
ENERGY-EFFICIENT BIT ALLOCATION FOR RESOLUTION-ADAPTIVE ADC IN
MULTIUSER LARGE-SCALE MIMO SYSTEMS: GLOBAL OPTIMALITY

Kien-Giang Nguyen∗, Quang-Doanh Vu∗, Le-Nam Tran†, and Markku Juntti∗

∗ Centre for Wireless Communications, University of Oulu, P.O.Box 4500, FI-90014, Finland;
Email: {giang.nguyen, doanh.vu, markku.juntti}@oulu.fi.

† School of Electrical and Electronic Engineering, University College Dublin, Ireland. Email: nam.tran@ucd.ie.

ABSTRACT

We consider uplink multiuser wireless communications systems,
where the base station (BS) receiver is equipped with a large-scale
antenna array and resolution adaptive analog-to-digital converters
(ADCs). The aim is to maximize the energy efficiency (EE) at the
BS subject to constraints on the users’ quality-of-service. The ap-
proach is to jointly optimize both the number of quantization bits at
the ADCs and the on/off modes of the radio frequency (RF) process-
ing chains. The considered problem is a discrete nonlinear program,
the optimal solution of which is difficult to find. We develop an
efficient algorithm based on the discrete branch-reduce-and-bound
(DBRnB) framework. It finds the globally optimal solutions to the
problem. In particular, we make some modifications, which signifi-
cantly improve the convergence performance. The numerical results
demonstrate that optimizing jointly the number of quantization bits
and on/off mode can achieve remarkable EE gains compared to only
optimizing the number of quantization bits.

Index Terms— Wireless communications, resolution-adaptive
ADC, large-scale antenna systems, energy efficiency, discrete
branch-reduce-and-bound.

1. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) techonology is
becoming one of the key enablers for the future wireless commu-
nications systems. Therein, a base station (BS) is equipped with a
large number of antenna elements providing a great richness of spa-
tial degrees of freedom so that the BS can serve effectively many
users at the same time-frequency resource. It has been shown that
large-scale MIMO systems can significantly improve spectral and
energy efficiency even with simple receive signal processing tech-
niques such as maximum-ratio combining (MRC) [1].

One practical concern in implementing a large-scale MIMO sys-
tem is the amount of power consumed by analog-to-digital convert-
ers (ADCs). In theoretical works, ADCs are often modelled to have
infinite resolution. However, it has been found that the consumed
power at an ADC grows exponentially with the number of quantiza-
tion bits [2, 3]. Consequently, in large-scale MIMO systems with a
large number of ADCs, the operating power would be enormous with
ideal high resolution ADCs. This has motivated to study the use of
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low resolution ADCs, i.e., ADCs with small numbers of quantiza-
tion bits [4–12]. A proper use of non-uniform ADC resolutions can
improve the performances compared to the uniform one [7,8]. How-
ever, optimizing the resolution accuracy often leads to very complex
discrete optimization problems.

Energy efficiency (EE) has become an important design target in
wireless systems during the last decade [13–15], see [16, 17] for re-
cent overviews. It is known that using low resolution ADCs can im-
prove the EE for large-scale MIMO systems [7, 8, 11]. However, the
potential EE benefits of the non-uniform ADC resolutions has been
explored in few special cases only. The EE maximization problem
in a single-user system was considered in [7]. In [12], an algorithm
determining the ADC resolutions for maximizing EE in point-to-
point MIMO system was proposed. Selecting ADC resolutions for
minimizing the mean square quantization error was the main focus
in [8]. The ADC resolutions for maximizing the EE in multiuser
MIMO systems was considered in [10]; all the radio frequency (RF)
processing chains were always active. What is more, the proposed
algorithms in the literature are heuristic (suboptimal) due to the dif-
ficulty of discrete programs.

