youtube, Email,
DNS, Chat, Browsing

68424 68424 (19.90%) 3.58 GB

Metasploitable-2 Group DDoS 73529 136743 (39.76%) 669 MB
Probe 61757
DoS 1145

brute-force-attack 295
Exploitation (R2L) 17

OVS Group DoS 52471 138772 (40.34%) 1.21 GB
DDoS 48413
Probe 36372

brute-force-attack 1110
Web_attack 192

Botnet 164

between the SDN and the conventional networks. In the
conventional network, any attack can affect only one
portion of the network, probably related to one vendor
without interrupting the whole network services. How-
ever, any damage to the SDN controller can cause a
severe impact on the entire system. Another concern,
hardening the control messages in the southbound or
northbound interface can threaten the whole network
system. Therefore, the organizations should tackle the
security issue in the early stages before implementing
their SDN project. Any delay or wait to secure the
network can cause service-affecting problems.

C. DATASET AVAILABILITY
The InSDN dataset is publicly available on http://iotseclab.
ucd.ie/datasets/SDN/ (or http://aseados.ucd.ie/datasets/SDN/
) [69] with the publishing of this paper.

VI. LIMITATIONS
1) Although SDN is applied in different network envi-

ronments, the technology is still under development.
Unfortunately, the previous history of SDN attacks
is unknown. Therefore, in this work we act like the
attacker and anticipate the weaknesses that he might
be likely to strike.

2) The InSDN testbed was implemented using only
ONOS SDN controller. The different types of function-
alities in terms of security analysis for other controllers
are ignored. However, authors in [70], [71] claim that
the different controllers can have different security
modeling, and therefore, different countermeasures.

3) SDN can be deployed in different network scales. It
will be expected for SDN to support more devices
and users more significant than the conventional net-
work. Therefore, only one controller is not enough

to cover all network nodes and users. For enterprise
networks, there are probably several controllers con-
necting together through API interfaces such as east-
bound and northbound interfaces. Unfortunately, due
to the hardware constraints, the low scale topology
with only one SDN controller was considered and
implemented. However, using a single controller can
perform well and achieve the purpose of optimal flow
management [72]. In addition, obtaining the dataset
using a single controller or multi controllers will not
cause a big difference in methodology [35].

4) To generate more intrinsic data for SDN networks,
the network topology should be created using physi-
cal devices. We tested various attacks and studied its
impact on SDN layers by simulating the SDN network
using virtual machines instead of real elements. We
are planning to generate a more intrinsic dataset using
physical topology with many connected devices.

5) The InSDN dataset assumes that all attacks are gen-
erated by high-level skill attackers. The threats, which
come from misconfiguration or conflicting flow-tables
in the switches are ignored.

6) One of the main limitations of the proposed dataset
is a high-class imbalance. This problem can cause
biasing of the IDS towards the majority class, causing
high false alarm and low evaluation accuracy. However,
there are many different techniques to solve the prob-
lem of imbalanced samples [73]–[76]. One of these
techniques is applying a relabeling solution. Where
two different methods can be used: (a) The high classes
can be splatted to form more classes; (b) Merge two or
more minority classes that share the same characteris-
tics to create a new one class. As a result, the imbalance
issue can be reduced, and prevalence ratio is effectively
improved.
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TABLE 6: Impact of Attacks in Dataset on the Different Elements of SDN.

Attack classes Data Plane Southbound Interface Controller Northbound Interface Application Plane Type of Threat
DoS Yes Yes Yes Yes Yes External

DDoS Yes Yes Yes Yes Yes Internal
Web Attacks No No No Yes Yes External

Brute Force Attack Yes No Yes Yes Yes External
Malware Yes Yes Yes Yes Yes External

Probe Yes Yes Yes Yes Yes External
Exploitation No No Yes Yes Yes External

VII. EXPERIMENTAL EVALUATION
This section analyzes eight supervised learning techniques to
evaluate the usability and quality of InSDN dataset. The main
objective is to demonstrate the quality of this dataset when it
is used in the binary classification i.e. normal versus attack
classes. Various performance indicators are used to evaluate
the efficiency of employed supervised learning techniques,
such as precision, recall, precision, F-score, and training
time.

