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Reinforcement learning is a promising model-free and adaptive controller for demand side management, as part of the future smart
grid, at the district level. This paper presents the results of the algorithm that was submitted for the CityLearn Challenge, which
was hosted in early 2020 with the aim of designing and tuning a reinforcement learning agent to flatten and smooth the aggregated
curve of electrical demand of a district of diverse buildings. The proposed solution secured second place in the challenge using a
centralised ‘Soft Actor Critic’ deep reinforcement learning agent that was able to handle continuous action spaces. The controller was
able to achieve an averaged score of 0.967 on the challenge dataset comprising of different buildings and climates. This highlights the
potential application of deep reinforcement learning as a plug-and-play style controller, that is capable of handling different climates
and a heterogenous building stock, for district demand side management of buildings.
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1 INTRODUCTION

Buildings are complex systems influenced by changing weather, occupancy, schedules and in a demand response (DR)
context - grid signals. Capturing these dynamics in a physics-based simulation model capable of facilitating DR is highly
challenging. This is due to highly non-linear behaviour of the thermal-dynamics and the fact that no one building is
identical to another in the highly heterogenous building stock [3]. Reinforcement learning (RL) is a model-free algorithm
that learns from historical and real-time data and has shown promise in recent research applied to building energy
management problems [8, 9]. Given the novelty associated with RL in this domain, the behaviour of multiple energy
consuming agents (i.e., buildings), subject to demand-dependent grid signals, is an area that is not well understood [8].
The CityLearn project (https://github.com/intelligent-environments-lab/CityLearn) is an OpenAI Gym environment [1],
which aims to facilitate the implementation of RL agents in a multi-agent DR context for a diverse group of buildings
[7]. The main objective of CityLearn is to facilitate and standardize the evaluation and comparison of different RL
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agents and algorithms. The CityLearn Challenge was organised virtually and ran from January to July 2020. It invited
participants to design, develop and tune a RL agent to flatten and smooth the aggregated curve of electrical demand for
a district comprising of 9 diverse buildings. The current paper presents the results from a centralised "Soft Actor Critic"
deep RL based algorithm that was submitted to the challenge.

2 RELATEDWORK

The review of RL for DR by Vázquez-Canteli and Nagy [8] shows its promising potential as a model-free technique,
mitigating the need to develop physics-based control-oriented models, and capable of dealing with the heterogenous
nature of the building stock. The review found that most studies to date focus on single building systems with demand-
independent electricity prices. Focusing on deep RL, which has gained significant interest and traction in recent years,
e.g., using Deep Q Networks [5], such approaches have often been limited to discrete and low-dimensional action spaces
[4]. There is a research gap in the application of deep reinforcement learning to problems with continuous action spaces
in the building energy management domain.

The Soft Actor-Critic (SAC) algorithm, an off-policy maximum entropy actor-critic algorithm, as first proposed by
Haarnoja et al [2] in 2018, is one of the algorithms that is capable of operating over continuous action spaces. At their
core, actor-critic methods are a type of policy gradient method, which have separate memory structures to explicitly
represent the policy [6]. The policy structure is known as the actor and the estimated value function is known as the
critic. The actor selects the actions whereas the critic evaluates the actions made by the actor. The reader is referred to
Sutton [6] for a more detailed explanation of Actor-Critic methods. Haarnoja et al. [2] suggest that the SAC algorithm
provides for both sample-efficient learning and stability and hence extends readily to complex, high-dimensional tasks.
They found the SAC algorithm showed substantial improvement in both performance and sample efficiency over both
off-policy and on-policy prior methods. This current research investigates the suitability of the SAC algorithm for
tackling the district DSM problem utilising CityLearn.

3 METHODS

3.1 CityLearn Challenge

The CityLearn challenge used a multi-objective cost function of five equally weighted metrics applied to an entire
district of nine buildings (as outlined in Table 1). These are described below:

(1) Peak electricity demand (for the evaluation period of 1 year)
(2) Average daily electricity peak demand (daily peak demand of the district averaged over the evaluation period)
(3) Ramping (a measure of how much the district electricity consumption changes from one timestep to the next)
(4) 1 - Load factor (the average monthly electricity demand divided by its maximum peak)
(5) Net electricity consumption of the district over the evaluation period

The multi-objective cost function is normalised by a baseline cost obtained from the performance of a predefined
manually tuned Rule-Based Controller (RBC). This implied that a cost function of less than 1 resulted in a better
performance than the RBC. This RBC controller charges cooling (and domestic hot water (DHW) if available) during
the night and discharges during the day based only on the hour of the day. The adaptive potential of RL to deal with
different environments, rather than solely the one it was trained on, was tested through evaluating the controller
on different datasets. Participants used the design dataset to implement their RL agent (including design, tuning and
pre-training) and could test their agent on the evaluation dataset and receive feedback through the cost function based
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on the generalisation results of their agents. Each dataset contains year-long hourly information about the cooling and
DHW demand of the building, electricity consumed by appliances, solar power generation, as well as weather data and
other variables. The evaluation dataset featured different buildings from different cities than the design dataset, albeit
within the same climate zones (see Table 2). The challenge dataset is different from both the design and evaluation
datasets featuring different buildings and climates.