In this paper, we aim at finding the potential ultimate benefits of
the resolution-adaptive ADCs in terms of the EE performance in the
uplink multiuser large-scale MIMO systems. We assume that chan-
nel state information is available at the BS only, and the BS uses
the MRC at the digital combiner. We optimize both the on/off mode
and the quantization resolution for each RF chain such that the EE
at the BS is maximized, while the minimum data rate requirements
for each user are satisfied. The problem is a discrete nonlinear pro-
gram due to the discrete set of the number of quantization bits. To
this end, we propose an efficient globally optimal algorithm based
on the discrete branch-reduce-and-bound (DBRnB) framework [18].
More explicitly, we propose some modifications on the branching,
reduction, and bounding operations based on the specific structure
of the considered problem in order to improve the algorithm’s effi-
ciency. The numerical results demonstrate that optimizing the num-
ber of quantization bits and on/off mode of RF chains can improve
remarkably the EE of the multiuser large-scale MIMO systems.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Signal Model: We consider an uplink multiuser MIMO system in
which a base station equipped with an array ofM antennas. It serves
K single-antenna users, and assume that M � K. The K users
simultaneously transmit independent data to the BS. Let pk denote
the transmit power at user k. Also, let us denote by hk ∈ CM×1

the channel vector between the BS and user k, and define matrix
H , [h1, ...,hK ] which stacks all channel vectors. We assume that



Table 1. The values of βi for bi ≤ 5 [19]
b 1 2 3 4 5
β 0.3634 0.1175 0.03454 0.009497 0.002499

channel is flat, then the received signal vector at the BS is

r = HPs + n (1)

where s , [s1, ..., sK ]T is the vector of transmitted symbols,
E{|sk|} = 1; P , diag(

√
p1, . . . ,

√
pK); and n ∼ CN (0, σ2IM )

is the additive white Gaussian noise (AWGN).
Quantization Model: We consider a fully digital receive array

processing so that the number of RF processing chains is equal to
that of the number of receive antennas M . We further assume that
each RF chain is equipped with a resolution-adaptive ADC pair,
where one ADC is for the in-phase and the other for the quadra-
ture component of the analog received signal. The ADCs at each RF
chain can operate with different resolutions [6, 8, 10, 12]. Follow-
ing [6, 8], we adopt the additive quantization noise model (AQNM)
for the quantizer. Let us denote by bi the number of quantization
bits at the ADC pair i, i ∈ {1, ...,M}, and define vector b ,
(b1, b2, . . . , bM )T . The quantized signal vector of r is [8]

rQ = Φ(b)(HPs + n) + q (2)

where Φ(b) , diag(1− β1, . . . , 1− βM ), βi is the variance of the

normalized quantization error, i.e., βi =
E{|[r]i−[rQ]i|2}

E{[r]i}
; assuming

non-uniform scalar MMSE quantizer and Gaussian transmit sym-
bols, βi can be approximated as in Table 1 for bi ≤ 5 [19], and
βi = π

√
3

2
2−2bi for bi > 5 [20]. Vector q is the additive quanti-

zation noise which is uncorrelated with r and follows Gaussian dis-
tribution with zero-mean. The covariance matrix of q for a fixed
channel realization H is given by [8, 21]

R(b) = Φ(b)(IM −Φ(b))F (3)

where F , diag(HP2HH + IM ).
Baseband Combiner: After the quantization, the digital com-

biner is applied to rQ. We here consider the MRC, a practical com-
biner widely used in large-scale MIMO systems [1]. In particular,
let us denote by W the MRC receiver given as W = Φ(b)H. With
H known at the BS, then the output signal of the combiner is

y = WHrQ = HH(Φ(b))HΦ(b)HPs

+ HH(Φ(b))HΦ(b)n + HH(Φ(b))Hq (4)

