
Rehabilitation Exercise Segmentation for Autonomous Biofeedback Systems
with ConvFSM

Antonio Bevilacqua1 Louise Brennan1,2 Rob Argent1,2 Brian Caulfield1 Tahar Kechadi1

Abstract— Segmenting physical movements is a key step
for any accelerometry-based autonomous biofeedback system
oriented to rehabilitation and physiotherapy activities. Funda-
mentally, this can be reduced to the detection of recurrent
patterns, also called motion primitives, in longer inertial signals.
Most of the solutions developed in the literature require
extensive domain knowledge, or are incapable of scaling to
complex motion patterns and new exercises. In this paper,
we explore the capabilities of inertial measurement units for
the segmentation of upper limb rehabilitation exercises. To
do so, we introduce a novel segmentation technique based
on Convolutional Neural Networks and Finite State Machines,
called ConvFSM. ConvFSM is able to isolate motion primitives
from raw streaming data, using very little domain knowledge.
We also investigate different combinations of sensors, in order
to identify the most effective and flexible setup that could
fit a home-based rehabilitation feedback system. Experimental
results are presented, based on a dataset obtained from a
combination of common upper limb and lower limb exercises.

I. INTRODUCTION

Activity segmentation has a key role in the design and
development of autonomous biofeedback systems, especially
for home-based rehabilitation supports. Patients that un-
dertake exercise programmes independently, away from a
clinical setting, need tools to support them in their reha-
bilitation. This can include counting individual repetitions,
providing granular feedback on the quality of the physical
performance, or offering an objective measure of patient
adherence [1]. For biofeedback systems based on inertial
measures [2], the segmentation step involves the analysis of
Inertial Measurement Unit (IMU) data, often sampled as a
collection of time series as explained by Wang et al. [3]. In
order for a segmentation system to be adopted in real-world
scenarios, it is often required to work in a real-time manner,
thus the patient does not need to execute the entire set of
repetitions before receiving feedback.

The target of this paper is twofold. We inspect the seg-
mentation capabilities of IMU data for a set of upper limb
rehabilitation exercises, sampled with three inertial sensors.
We also present our exercise segmenter, called ConvFSM.
ConvFSM works on streaming signals, and is based on a
convolutional classifier and a finite state machine. It relies
on minimal domain knowledge, and it is capable of working
on raw data, so no data preprocessing or feature engineering
is required. In order to test the performance of our system, in
addition to the upper limb dataset, we incorporate a further
dataset of lower limb exercises for knee rehabilitation.
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The rest of this paper is arranged as follows. Section
II introduces the problem of motion segmentation, with a
brief overview of the most common segmentation approaches
developed in literature. A formal definition of the problem is
given in Section III, while our proposed approach is detailed
in Section IV. Section V contains a short description of
our experimental setup and the dataset we used for our test
campaigns, for which the results are illustrated in Section
VI. Final remarks on the proposed method and suggestions
for future developments close the work in Section VII.

II. RELATED WORK

The problem of segmenting human motion, and in partic-
ular rehabilitation exercises, is a well-known research topic,
as it is a key step for most of the autonomous biofeedback
systems currently available. In their work, Lin et al. [4]
propose a structured taxonomy for segmentation systems,
based on many factors such as data sources, application
requirements, basic algorithms and validation techniques.

Traditional edge modeling segmentation methods are the
zero-velocity crossing (ZVC) techniques [5], based on the
detection of points corresponding to a change of movement
direction. ZVC points can successfully be extracted from
inertial sensor measures, both primitive and derived [6],
and they usually do not require detailed domain knowledge
except for empirically derived thresholds for edge point
grouping. However, segmentation strategies based on ZVC
tend to oversegment and do not scale very well with the
degrees of freedom (DoFs) of the sampling units [4]. Dy-
namic Time Warping (DTW) [7] is a popular template-
method based on distance measures between signal segments
and a motion template. It addresses the different scales and
durations that motion primitives can exhibit by computing the
best path that warps the observation into the template. This
method is proven to be accurate in the segmentation task,
however, it is computationally expensive and is designed to
work offline, thus it cannot be used in real-world scenarios.