A. DATASET PRE-PROCESSING STEPS
The first phase before training the IDS models is to pre-
process the dataset to make it more suitable for the training
phase and avoid the overfitting problem. Few steps are taken
for pre-processing the entering flows, as follows:

• The InSDN dataset contains the socket information such
as Source IP, Destination IP, flow ID, etc. All socket
features are removed to avoid the overfitting problem,
where these features can be changed from network to
network. The final dataset includes 77 various features,
besides the traffic category.

• The features have different ranges, so they need to be
standardized to restrict the scale of the values between
0 and 1.

• One-hot encoding scheme is used to convert the labeled
string to numerical values. In this model, only binary
classification is considered to classify the input data into
malicious and normal group. Therefore, the normal and
malicious strings are encoded into binary values of 0 and
1, respectively.

B. SDN SPECIFIC FEATURES
This section focuses on selecting the necessary features that
can be directly obtained from the SDN network.

In SDN, only statistical features can be extracted from the
SDN controller through OpenFlow calls to the SDN switches,
(eg., flow duration, number of packets, number of bytes).
In this manuscript, the same framework method of [77] is
used to obtain the SDN specific features. These features can
be directly extracted from the SDN controller through API
queries or by the manual computation based on flow statistics
information. Table 7 represents the corresponding mapping
between derived features from the SDN environment to the
InSDN dataset features. In addition, Table 8 shows extra fea-
tures that can be calculated from the manual competition. The
new features include the maximum, minimum, mean, and

standard deviation of these values as well as the direction-
specific features. These features are essential to define some
particular attacks like botnet [77]. We selected a subset of 48
features from our dataset. While the previous method [77]
used a subset of 50 features to train their learning model.
However, they used the source IP, destination IP in their
computation. These two attributes are excluded from the
feature selection strategy, where IP addresses can be changed
from network to network. Besides, the same IP address can
be assigned to the attacker machine as well as the normal
user. Thus, IP address is not able to distinguish between
normal and attack traffic. Table 9 represents the total selected
features for the SDN context from the proposed data.

C. MACHINE LEARNING ANALYSIS TECHNIQUES
This work uses eight common supervised learning algorithms
to evaluate the quality of the InSDN dataset. Specifically,
we employed three tree-based algorithms: a single Decision
Tree (DT) [78], Random Forest (RF) [79], and Adaptive
Boosting (AdaBoost) [80] learner. Besides, the k-nearest
Neighbor classifier (Knn) [81], Naive Bayes (NB) [82], and
two Support Vector Machines (SVM) [83] based method:
linear kernel (lin-SVM) and a radial basis function kernel
(rbf-SVM). In addition to the previous classifiers, a multi-
layer perceptron model (MLP) is chosen in order to further
evaluate the InSDN dataset. The hyper-parameters setting of
MLP is described in the Table 10, while the default parame-
ters are used in all the implemented algorithms. All learning
classifiers are trained using the cross-validation technique
with K=5, where the training and test data are splitted into
80% to 20%. In our experiments, there is no significant dif-
ference in terms of the accuracy between K = 5 and K = 10. In
addition, using the larger K is subject to the computationally
expensive and time consuming process, especially in large
datasets. All the experiments were implemented in Python
programming language using various libraries such as Keras,
Scikit-Learn, and Tensorflow. Furthermore, all the experi-
ments were performed using a workstation machine that has
the following properties: Intel(R) UHD Graphics 620, I7-
8650U CPU @ 1.90GHz (8 cores), 2.1GHz, Windows 10 pro
64-bit with 16 GB of RAM.

D. CLASSIFICATION METRICS
Using the complete accuracy does not yield precise compar-
isons [84], so we use the most important performance indica-
tors to evaluate our proposed model, such as precision, recall,

VOLUME 8, 2020 15



Elsayed et al.: InSDN: SDN Intrusion Dataset

TABLE 7: The Extracted Traffic Features from SDN Controller.