The signal-to-interference-plus-noise ratio (SINR) corresponding to
user k is

γk(b) =
pk|hH

k(Φ(b))2hk|2∑
j 6=k

pj |hH
k(Φ(b))2hj |2 + σ2‖hH

k(Φ(b))2‖22 + hH
kΛ(b)hk

(5)

where Λ(b) , Φ(b)R(b)Φ(b).
Power Consumption Model: We consider the power consump-

tion model at the BS following those in [7, 8, 12], which include
the amount of power spent on low-noise amplifiers (LNAs), RF pro-
cessing functionalities, ADCs, and baseband signal processors. In
particular, the amount of power for baseband signal processors de-
noted by PBB is assumed to be fixed. We suppose that a RF chain can

be turn on or off. This is determined via the number of quantization
bits, i.e., RF chain i is turn off if bi = 0. Let gi(bi) be the amount of
power for the LNA, RF process function, and ADC pair in RF chain
i, then we have

g(bi) =

{
0 if bi = 0

PRF + 2c02bi otherwise
(6)

where PRF > 0 is constant, c0 , cfS is a constant depending on c,
the Walden’s figure-of-merit which represents the energy consump-
tion per conversion step, and fS, the Nyquist sampling frequency. To
sum up, the total consumed power at the BS is expressed as

PBS(b) = PBB +

M∑
i=1

g(bi). (7)

Problem Formulation: From the above discussion, we can see
that the number of quantization bits influences the total consumed
power as well as the user data rate. We focus herein on finding the
number of quantization bits at ADCs such that the energy efficiency
at the BS is maximized under the constraints on the quality of service
for each user, which is mathematically written as

maximize
b

∑K
k=1B log2

(
1 + γk(b)

)
PBS(b)

(8a)

subject to B log2

(
1 + γk(b)

)
≥ Qk, ∀k = 1, ...,K (8b)

bi ∈ {0, . . . , bmax}, ∀i = 1, ...,M (8c)

where B is the system bandwidth, Qk is the minimum data rate re-
quirement of user k, and bmax is the maximum number of quanti-
zation bits at an ADC. Problem (8) is NP-hard since variables b are
discrete. In order to explore the potential benefits of the resolution-
adaptive ADCs, we develop an algorithm finding globally optimal
solution to (8) presented next.

3. PROPOSED GLOBALLY OPTIMAL ALGORITHM

The proposed algorithm is developed based on the discrete mono-
tonic optimization (DMO) framework [18]. Here we use the defini-
tions of box, increasing function, and normal cone in [18].

We can see that the objective function of (8) is not monotonic
with b, thus the current form of (8) is not suitable for applying DMO.
As the first step, we equivalently reformulate (8) as

maximize
b,r,η

η (9a)

subject to
K∑
k=1

Brk − ηPBS(b) ≥ 0 (9b)

rk ≤ log2

(
1 + γk(b)

)
, ∀k = 1, ...,K (9c)

rk ≥ Qk/B, ∀k = 1, ...,K (9d)
bi ∈ {1, . . . , bmax}, ∀i = 1, ...,M (9e)

where η and r , {rk}Kk=1 are newly introduced variables, which
represent the energy efficiency at BS and data rate for each user,
respectively. To expose the monotonic representation of (9), let us
introduce variables ϑi = (1 − βi)

2, for all i ∈ {1, ...,M}, and
matrix Ψ(ϑ) = diag(ϑ) = (Φ(b))2, where ϑ , {ϑi}i. Note
that ϑi is a discrete variable admitting the values in the set V ,



{0, (1− β1)2, . . . (1− βmax)2}. With these notations, we can write
as

Λ(b) = (Φ(b))3(I−Φ(b))F = (Ψ(ϑ))3/2(I− (Ψ(ϑ))1/2)F.