Another common distance-based technique is the adoption
of Hidden Markov Models (HMMs) [8] which shape the
input signals as a sequence of unobservable Markovian
states. HMMs are widely adopted in literature, in a variety
of different implementations [9] [10]. However, as for the
ZVC methods, they often tend to oversegment, as they do
not have a proper rejection mechanism for false positives.

More recent works successfully applied machine learning
to the problem of activity segmentation. In their work,
Bevilacqua et al. [11] used clustering to find representative
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points out of all the ZVC points in an exercise. Represen-
tative points were later used to extract potential segments,
which were classified using a decision tree. This method
has the inconvenience of requiring the entire signal to be
available before the segmentation process can start. Also,
templates are needed to train the decision tree, therefore
the model is not easily scalable for novel exercises. Lin et
al. [12] based their segmentation process on a binary point
classifier capable of discriminating segment points, that is,
points belonging to a motion segment, from non-segment
points, i.e., stationary points in between movements. The
points are classified using a Support Vector Machine (SVM)
trained on the principal components obtained from the data
points. Albeit efficient, this segmentation system does not
take into account motion patterns where stationary points
can be found within exercise segments.

In this paper, we address the most common issues found in
the existing segmentation techniques for motion time series,
and we apply our system to both lower limb and upper limb
exercises, the latter being rather uncommon in research [13].

III. FORMAL MODEL

The problem of segmenting physical exercises can be
formally described by a set of equations. An exercise E is a
set of vector points pt collected by the sensor over m time
steps as a multivariate time series as outlined in Equation 1.

E =< p0,p1,p2, . . . ,pm > (1)

Each vector point has as many coordinates as are the
degrees of freedom (DoFs) of the sampling device. A sin-
gle triaxial acceleration point would have three coordinates
(ax, ay, az), while a point obtained from a combination
of accelerometer and gyroscope will have six coordinates,
(ax, ay, az, gx, gy, gz). Vector points can also be obtained
from multiple sensors, thus the number of components is
multiplied by the number of sampling sensors.

The number of motion primitives, also called repetitions,
that are included within E is denoted with k. The ith

repetition Ri is defined as a subset of points of E, according
to Equation 2.

Ri ⊂ E , ∀ i : 0 ≤ i < k − 1 (2)

The start and end points of repetition Ri are denoted with
si and ei respectively. The repetitions of an exercise do not
overlap, so Ri has to be concluded before Ri+1 can start.

Motion primitives can also include isometric periods of
inactivity, varying from subject to subject and from exercise
to exercise. We call these points holding points. If the ith

repetition Ri was performed as a fluid, individual movement,
then the set of holding points {hi,t} will be an empty set.
Otherwise, {hi,t} will denote all the points within repetition
Ri that mark the beginning of a change of physical state,
from movement to inactivity and vice versa.

Finally, we define the output of the segmentation process
for an exercise E as a set of coordinate pairs of length q, as
in Equation 3. The points in each pair represent respectively

the starting and the ending point of the detected motion
primitives in E, and are addressed to as edge points.

S(E) = {(sj , ej) , 0 ≤ j < q} (3)

The set of holding points for the exercise E is not specifically
a target of a segmentation algorithm.

IV. PROPOSED APPROACH

Our segmenter is based on the classification of small,
overlapping clips, or windows, extracted from the streaming
inertial signal. Given the length of the exercise E expressed
in Equation 1, the total number of windows that can be
extracted from it can be computed with the formula in
Equation 4, where W is the window length, P is the padding
value, and S is the stride value.

w =
m−W + 2P

S
+ 1 (4)

As the exercises were not padded, and the stride is set to 1,
the total number of windows can be reduced from Equation
4 to m−W+1. Each window can then be classified as either
dormant, thus corresponding to a period of inactivity, or
dynamic, thus corresponding to a period of physical motion.
This initial classification step is not committed to providing a
high-level view of the signal, but it rather identifies regions of
movement and regions of inaction. The output of the window
classification for the exercise E is a stream of labels, each
one corresponding to a window, as indicated in Equation 5.