No. Feature Description SDN Derived Features InSDN Dataset
1 Length of the connection Duration Flow Duration
2 Protocol_type Protocol Protocol
3 Max. expire time of flow Hard_time_out Flow use
4 Flow permanence time Idle_time_out Flow idle
5 Packets in bidirectional flow Packets Packets
6 Data bytes in bidirectional flow Bytes_count Bytes
7 Data bytes from source to dest. Tx_packets Src2dst_packets
8 Data bytes from dest. to source Rx_packets dst2src_packets

TABLE 8: The Extra Traffic Features.

No. New Feature InSDN Feature
1 Packet/s from source to dest. (PPS) Packet rate (src2dst)
2 Packet/s from dest. to source Packet rate (dst2src)

3 Inter-arrival time (IAT)
(min, avg, max, std) Inter time

4 Inter-arrival time from source
to dest.(min, max, mean, std) Inter time (src2dst)

5 Inter-arrival time from dest.
to source (min, max, mean, std) Inter time (dst2src)

TABLE 9: The subset Features for SDN environment.

No. Attribute Name No. Attribute Name
1 Protocol 25 Fwd-IAT-Min
2 Flow-duration 26 Bwd-IAT-Tot
3 Tot-Fwd-Pkts 27 Bwd-IAT-Mean
4 Tot-Bwd-Pkts 28 Bwd-IAT-Std
5 TotLen-Fwd-Pkts 29 Bwd-IAT-Max
6 TotLen-Bwd-Pkts 30 Bwd-IAT-Min
7 Fwd-Pkt-Len-Max 31 Fwd-Header-Len
8 Fwd-Pkt-Len-Min 32 Bwd-Header-Len
9 Fwd-Pkt-Len-Mean 33 Fwd-Pkts/s
10 Fwd-Pkt-Len-Std 34 Bwd-Pkts/s
11 Bwd-Pkt-Len-Max 35 Pkt-Len-Min
12 Bwd-Pkt-Len-Min 36 Pkt-Len-Max
13 Bwd-Pkt-Len-Mean 37 Pkt-Len-Mean
14 Bwd-Pkt-Len-Std 38 Pkt-Len-Std
15 Flow-Byts/s 39 Pkt-Len-Var
16 Flow-Pkts/s 40 Pkt-Size-Avg
17 Flow-IAT-Mean 41 Active-Mean
18 Flow-IAT-Std 41 Active-Std
19 Flow-IAT-Max 43 Active-Max
20 Flow-IAT-Min 44 Active-Min
21 Fwd-IAT-Tot 45 Idle-Mean
22 Fwd-IAT-Mean 46 Idle-Std
23 Fwd-IAT-Std 47 Idle-Max
24 Fwd-IAT-Max 48 Idle-Min

TABLE 10: The hyper-parameters used in multi-layer per-
ceptron approach.

Traffic Type Detection Rate
Hidden nodes (HN) 2
Number of neurons 80, 100
Number of epoch 10
Batch size 100
Learning rate (LR) 0.001
Classification function sigmoid
Activation function relu

precision and F-score. These metrics are commonly used in
intrusion detection systems and are defined as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-score =
2× Precision × Recall

Precision + Recall
(3)

where True Positive (TP) and True Negative (TN) repre-
sent the values that are correctly predicted. In contrast, False
Positives (FP) and False Negatives (FN) indicate missclassi-
fied events. Furthermore, we considered the training time to
describe how long the classifier algorithm takes for training
the whole data.

E. RESULTS AND DISCUSSION
This section discusses in detail the performance evaluation of
the InSDN dataset.

1) Fully-featured version of the dataset.
Table 11 shows the performance of different classifiers using
a fully-featured version of our dataset. It is clear that the
overall score metrics are very high for DoS/DDoS and probe
classes for all learner classifiers, while the U2R gives the
poor performance metrics. This is because both DoS and
Probe categories are commonly more different from normal
traffic patterns [85]. In contrast, the U2R attack class has a
high similarity to the normal connections. In addition, the
size of U2R flow records is small compared to the normal
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TABLE 11: Metrics Performance for the Fully-featured version of the dataset.