Table 1. Buildings and Descriptions in CityLearn Challenge District (Design Dataset)

Building
Number

Type Type Details Cooling
Storage1

DHW
Storage1

PV
(kW)

1 Commercial Medium Of-
fice

3 3 120

2 Commercial Fast-food
Restaurant

3 3 N/A

3 Commercial Standalone
Retail

3 N/A N/A

4 Commercial Strip Mall Re-
tail

3 N/A 40

5 Residential Medium
Multi-family

3 3 25

6 Residential Medium
Multi-family

3 3 20

7 Residential Medium
Multi-family

3 3 N/A

8 Residential Medium
Multi-family

3 3 N/A

9 Residential Medium
Multi-family

3 3 N/A

1The storage capacity is the non-dimensional scaling factor given above multiplied by the building maximum cooling or DHW demand.

Table 2. Climate Zones for the Different Datasets in the CityLearn Challenge

CityLearn Cli-
mate Zone

ASHRAE
Identifier

Description City

Design Dataset
1 2A Hot-Humid New Orleans
2 3A Warm-Humid Atlanta
3 4A Mixed-Humid Nashville
4 5A Cold-Humid Chicago

Evaluation Dataset
1 2A Hot-Humid Orlando
2 3A Warm-Humid Dallas
3 4A Mixed-Humid Kansas City
4 5A Cold-Humid Omaha

3.2 State Space and Hyperparameters

The state space is what the RL agent observes for each control step. The CityLearn environment allows for a total of 27
observations per building that may be passed to the agent. The final state design used in the submission was determined
by utilising a combination of expert assessment and trial and error and is outlined in Table 3. A centralised solution is
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presented here with one agent, which has complete oversight of all nine buildings. The SAC RL algorithm used has
several key hyperparameters and the values used in the submission are detailed in Table 4. Note that some parameters
were modified in the deployment (evaluation) phase to allow the agent to adapt to new environments (such as a new
climate), whilst also retaining the initial weights of the pre-trained agent.

Table 3. State Space used for Centralised Agent Case

State Variable Description
month month of timestep (1-12)
day day of timestep (1-7)
hour hour of the day (1-24)
t𝑜𝑢𝑡 Outside drybulb temperature (𝐶)

direct_solar_rad Direct solar radiation (𝑊 /𝑚2)

non_shiftable_load𝑛 Non-shiftable electricity load of Building 𝑛

solar_gen𝑛 Solar generation of Building𝑛 (if PV present)

cooling_storage_soc𝑛 State of charge of cooling storage of Building
𝑛

dhw_storage_soc𝑛 State of charge of DHW storage of Building
𝑛 (if present)

Table 4. Hyperparameters for Training and Evaluation

Symbol Description Training Value Evaluation Value

Replay buffer size 2𝑥106 2𝑥106
Minibatch size 1024 64

𝛾 Discount factor 0.9 0.9
𝛼 Reward temperate pa-

rameter
0.2 0.2

Update interval 168 168
Learning rate 5 × 10−4 1 × 10−4

𝜏 Target smoothing co-
efficient

3 × 10−3 3 × 10−3

Hidden layer size 256 256

3.3 Reward Function

The reward function was designed based on a virtual price signal (penalising peak consumption) together with manual
reward shaping to incentivise charging during the night and discharging during the day. The reward (R) function used
is shown in Eq. 1 where 𝛽 is a weighting coefficient (with a value of 0.005), N is the number of buildings in the district,
𝑒𝑡𝑜𝑡𝑎𝑙 is the total district electricity consumption and 𝑒𝑖 is the building 𝑖 electricity consumption. The final reward value
was also scaled and clipped to be in the range of -1 to 1.

𝑅 =

𝑁∑
𝑗=1

(𝛽 ∗ 𝑒𝑡𝑜𝑡𝑎𝑙 ∗ 𝑒𝑖 ) + 𝑅𝑛𝑖𝑔ℎ𝑡 + 𝑅𝑑𝑎𝑦 (1)
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Table 5. Evaluation Results on the Design & Challenge Dataset

Note: The values presented below are relative to the baseline predefined RBC controller which has a score of 1. The lower the score,
the better the performance of the RL agent.