P (E) =< ĉ0, ĉ1, . . . , ĉw > (5)

The predicted window labels are fed into a finite state
machine, that is responsible for the generation of a seg-
mentation output like the one illustrated in Equation 3.
The FSM models the actual motion pattern that is expected
from each exercise, and returns a sequence of edge points
for the target exercise. An example is provided in Fig. 1.
Here, 2 repetitions of an upper limb exercise are windowed,
then segmented. All the windows classified as silence are
marked with horizontal arrows, either grey (resting) or red
(isometry), while the motion windows correspond to the
green regions. The dashed boxes indicate the full extent of
the target primitives. In this particular example, the desired
output is composed of 4 edge points.

This mechanism presents a number of advantages when
compared to traditional techniques. First of all, no feature
engineering is required at any stage of the process, as
the Convolutional Neural Network (CNN) is able to shape
features from the input data on different levels of complexity
and nonlinearity, detecting local dependencies over time as
well as spatial dependencies over sensors. Also, no tem-
plates nor extensive domain knowledge are needed for the
segmentation to take place, which makes it easier for our
segmentation method to scale to complex motion patterns or
simply unseen rehabilitation exercises. Lastly, the proposed
approach can be defined as semi-online according to Lin et
al. [4], as the training happens offline, while the inference
phase natively works on a stream of data.
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Fig. 1: A pair of repetitions extracted from a shoulder rotation execution, with a holding time of roughly 7 seconds

A. Convolutional classifier

The overlapping windows coming from the streaming
signal are fed into a CNN, depicted in the left part of Fig.
2. The input layer accepts image-like windows of shape
6 × w × N , where w is the window length, and N is the
number of sensors used for the sampling. This arrangement
of the input is known as model-driven [3]. The network
architecture is similar to the one developed by Bevilacqua et
al. [14], as three convolutional layers and three max pooling
layers are followed by a dense network composed of three
layers of 500, 250 and 125 units respectively. The kernels
for the convolution operation progressively decrease and the
kernels for the pooling operation progressively increase. The
dense layers are regularized with the dropout technique, with
a probability of 0.5 of keeping each neuron. We use a batch
size of 2048, for a number of epochs varying from 150 to
300. The initial learning rate for the Adam optimizer is 0.005.
The neural network was developed with the TensorFlow
framework, version 1.12. The training is executed on a single
Nvidia Titan XP GPU.

B. Finite state machine

The FSM models the basic motion pattern of all the
target exercises, providing a high-level view of the motion
primitives. In principle, an exercise can be represented by
a repetitive pattern composed of initial silence, movement,
optional silence (corresponding to an isometric contraction)
away from the baseline position, movement, then silence
again. Most of the target movements in our dataset are
isotonic contractions, either concentric or eccentric. For this
work, we designed a FSM capable of detecting the basic
motion patterns behind our rehabilitation exercises.

One preliminary step behind the working mechanism of
the FSM is the baseline test. When an exercise is streamed,
baseline values are computed for each signal component, in
the form of simple moving average over the same windows
that are fed to the CNN. The main assumption behind the
baseline computation is that at the very beginning of the
exercise, the subjects will hold the starting position for some
time, thus providing a reference point on the values the
algorithm should expect from each signal component in the

resting position. The baseline values are updated whenever
new static windows are detected in the pausing state of the
FSM. This step is required in order to mitigate the effect
of baseline drifting, that is, a gradual displacement from the
initial baseline value that occurs when the subject is not fully
completing the movement. As shown in Fig. 3, a progressive
drift can skew the baseline value substantially.

The FSM model is depicted in the right part of Fig. 2.
The state space contains three possible states:

• moving (MV): a movement is in progress, either eccen-
tric, concentric, or of noisy nature (vibrations caused by
fatigue, pain or distress). This state is reached whenever
a window is classified as movement.