Attack Name Matrices Algorithm
KNN NB Adaboost DT RF rbf-SVM lin-SVM MLP

1: DoS

Precision
Recall
F1-Score
Training Time (Second)

0.998866
0.999134
0.999000
71.657

0.812257
0.977681
0.887325
2.389

0.999814
0.999897
0.999856
379.479

0.999381
0.999587
0.999484
10.525

0.999876
0.999835
0.999856
61.695

0.987335
0.997009
0.992148
852.874

0.981379
0.999072
0.990146
202.16

0.987201
0.997856
0.992171
243.349

2: DDoS

Precision
Recall
F1-Score
Training Time

0.999967
0.999877
0.999922
293.989

0.999868
0.995621
0.997740
3.812

0.999967
0.999959
0.999963
452.234

0.999967
0.999943
0.999955
6.479

0.999992
0.999951
0.999971
41.503

0.999680
0.999885
0.999783
2825.451

0.999639
0.999967
0.999803
209.679

0.999680
0.999951
0.999803
1044.772

3: Password-Guessing Attack

Precision
Recall
F1-Score
Training Time

0.990813
0.997865
0.994326
42.8

0.128224
0.997865
0.227247
1.532

0.997862
0.996441
0.997151
237.381

0.990787
0.995018
0.992898
4.196

0.996434
0.994306
0.995369
22.712

0.980682
0.614235
0.755361
33.165

0.981039
0.994306
0.987628
25.72

0.985154
0.986497
0.869021
324.482

4: Botnet

Precision
Recall
F1-Score
Training Time

0.987952
1.000000
0.993939
39.411

1.000000
1.000000
1.000000
0.885

0.982036
1.000000
0.990937
229.468

0.981481
0.969512
0.975460
2.614

0.993865
0.987805
0.990826
12.53

0.987952
0.500000
0.663968
6.15

0.987952
0.500000
0.663968
5.369

1.0
0.634146
0.7847589
279.065

5: Web Attack

Precision
Recall
F1-Score
Training Time

0.973404
0.953125
0.963158
39.817

0.016984
0.979167
0.033390
1.598

0.979381
0.989583
0.984456
171.924

0.963542
0.963542
0.963542
5.492

0.994764
0.989583
0.992167
22.432

0.988764
0.458333
0.626335
9.268

0.979167
0.489583
0.652778
7.597

0.944254
0.682292
0.686583
390.29

6: Probe

Precision
Recall
F1-Score
Training Time

0.999705
0.999827
0.999766
179.255

0.992730
0.996362
0.994543
2.357

0.999745
0.999918
0.999832
496.298

0.999705
0.999817
0.999761
14.048

0.999857
0.999959
0.999908
79.357

0.998076
0.999338
0.998707
926.002

0.999429
0.999409
0.999419
387.925

0.999704
0.999449
0.999449
748.737

7: U2R

Precision
Recall
F1-Score
Training Time

0.777778
0.823529
0.800000
87.702

0.061728
0.882353
0.115385
2.931

1.000000
0.823529
0.903226
170.534

0.800000
0.705882
0.750000
1.973

1.000000
0.529412
0.692308
11.532

0.923077
0.705882
0.800000
3.231

0.928571
0.764706
0.838710
2.962

0.916666
0.875
0.866666
530.091

8: Merged (all types)

Precision
Recall
F1-Score
Training Time

0.999717
0.999793
0.999755
1391.163

0.777388
0.985210
0.869047
5.589

0.999298
0.999123
0.999211
1147.662

0.999898
0.999953
0.999926
35.631

0.999931
0.999942
0.999936
231.436

0.997692
0.999786
0.998738
17161.164

0.999857
0.999898
0.999529
12161.164

0.998854
0.999078
0.999858
806.736

TABLE 12: Metrics Performance for the SDN specific-featured version of the dataset.