In addition, since ϑi is in fact a function of bi, we replace g(bi) in (6)
by g(ϑi), i.e, g(ϑi) belongs to discrete set G , {0, g1, . . . , gbmax}
where gi = PRF + 2c02bi . Now we can rewrite (9) as

maximize
x∈X

f0(x) (10a)

subject to fk(x)− hk(x) ≤ 0, ∀k = 1, ...,K (10b)
fK+1(x)− hK+1(x) ≤ 0 (10c)

where x , [η, r,ϑ] ∈ RK+1+M is the vector of variables and X
is the corresponding feasible set interfered from (9), f0(x) = η,
fk(x) = (2rk − 1)(

∑
i6=k pi|h

H
kΨ(ϑ)hi|2 + σ2‖hH

kΨ(ϑ)‖22 +

hH
k(Ψ(ϑ))3/2Fhk), hk(x) = ((2rk − 1)hH

k(Ψ(ϑ))2Fhk +
pk|hH

kΨ(ϑ)hk|2), fK+1(x) = η(PBB + g(ϑi)), and hK+1(x) =∑K
k=1Brk. Note that x contains mixed continuous-discrete vari-

ables where xi for i ≤ K + 1 is continuous, and xi for i > K + 1
is discrete.

We can see that all the functions in (10) are monotonic increas-
ing with the variables. Thus, problem (10) is a discrete monotonic
optimization program. From now on, we customize the DBRnB
algorithm introduced in [18] to optimally solve (10). Generally, a
DBRnB algorithm is an iterative procedure in which there are three
basic operations performed at each iteration, namely, branching, re-
duction, and bounding [18]. The algorithm starts with an initial box
which contains the feasible set of the problem. At each iteration, the
branching operation divides a box into two smaller boxes; the re-
duction operation removes the portions of boxes that do not contain
an optimal solution; and, the bounding operation improves the up-
per and lower bounds of objective as well as remove the boxes that
do not contain an optimal solution. The procedure continues until a
convergence criterion is met.

Let us start by determining the initial box. In particular, let [x; x]
denote the box containing the feasible set of (10), i.e., x ∈ [x; x]⇔
x ≤ x ≤ x, where x , [η, r,ϑ] and x , [η, r,ϑ] are the vectors
consisting of the lower and upper bound values of elements in x,
respectively. It is obvious that ϑ = 0 and ϑ̄ = (1 − β(bmax))1;
r = {Qk/B}Kk=1 and r = log2(1 + γk(b∞)); the bounds of η can
be determined as

η =

∑K
k=1Brk

PBB +
∑M
i=1 g(ϑi)

and η =

∑K
k=1Brk

PBB +
∑M
i=1 g(ϑi)

. (11)

In what follows, we describe the three basic operations. For the
ease of exposition, we use B = [p; q] to present an arbitrary box
which is processed in each iteration of the DBRnB procedure, i.e.,
x ≤ p ≤ x ≤ q ≤ x; fUpb

0 (B) to denote the upper bound of
η provided by the bounds of B; Rn to denote the set of candidate
boxes at iteration n of the algorithm.

Branching

At iteration n, a box B ∈ Rn is selected to be branched into two
new boxes of equal size. In particular, we choose B such that B =
arg max
B′∈Rn

fUpb
0 (B′) to ensure that the upper bound is monotonically

decreasing, and then cut at one edge of B to create two new boxes
B

(1)
c = [p; q′] and B

(2)
c = [p′; q] as

q′j =

{
qj − (qj − pj)/2 if j ≤ K + 1,

bqj − (qj − pj)/2cV if j > K + 1
(12)

p′j =

{
pj + (qj − pj)/2 if j ≤ K + 1,

dpj + (qj − pj)/2eV if j > K + 1,
(13)

where j is the edge index, and dxeV and bxcV denote the operators
which, respectively, map x to the nearest-upper and nearest-lower
discrete values in V . Usually, the longest edge of a box is chosen for
branching [18]. However, this standard rule is inefficient for (10).
Thus we propose the following rule in order to improve the conver-
gence efficiency.