• pausing (PS): no movement is detected, and the subject
limb is close to the initial position. This is the initial
state of the FSM, and can be reached from the moving
state whenever a window is classified as movement and
the baseline test passes.

• holding (HL): in this state, no movement is detected,
just like for the pausing state, but the exercise is at its
isometric peak, as the baseline test failed.

The input symbols of our FSM alphabet are duples
composed of the discretized prediction of the current signal
window (a value of the sequence in Equation 5), and the
outcome of the baseline test. The full alphabet is therefore
{< s, true >,< s, false >,< m, true >,< m, false >},
where the values s and m indicate that the last window
was classified as silence or movement respectively, and the
values true and false indicate that the last baseline test
passed or failed respectively. For simplicity we include a
don’t care condition for the baseline test, as this value is
not always relevant to the state transition, thus reducing the
input alphabet to {< s, true >,< s, false >,< m,− >}.
If we assign the letters A, B and C to the first, second
and third state respectively of the reduced alphabet, we
can identify a single exercise repetition with the following
sequence of inputs, expressed in form of regular expression:
(A+) (C+) (B (A|B)*)* (C+) (A+) 1. The output
of the FSM is either a coordinate, or a null value. A

1The + symbol indicates one or more of the corresponding value/group,
the ∗ symbol indicates zero or more of the corresponding value/group.
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Fig. 2: The architecture of ConvFSM, composed of a CNN for window classification, and a FSM for pattern recognition

0 500 1000 1500 2000 2500 3000
Timestamp

−4

−2

0

2

Ac
ce

le
ra

tio
n 

z (
m

/s
2 )

Baseline drifting

Fig. 3: Baseline drift for an instance of the shoulder abduc-
tion exercise sampled with the arm sensor

coordinate value produced in the transition from PS to
MV represents the starting point of a primitive, while a
coordinate value produced in the transition from MV to PS
represents the ending point of a primitive.

V. DATA AND METHODOLOGY

With this paper, we aim at exploring the potential of
accelerometry for segmenting upper limb rehabilitation ex-
ercises, as well as assessing the performance of our segmen-
tation method. In order to do so, we target different datasets,
exercises, and sensor combinations.

A. Dataset composition

Two different datasets are used in this paper, namely,
a shoulder dataset, and a knee dataset. The first one is
composed of 7 rehabilitation exercises for the upper limb,
collected by 29 healthy subjects in a controlled environment.
The exercises are shoulder flexion standing (FLXSTD),
shoulder abduction standing (ABDSTD), shoulder inter-
nal/external rotation standing (ROTSTD), shoulder flexion,
active-assisted using a stick (FLXSTK), shoulder abduction,
active-assisted using a stick (ABDSTK), shoulder flexion in
supine (FLXSUP) and shoulder internal/external rotation in
supine (ROTSUP). The second dataset is composed of 4
rehabilitation exercises for the lower limb, obtained from
a mixed group of 44 clinical subjects and 10 healthy sub-
jects. This dataset was collected and described by [11], and
contains samples of heel slide (HS), seated knee extension
(SKE), inner range quadriceps (IRQ), and straight leg raise
(SLR). For both datasets, each participant performed the
exercises both in a correct manner and inducing particular
deviations instructed by the supervising Chartered Phys-
iotherapist. The deviations collected are elevated scapula,

deviation to scapular plane and compensatory trunk extension
for FLXSTD, deviation to scapular plane, elevated scapula
and compensatory elbow flexion at end of range for ABD-
STD, abducting shoulder for ROTSTD, elevated scapula for
FLXSTK and ABDSTK, compensatory elbow flexion at end
of range for ROTSUP, excessive hip external rotation for HS,
lack of full knee extension for SKE, excessive hip flexion
for IRQ, inability to maintain full knee flexion for SLR. In
addition to the mentioned deviations, FLXSUP and ROTSUP
are also executed with 10 seconds of holding time at the
isometric peak of the movement.