Attack Name Matrices Algorithm
KNN NB Adaboost DT RF rbf-SVM lin-SVM MLP

1: DoS

Precision
Recall
F1-Score
Training Time (Second)

0.997237
0.997628
0.997432
43.839

0.744574
0.977186
0.845166
2.206

0.999443
0.999732
0.999588
350.889

0.998825
0.999175
0.999000
12.07

0.999732
0.999567
0.999649
70.569

0.826327
0.995008
0.902856
2271.213

0.817605
0.994204
0.897298
789.381

0.979499
0.996410
0.980865
163.3

2: DDoS

Precision
Recall
F1-Score
Training Time

0.999934
0.999844
0.999889
347.005

0.990957
0.995662
0.993304
3.641

0.999975
0.999959
0.999967
400.187

0.999967
0.999951
0.999959
6.447

0.999992
0.999951
0.999971
42.571

0.999631
0.999672
0.999651
2521.642

0.999557
0.999688
0.999623
113.666

0.999754
0.999852
0.999811
695.941

3: Password-Guessing Attack

Precision
Recall
F1-Score
Training Time

0.985229
0.949466
0.967017
17.673

0.108615
0.997865
0.195906
1.29

0.991398
0.984342
0.987857
186.467

0.987926
0.990036
0.988980
3.212

0.993534
0.984342
0.988917
24.624

0.964960
0.254804
0.403153
106.237

0.960000
0.290391
0.445902
76.552

0.976521
0.719573
0.829973
325.351

4: Botnet

Precision
Recall
F1-Score
Training Time

0.959064
1.000000
0.979104
17.97

0.022356
1.000000
0.043733
1.223

0.993902
0.993902
0.993902
177.872

0.981928
0.993902
0.987879
2.118

0.993902
0.993902
0.993902
12.809

0.000000
0.000000
0.000000
8.889

0.000000
0.000000
0.000000
9.174

0.896984
0.496591
0.810501
219.566

5: Web Attack

Precision
Recall
F1-Score
Training Time

0.984848
0.677083
0.802469
18.353

0.014902
0.979167
0.029357
1.538

1.000000
0.968750
0.984127
205.255

0.962162
0.927083
0.944297
4.66

1.000000
0.942708
0.970509
28.56

1.000000
0.031250
0.060606
10.577

0.000000
0.000000
0.000000
12.645

1.0
0.447503
0.617431
374.099

6: Probe

Precision
Recall
F1-Score
Training Time

0.983743
0.991562
0.987637
53.348

0.907628
0.996810
0.950131
3.413

0.985157
0.993600
0.989361
452.082

0.987088
0.986243
0.986665
14.487

0.984909
0.993661
0.989266
103.05

0.923089
0.999134
0.959607
8244.774

0.964200
0.999052
0.999052
4225.816

0.975188
0.998552
0.977371
1520.646

7: U2R

Precision
Recall
F1-Score
Training Time

0.800000
0.235294
0.363636
18.812

0.002616
0.882353
0.005216
1.443

1.000000
0.823529
0.903226
226.378

0.545455
0.705882
0.615385
2.759

1.000000
0.529412
0.692308
27.99

0.000000
0.000000
0.000000
7.784

0.000000
0.000000
0.000000
25.64

0.999751
0.0
0.066666
692.589

8: Merged (all types)

Precision
Recall
F1-Score
Training Time

0.993991
0.995713
0.994851
953.549

0.951940
0.980498
0.966008
7.031

0.994115
0.997168
0.995640
868.792

0.994037
0.996177
0.995106
29.402

0.994269
0.996918
0.995592
226.151

0.963110
0.997622
0.980062
25837.86

0.972192
0.995326
0.991338
152475.72

0.988836
0.997818
0.993565
1820.143
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flow in the same set. Furthermore, the overall performance of
Adaboost and MLP is significantly high for all attack classes,
but the training time is relatively long.
Recall and F1-Score on the botnet, web attack, and U2R
classes are poor for both linear and RBF based SVM. Be-
sides, the recall and F1-score metrics for rbf-SVM algorithm
are low on the password brute-forcing attack type. Further-
more, the performance and training time of KNN, DT, and
RF classifiers are reasonable for all attack classes. These
algorithms succeeded in recognizing most of the attacks,
but they have low scores in the U2R attack. In contrast,
the NB classifier consumes less time in the learning and
prediction stage compared to other classification algorithms,
but its performance is significantly low for three attacks
type, including Brute-Forcing, web attack and U2R classes.
However, NB improved the results on botnet attack type
compared to other algorithms. Another interesting finding is
that the good results on the merged dataset might obfuscate
poor performance on the less prevalent attack classes, as the
majority of samples are for DoS/DDoS and probe attacks.
Further, the training time is proportional to the data records,
i.e. the training time is increased during the increase in the
size of records. We can notice that the rbf-SVM had the
most considerable training time for DoS/DDoS and probe,
followed by MLP and Adaboost classifiers.