Proposed Branching Rule: At first, the algorithm focuses on
branching edges corresponding to r until the gap between r and r
is sufficiently small. This is inspired by the observation that given
the bounds of r,ϑ, the following inequality must hold for B to be
feasible

µ
(∑
i 6=k

pi|hH
kΨ(ϑ)hi|2 + σ2‖hH

kΨ(ϑ)‖22 + hH
k(Ψ(ϑ))3/2Fhk

)
−µhH

k(Ψ(ϑ))2Fhk + pk|hH
kΨ(ϑ)hk|2 ≤ 0

(14)
which is due to the monotonicity of (10b), where µ = 2rk−1. Thus,
branching r and using (14) might help removing the subsets of ϑ and
r which cannot be simultaneously satisfied.

After branching on r, the algorithm focuses on ϑ. We recall that
finding optimal ϑ consists of two tasks: finding the set of active RF
chains (i.e. ϑi > 0), and finding the number of quantization bits. We
observe that, with standard branching rule, it takes many iterations
to reach the optimal decision of turning off some RF chain. Thus,
the idea is to first check the on/off mode of a RF chain. To this end,
we modify the cuts in (12) and (13) for j > K + 1 as{

q′j = 0, p′j = v1, if pj = 0

q′j =
⌊
qj − qj−pj

2

⌋
V
, p′j =

⌈
pj +

qj−pj
2

⌉
V
, if pj > 0

(15)

Finally, we note that we do not need to branch η since the bounds
of η can be determined via the bounds of the other variables as in
(11).

Reduction

Let us consider box B̂ = [p̂; q̂]. The reduction operation finds
smaller box B̂′ = [p̂′; q̂′] ⊆ B̂ by cutting portions [p̂, p̂′) and
(q̂′, q̂] which do not contain optimal solutions. This can be done
using [18, Lemma 16] by exploiting the monotonicity of the prob-
lem. For the considered problem, we propose the following efficient
reduction cut.

Proposed Reduction: As discussed above, we can eliminate
box B̃ by examining the inequality (14) inspired by the mono-
tonic properties of the problem [18, Lemma 16]. Obviously, if
(14) does not hold, then the box is infeasible. In addition, the
monotonic properties can be used to update the new upper bound
for r. In particular, we recall the rate constraint rk ≤ log2

(
1 +

pk|hH
kΨ(ϑ)hk|2

ψ(ϑ)−hH
k
(Ψ(ϑ))2Fhk

)
where ψ(ϑ) =

∑
i 6=k pi|h

H
kΨ(ϑ)hi|2 +

σ2‖hH
kΨ(ϑ)‖22 + hH

k(Ψ(ϑ))3/2Fhk. It is clear that

rk ≤ r̂k , log2

(
1 +

pk|hH
kΨ(ϑ)hk|2

max{δ, (ψ(ϑ)− hH
k(Ψ(ϑ))2Fhk)}

)
(16)

where δ → 0. Thus, we can update the new bound as r̄′k =
min{r̂k, r̄k}.



Algorithm 1 The proposed DBRnB-based algorithm solving (10)
1: Initialization: Determine x, x and denoteR0 = [x; x].
2: repeat
3: Branching: select B = [p; q] ∈ Rn, determine cutting edge

j by j = arg max
2≤i≤K+2M

qi − pi then create B
(1)
c = [p; q′] and

B
(2)
c = [p′; q]. UpdateRn := Rn \ {B}.

4: Reduction: remove B
(l)
c , l = {1, 2} if violating (14), update

r in B
(l)
c using (16)

5: Bounding: For each box B
(l)
c , {l = 1, 2},

6: Calculate bounds of objective using (11).
7: Calculate feasible objective ηfea by (17), and update CBO η̂ =

max{η̂, ηfea}.
8: UpdateRn := Rn \ {B(l)

c , l = 1, 2 | η(B̂′) ≤ η̂}
9: until Convergence

Bounding

We can find the bounds of η in box B̂′ as in (11). The bounding is
essential, since it declares the convergence, i.e., when η − η ≤ ε
for small constant ε. Another crucial task in bounding step is to
prune boxes which do not contain optimal solutions. To be specific,
assuming that we know some feasible points and the largest objec-
tive values, named current best objective (CBO) and denoted as η̂,
achieved from these points [18]. If the upper bound of B̂′, denoted
by η(B̂′), holds η(B̂′) ≤ η̂, B̂′ cannot provide an optimal solution,
and, thus, should be ignored to save the computational resources. As
a consequence, searching for a feasible point to update η̂ can im-
prove the algorithms’ efficiency. To this end, given the bounds of r

and ϑ in box B̂′, the feasible points can be simply calculated as

ηfea = max{
∑
Brfea

PBB +
∑M
i=1 g(ϑi)