B. Data acquisition and annotation

All the exercises are sampled with the Shimmer3 [15]
inertial unit. This device provides a wide range of sensors,
but for this study, we only use the triaxial low noise ac-
celerometer and the triaxial gyroscope, with a fixed sampling
rate of 102.4 Hz. The ranges for the accelerometer and the
gyroscope are respectively ±2g and 500 dps. The shoulder
exercises were sampled with three units, placed on the
wrist, on the arm, and on the upper trapezius (traps) of the
participants, while a single sensor placed on the midpoint of
the shin was used to collect the knee dataset.

When acquiring the data for the classification step, the
streaming signals are arranged into windows of length 30,
corresponding to roughly one-third of a second, as a small
window size in most cases can be associated with an im-
proved classification accuracy [16]. Consecutive windows
overlap with a stride of 1 point. The accelerometer and
the gyroscope are both triaxial, so each input example
comes in the shape 6 × 30 × N , where N represents the
number of sensors used by the participant during the exercise.
Whilst only one sensor is available for the knee dataset,
different combinations of the three sensors were tested for
the shoulder dataset: individual sensor setups, double sensor
setups (arm and wrist, arm and traps, wrist and traps), and
the combination of all three sensors at once.

After the data acquisition, each exercise is manually anno-
tated. During this phase, both edge points and hold points are
accounted for. This is necessary, as the ground labels for the
windows are assigned so that only real movement is marked
as such. In the example signal showed in Fig. 1, the entire set
of points {s0, h0, h1, e0, s1, h2, h3, e1} is annotated, so that
all the windows between the regions [s0, h0], [h1, e0], [s1, h2]
and [h3, e1] can be labeled as movement, while the regions



[0, s0], [h0, h1], [e0, s1], [h2, h3] and [e1,m] are labeled as
silence. However, during the evaluation phase only the edge
points {s0, e0, s1, e1} are considered as ground edge points.

VI. EXPERIMENTAL RESULTS

For our experimental campaign, we first present the bare
classification accuracy obtained for the window classification
task, then we compute the counting accuracy, for all the
sensor configurations in the case of the upper limb dataset,
and for the knee sensor in the case of the lower limb dataset.
All the metrics are computed with the Leave-One-Subject-
Out strategy [17], useful to induce intersubject variability in
the experimental setup. The final results are then obtained
as an average of all the individual folds, where the test set
of each fold is composed by a subject that has not been
seen during the training phase. Each entry also includes the
standard deviation across all the folds. We also compare our
segmentation scores with the scores obtained from two of
the most common existing techniques, namely, HMM and
ZVC. For the first one, we train a model for each exercise
in the dataset with the Baum-Welch algorithm, then we use
the forward algorithm to compute the similarity with new
observation data. As for the second approach, we compute
ZVC points on each exercise execution, by leveraging only
the most significant signal components, in order to alleviate
the oversegment effect of this technique.

When computing the segmentation accuracy, we count
an algorithmic edge point as true positive if it matches a
manually annotated edge point within an interval of 100 time
steps, roughly corresponding to 0.5s on each shift direction.
If such a mach does not exist, the algorithmic edge point is
counted as false positive. All the manually annotated edge
points that do not have a match among the algorithmic edge
points are counted as false negative. This validation metric
admits the true negative points to be an empty set [4].

Table I reports the window classification accuracy, loss,
precision and recall for every sensor and sensor combination,
for both the shoulder and then knee datasets. For the shoulder
dataset, the poorest result is obtained with the traps sensor,
while both the arm and the wrist sensors yield an accuracy
of at least 87% when used alone. Combining the arm and
the wrist sensors with the traps sensors does not increase
the overall accuracy, whilst the combination of wrist and
arm sensors increases the accuracy with respect to the single
sensors by 0.2% and 1.6% respectively. The highest overall
accuracy is obtained by using all three sensors together.