2) SDN specific version of the dataset.
Table 12 shows the performance of various models using
SDN specific-featured version of the dataset. We can see that
the Adaboost retains high-performance scores and stability
for all attack classes, followed by DT and RF classifiers.
However, the obtained scores on the U2R attack types are
relativity small for DT and RF classifiers. In addition, Recall
and F1-Score for KNN algorithm are relativity low for KNN
on web attack and U2R attacks. We can find that the NB
consistently had good scores on all metrics for DDoS and
port attack classes, while its performance highly declined
on botnet, web attack, and U2R classes. Furthermore, we
noted a substantial declined in the performance of SVM on
the botnet, password brute-forcing, web attack, and U2R
attack classes. Where, the linear and RBF based SVM fail
to identify any flow records for the botnet, web , and U2R at-
tacks. While its recall and F1-Score metrics are very poor on
password brute-forcing attack class. Although the stability of
SVM (linear and RBF kernel) performance on DoS, DDoS,
and probe attacks, its training time is effectively high, com-
pared to the fully-version features of dataset. Furthermore,
the recall score is decreased for MLP algorithm on password
brute-forcing, botnet, and web attack types, while recall and
F1-score are almost closed to zero for U2R class.

3) State of the Art Result Comparison
In this experiment, InSDN dataset is compared with four pub-
licly available datasets (i.e, KDD’99, NSL-KDD, Kyoto and
CICIDS 2017) by using six machine learning approaches,
namely KNN, NB, Adaboost, DT, RF and rbf-SVM. As

shown in Figure 7, it is clearly noticed that AB and RF
classifiers performed well compared to other algorithms. In
addition, DT, AB, and RF classifier performance remain
the same over various datasets. However, KNN, NB, and
SVM-rbf performance fluctuate across various datasets. This
implies the power of DT, AB, and RF to detect the new
attacks.

FIGURE 7: Performance of classification algorithms in term
of global detection rate. We estimate our dataset accuracy
compared with other publicly available datasets based on the
proposed work in [86]

.

VIII. CONCLUSION
This paper investigated the challenging problem related to the
dataset availability in the SDN environment. We proposed a
new SDN dataset: InSDN, to solve some of the inherent prob-
lems in legacy datasets. We considered different attack sce-
narios that represent the real-world scenarios, and discussed
the impact of the generated attacks on the different SDN
elements. We can observe that the SDN can also be afflicted
with the popular network attacks. However, the SDN network
is more sensitive to malicious traffic than the conventional
environments. In the conventional network, any attacks can
only affect the portion of the network almost for the same
vendor without bringing down the entire network. However,
in the SDN environment, the compromised switches or end-
users can flood the SDN controller, causing damage for the
whole network.

In the near future, we will extend this work and create a
more intrinsic dataset generated from large-scale networks.
Moreover, we will consider new attack categories for the best
representative of existing real-world networks.
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TABLE 13: The list of Entire Features in the InSDN Dataset.

Network-identifiers attributes
Feature Feature name Description Type
F1 Flow-id ID of the flow C
F2 Src-IP Source IP address C
F3 Src-Port Source port number C
F4 Dst-IP Destination IP address C
F5 Dst-Port Destination port number C
F6 Protocol-Type Type of protocol, e.g., tcp, udp, etc. D
F7 Timestamp Timestamp C

Byte-based attributes
F8 Fwd-Header-Len Total bytes used for headers in the forward direction C
F9 Bwd-Header-Len Total bytes used for headers in the backward direction C