,

∑
Brfea

PBB +
∑M
i=1 g(ϑi)

} (17)

where rfea = log(1 + γk(ϑ)) | rfea ≥ rk and rfea = log(1 +
γk(ϑ)) | rfea ≥ rk. The CBO is then updated as η̂ = max{η̂, ηfea}.

To sum up, the proposed algorithm optimally solving (8) is out-
lined in Algorithm 1.

4. NUMERICAL RESULTS

The simulation model is setup as follows. We consider a single cell
with the radius of 500 meters. The BS is equipped with M = 20
antennas. There are K = 2 users randomly located in the cell. The
path loss model is PLk[dB] = −128.1 − 37.6 log10(dk/1km) +
N (0, 5) where dk is the distance between user k and the BS and
dk > 100 meters. The bandwidth is 10 MHz and the noise density
is -174 dBm/Hz. The transmit power is set as pk = σ2SNR

PLk
where

SNR = −10 dB. For the power consumption model, we assume that
PRF = 60 mW, PBB = 200 mW, c0 = 5× 10−5 [8]. The minimum
data rate requirement is Qk = 1 bit/s/Hz.

In Fig. 1, we compare the convergence performance of our pro-
posed DBRnB procedure (i.e., Algorithm 1) with that of the stan-
dard one in [18]. In particular, the figure shows the values of up-
per and lower bounds of the considered algorithms over a random
channel realization. As can be seen, the proposed approach can re-
markably reduce the required number of iterations to arrive at the
convergence criteria. In terms of average per-iteration run time, we
have observed that the proposed method takes 0.008 second for each
iteration, which is 10 times faster than the standard procedure.
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Fig. 1. Convergence of the optimal algorithms over a random chan-
nel realization. We take bmax = 4.
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Fig. 2. Average EE performance versus the maximum number of
quantization bits bmax.

Fig. 2 depicts the average EE performance versus the the max-
imum number of quantization bits bmax of our proposed algorithm.
For comparison purposes, we provide the performance achieved by
two baseline schemes which are: (i) uniform bit allocation, i.e., all
ADCs use the number of quantization bits bmax, and (ii) optimal bit
allocation with all RF chains are always active. We note that the per-
formance of the latter baseline scheme is achieved by modifying Al-
gorithm 1 as ϑi ∈ V\{0}. We can see that the proposed algorithm is
superior to the baselines schemes. The results demonstrate the ben-
efit of both using resolution-adaptive ADCs and properly turning off
the RF chains. In addition, the results show that only considering
non-uniform ADCs still achieves better EE performance than uni-
form ADCs. Finally, for the uniform ADC systems, using the large
number of quatizations bits significantly degrades EE.

5. CONCLUSION

We have studied the potential EE performance of the resolution-
adaptive ADCs in uplink multiuser large-scale MIMO systems. In
particular, we have optimized the number of quantization bits at
ADCs as well as the on/off modes of each RF chain with the objec-
tive of maximizing EE at the BS and the constraints on QoS for each
user. The design problem is a discrete nonlinear program. Thus, we
have developed an algorithm based on the generic DBRnB frame-
work, which guarantees to provide a globally optimal solution. Nu-
merical results confirms the effectiveness of the design approach in
term of gaining EE for multiuser large-scale MIMO systems. In ad-
dition, the proposed algorithm can serve as benchmark in develop-
ing low-complexity suboptimal solutions, which will be considered
in future work.
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