The segmentation scores of the upper limb exercises
obtained with ConvFSM are listed in Table II. The accuracy
scored when counting motion primitives is generally higher
than the bare classification accuracy over individual win-
dows. This is due to the fact that the FSM has some tolerance
towards misclassified windows, as coordinates of motion
primitives cannot be generated while in holding. It is possible
to notice that the worst-performing sensor is traps, and that
the combination of all the three sensors often returns better
accuracy than single sensor configurations. The 2 exercises
executed while holding a stick, FLXSTK and ABDSTK,

seem to be relatively easy to segment when compared to
their standing versions. Holding a stick in both hands during
the exercise stabilises the upper limb of the subjects, likely
causing lower variation across the IMU signals.

Table IIIa displays a comparison of ConvFSM with HMM
and ZVC. For sake of brevity, we only include the accuracy
obtained with the best sensor for each algorithm. The tested
methods work well for some of the exercises, however, they
still show a tendency to oversegment, as precision scores are
often low. The wrist sensor appears to be the best placed
sensor for segmenting the target activities, as in the majority
of the experiments, it provides the best segmentation perfor-
mance. In general, ConvFSM outperforms HMM and ZVC,
as it is not penalized by excessive edge point production.

Table IIIb reports the segmentation accuracy for the knee
dataset, side by side with the segmentation accuracy values
obtained with ZVC and HMM. Also in this case, ConvFSM
reaches better results than the two baseline models.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented ConvFSM, a segmentation
method for multimodal time series based on a convolutional
classifier and a finite state machine. We applied ConvFSM
to the segmentation of rehabilitation exercises sampled with
IMUs, and we were successful in detecting individual move-
ments over two datasets of common lower and upper limb
rehabilitation exercises. ConvFSM can natively be used on a
streaming data source, regardless of the number of sensors
used for the sampling, and does not require extensive domain
knowledge about the target exercises. It also works on raw
data, so it does not require data preprocessing, data cleaning,
nor feature engineering. Our results show that ConvFSM
performs reasonably good on a wide number of exercises,
for both the lower part and the upper part of the body.

Despite its flexibility, ConvFSM presents a few limitations.
The main assumption behind the FSM implementation is that
the very beginning of the streaming is composed of inactivity
windows, so that the initial baselines can be computed.
In case the stream opens with motion windows, ConvFSM
may return unexpected results. This problem can be solved
with the introduction of suggested baseline values, however,
prior knowledge would be required about the orientation of
the used sensors. Also, ConvFSM tends to include in the
primitives small segments at the beginning and the end of the
movement that reflect limb vibration. These segments would
not ideally add any benefit for the segment classification,
so further adjustment of the extracted primitives could be
required before they could be properly classified.

In the future, we aim at testing the segments obtained
with ConvFSM for movement classification, in order to
understand the real impact different coordinates may have
on the final feedback provided to the patients. Also, we
want to extend our datasets, to include more exercises and
participants. As a final remark, the generation of a single
ConvFSM system that can be used for both upper limb and
lower limb movements is worth further investigation.



TABLE I: Window classification scores

metric WRIST ARM TRAPS W, A W, T A, T W, A, T KNEE
accuracy 0.949 ± 0.01 0.935 ± 0.017 0.869 ± 0.027 0.951 ± 0.016 0.9488 ± 0.02 0.9336 ± 0.0156 0.9521 ± 0.01 0.9382 ± 0.0242

loss 0.16 ± 0.07 0.18 ± 0.06 0.3 ± 0.049 0.14 ± 0.06 0.14 ± 0.0384 0.18 ± 0.0385 0.14 ± 0.0436 0.2 ± 0.1781
precision 0.968 ± 0.014 0.96 ± 0.021 0.92 ± 0.035 0.974 ± 0.021 0.972 ± 0.0126 0.9684 ± 0.018 0.975 ± 0.0162 0.961 ± 0.029

recall 0.958 ± 0.018 0.945 ± 0.023 0.89 ± 0.048 0.9554 ± 0.0158 0.954 ± 0.0182 0.9348 ± 0.023 0.9553 ± 0.0154 0.9448 ± 0.0301