Packet-based attributes
F10 Tot-Fwd-Pkts Total packets in the forward direction C
F11 Tot-Bwd -Pkts Total packets in the backward direction C
F12 TotLen-Fwd-Pkts Total size of packet in forward direction C
F13 TotLen-Bwd-Pkts Total size of packet in backward direction C
F14 Fwd-Pkt-Len (Min, Mean, Max, Std) Min, Mean, Max, and standard deviation of the size of packet in forward direction C
F15 Bwd-Pkt-Len (Min, Mean, Max, Std) Min, Mean, Max, and standard deviation of the size of packet in backward direction C
F16 Pkt-Len (Min, Mean, Max, Var, Std) Min, Mean, Max, Var and standard deviation of the length of a packet C
F17 Pkt-Size-Avg Average size of packet C

Interarrival Times attributes
F18 Duration Duration of the flow in Microsecond C
F19 Flow-IAT (Min, Mean, Max, Std) Min, Mean, Max, and standard deviation of the time between two packets sent in the flow C
F20 Fwd-IAT (Tot, Min, Mean, Max, Std) Tot, Min, Mean, Max, and standard deviation of the time between two packets sent in the forward direction C
F21 Bwd-IAT (Tot, Min, Mean, Max, Std) Tot, Min, Mean, Max, and standard deviation of the Time between two packets sent in the backward direction C

Flow timers attributes
F22 Active-Time (Min, Mean, Max, Std) Min, Mean, Max, Standard deviation of the time flow was active before becoming idle C
F23 Idle (Min, Mean, Max, Std) Min, Mean, Max, Standard deviation time flow was idle before becoming active C

Flag-based attributes
F24 Fwd-PSH-Flags Number of times the PSH flag was set in packets travelling in the forward direction D
F25 Bwd-PSH-Flags Number of times the PSH flag was set in packets travelling in the backward direction (0 for UDP) D
F26 Fwd-URG-Flags Number of times the URG flag was set in packets travelling in the forward direction (0 for UDP) D
F27 Bwd-URG-Flags Number of times the URG flag was set in packets travelling in the backward direction (0 for UDP) D
F28 FIN-Flag-Cnt Number of packets with FIN D
F29 SYN-Flag-Cnt Number of packets with SYN D
F30 RST-Flag-Cnt Number of packets with RST D
F31 PSH-Flag-Cnt Number of packets with PUSH D
F32 ACK-Flag-Cnt Number of packets with ACK D
F33 URG-Flag-Cnt Number of packets with URG D
F34 CWE-Flag-Cnt Number of packets with CWE D
F35 ECE-Flag-Cnt Number of packets with ECE D

Flow-based attributes
F36 Down/Up-Ratio Download and upload ratio D
F37 Fwd-Seg-Size-Avg Average size observed in the forward direction C
F38 Bwd-Seg-Size-Avg Average number of bytes bulk rate in the forward direction C
F39 Fwd-Byts/b-Avg Average number of bytes bulk rate in the forward direction D
F40 Fwd-Pkts/b-Avg Average number of packets bulk rate in the forward direction D
F41 Fwd-Blk-Rate-Avg Average number of bulk rate in the forward direction D
F42 Bwd-Byts/b-Avg Average number of bytes bulk rate in the backward direction D
F43 Bwd-Pkts/b-Avg Average number of packets bulk rate in the backward direction D
F44 Bwd-Blk-Rate-Avg Average number of bulk rate in the backward direction D
F45 Init-Fwd-Win-Byts The total number of bytes sent in initial window in the forward direction C
F46 Init-Bwd-Win-Byts The total number of bytes sent in initial window in the backward direction C
F47 Fwd-Act-Data-Pkts Count of packets with at least 1 byte of TCP data payload in the forward direction C
F48 Fwd-Seg-Size-Min Minimum segment size observed in the forward direction C
F49 Flow-Byts/s Number of flow bytes per second C
F50 Flow-Pkts/s Number of flow packets per second C
F51 Fwd-Pkts/s Number of forward packets per second C
F52 Bwd-Pkts/s Number of backward packets per second C

Subflow-based attributes
F53 Subflow-Fwd-Pkts The average number of packets in a sub flow in the forward direction C
F44 Subflow-Fwd-Byts The average number of bytes in a sub flow in the forward direction C
F55 Subflow-Bwd-Pkts The average number of packets in a sub flow in the backward direction C
F56 Subflow-Bwd-Byts The average number of bytes in a sub flow in the backward direction C
C-Continuous, D-Discrete
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