Climate
Zone

Ramping 1-Load Factor Avg. Daily Peak Peak Demand Net Elec. Con-
sumption

Avg. Score

Design Dataset
1 0.735 0.881 0.849 0.986 1.014 0.893
2 0.777 1.017 0.940 1.187 1.018 0.988
3 0.810 0.983 0.985 1.077 1.019 0.975
4 0.789 0.983 0.959 1.004 1.014 0.950

Avg. Score 0.952
Challenge Dataset

1 0.779 1.014 0.982 1.131 1.015 0.984
2 0.780 0.980 0.959 0.999 1.013 0.946
3 0.812 0.960 0.939 1.083 1.018 0.962
4 0.860 0.996 0.991 1.013 1.017 0.976

Avg. Score 0.967

where:

𝑅𝑛𝑖𝑔ℎ𝑡 =


1000, if 10𝑝𝑚 ≤ ℎ𝑜𝑢𝑟 ≤ 12𝑝𝑚 AND𝑚𝑒𝑎𝑛(𝑎𝑐𝑡𝑖𝑜𝑛𝑠) > 0.1

−1000, if 10𝑝𝑚 ≤ ℎ𝑜𝑢𝑟 ≤ 12𝑝𝑚 AND𝑚𝑒𝑎𝑛(𝑎𝑐𝑡𝑖𝑜𝑛𝑠) < 0

0, otherwise

𝑅𝑑𝑎𝑦 =


−1000, if 12𝑝𝑚 ≤ ℎ𝑜𝑢𝑟 ≤ 08𝑝𝑚 AND𝑚𝑒𝑎𝑛(𝑎𝑐𝑡𝑖𝑜𝑛𝑠) > 0

0, otherwise

4 RESULTS

The centralised SAC RL Agent shows promising performance applied to the district DSM problem. Within 10 episodes
of training on the dataset for climate zone 1 (see Fig. 1), the agent realises an improved multi-objective cost function (as
defined in Section 3.1) as compared to the RBC baseline (manually predefined controller). Note that the cost function is
computed relative to the RBC baseline, i.e., a cost function of less than 1 is considered to be an improved performance
over the baseline and a cost function of greater than 1 is considered to be a poorer performance compared to the baseline.
When this pre-trained agent is evaluated (i.e., deployed) for the same climate zone, it produces an improvement of 10.7%
(a score of 0.893) over the RBC baseline (see Figure 2 for the district electricity consumption profile and Table 5 for
the scores). This table also shows the ability of the RL agent to generalise and adapt to new climatic conditions, and
although they suffered a performance drop, still managed to outperform the manually tuned RBC.

The Challenge dataset scores showed that the agent was further generalisable to unseen data (see Table 5) featuring
both different building properties and climates. Overall, an average improvement of 3.3% was seen over the manually
tuned RBC over the four different climate zones tested. Whilst these improvements are modest, they are promising
given the adaptability over a range of buildings and climates and the limited information required for the state space.

5 CONCLUSIONS AND FURTHERWORK

In this paper, a centralised ‘Soft Actor Critic’ reinforcement learning agent, capable of handling continuous action
spaces, is proposed for the district demand side management problem and the performance of the agent applied to the
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Fig. 1. Training results for Climate Zone 1 (reward and cost objectives as function of training episodes).

Fig. 2. A comparison of district electricity consumption for (i) no load shifting, (ii) predefined RBC and (iii) SAC RL.

CityLearn challenge is outlined. The agent was able to secure second place in the competition achieving an average
score of 0.967 over the challenge dataset featuring different buildings and climates when compared to the reference
manually tuned rule-based controller. This highlights the potential of deep reinforcement learning as a plug-and-play
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style controller for district level demand side management of buildings. Limitations include the manual reward shaping
applied which perhaps limits the generalisation ability of the RL agent to districts with significantly different demand
profiles. Given the centralised agent with oversight of all buildings, it is not known how the computational requirements
and performance would scale over a larger number buildings. A further limitation of CityLearn is that the cooling load
is precomputed and hence currently does not support thermal comfort considerations and utilisation of the passive
thermal mass for load shifting. Future work aims to further the robustness of the RL agent through reducing the amount
of manual reward shaping applied and testing the performance of the algorithm for different hyperparameters. The
addition of further energy systems such as batteries and electric vehicles to CityLearn will also be considered.
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