TABLE II: Segmentation scores, shoulder dataset

exercise metric WRIST ARM TRAPS W, A W, T A, T W, A, T

FLXSTD
(2072)

accuracy 0.9913 0.975 0.91 0.999 0.9951 0.9971 0.999
precision 0.998 0.9946 0.9621 1 0.9966 1 1

recall 0.9932 0.9802 0.9444 0.999 0.99985 0.9971 0.999

ABDSTD
(2158)

accuracy 0.9981 0.9953 0.9247 0.9981 0.9916 0.9944 0.9981
precision 0.999 0.9986 0.9534 1 0.9981 0.9972 0.9986

recall 0.999 0.9967 0.9684 0.9981 0.9935 0.9972 0.9995

ROTSTD
(1050)

accuracy 0.7228 0.6913 0.5051 0.8 0.756 0.7026 0.8086
precision 0.9079 0.743 0.648 0.894 0.8868 0.7195 0.8793

recall 0.78 0.9085 0.6961 0.8838 0.8361 0.9676 0.9095

FLXSTK
(1052)

accuracy 0.9943 1 0.8641 1 0.9641 0.9792 1
precision 0.998 1 0.9352 1 0.9912 0.99 1

recall 0.996 1 0.9192 1 0.9724 0.9885 1

ABDSTK
(1036)

accuracy 0.9846 0.998 0.9492 0.998 0.99 0.99 0.99
precision 0.9932 1 0.974 0.999 0.997 0.9951 0.9952

recall 0.9913 0.998 0.974 0.999 0.9932 0.9951 0.9952

FLXSUP
(898)

accuracy 0.9561 0.926 0.6245 0.9694 0.8974 0.948 0.9693
precision 0.9988 0.9918 0.778 0.9933 0.9939 0.9886 0.9988

recall 0.9572 0.9331 0.7587 0.9758 0.9024 0.9583 0.9704

ROTSUP
(898)

accuracy 0.9698 0.7481 0.496 0.8412 0.99 0.6851 0.9484
precision 0.999 0.9065 0.6144 1 1 0.8655 0.9556

recall 0.97 0.8107 0.72 0.8412 0.99 0.7666 0.992

TABLE III: Segmentation scores obtained from best individual sensor systems, shoulder dataset
algorithm metric FLXSTD ABDSTD ROTSTD FLXSTK ABDSTK FLXSUP ROTSUP

ZVC

sensor wrist wrist wrist wrist wrist wirst wrist
accuracy 0.9326 0.8869 0.2314 0.8713 0.8928 0.6126 0.7652
precision 0.9476 0.8958 0.2622 0.8728 0.8967 0.8153 0.9587

recall 0.9777 0.9888 0.6638 0.998 0.9951 0.7114 0.7912

HMM

sensor arm arm wrist wrist arm wrist wrist
accuracy 0.9866 0.9104 0.4573 0.9495 0.916 0.6785 0.7868
precision 0.99 0.9112 0.5688 0.9495 0.9267 0.9824 1

recall 0.9956 0.999 0.7 1 0.9874 0.6868 0.7868

ConvFSM

sensor wrist wrist wrist arm arm wrist wrist
accuracy 0.9913 0.9981 0.7228 1 0.998 0.9561 0.9698
precision 0.998 0.999 0.9079 1 1 0.9988 0.999

recall 0.9932 0.999 0.78 1 0.998 0.9572 0.97

(a) Best individual sensor systems, shoulder dataset

algorithm metric HS SKE IRQ SLR

ZVC

accuracy 0.1823 0.579 0.5908 0.5882
precision 0.1972 0.6646 0.6738 0.5906

recall 0.7072 0.818 0.8275 0.9931

HMM

accuracy 0.6534 0.742 0.345 0.4136
precision 0.6625 0.765 0.4767 0.4147

recall 0.9793 0.96 0.5553 0.994

ConvFSM

accuracy 0.9225 0.9554 0.8807 0.8798
precision 0.9321 0.9975 0.9885 0.9263

recall 0.989 0.9576 0.8892 0.946

(b) Individual sensor systems, knee dataset
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