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Abstract— Sleep spindles are associated with normal brain
development, memory consolidation and infant sleep-dependent
brain plasticity and can be used by clinicians in the assessment
of brain development in infants. Sleep spindles can be detected
in EEG, however, identifying sleep spindles in EEG recordings
manually is very time-consuming and typically requires highly
trained experts. Research on the automatic detection of sleep
spindles in infant EEGs has been limited to-date. In this
study, we present a novel supervised machine learning-based
algorithm to detect sleep spindles in infant EEG recordings.
EEGs collected from 141 ex-term born infants and 6 ex-preterm
born infants, recorded at 4 months of age (adjusted), were used
to train and test the algorithm. Sleep spindles were annotated
by experienced clinical physiologists as the gold standard. The
dataset was split into training (81 ex-term), validation (30 ex-
term), and testing (30 ex-term + 6 ex-preterm) set. 15 features
were selected for input into a random forest algorithm. Sleep
spindles were detected in the ex-term infant EEG test set with
92.1% sensitivity and 95.2% specificity. For ex-preterm born
infants, the sensitivity and specificity were 80.3% and 91.8%
respectively. The proposed algorithm has the potential to assist
researchers and clinicians in the automated analysis of sleep
spindles in infant EEG.

I. INTRODUCTION

Loomis et al. [1] first described sleep spindles as rhythmic
12-14 Hz oscillations which last 0.5 to 3 second with a
waxing and waning shape [2]. In full-term infants, sleep
spindles typically can be observed at age 6-8 weeks. Several
changes in spindle parameters occur with age [3], therefore,
spindles can be used as a method to assess functional brain
development [4]. It has been proposed that spindles are
markers for the development and integrity of the central
nervous system early in life [5] and are involved in infant
sleep-dependent brain plasticity [6]. Sleep spindles are also
important for memory consolidation [7] and the number
of sleep spindles in the left frontocentral areas has been
shown to highly correlated with overnight verbal memory
retention [8]. Therefore, identification of abnormal sleep
spindle architecture may indicate an early signature of poor
neurodevelopment in infants. However, identifying sleep
spindles manually is very time-consuming and research to
date for the automatic detection of sleep spindles in infant
EEGs has been limited [9], [10].
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To the best of our knowledge, there have only been
two previous publications on the automatic detection of
sleep spindles in infant EEGs. In the first, Held et al. [9]
presented an automated system trained on three and tested
on two infants, which achieved a sensitivity of 87.7% and an
8.1% false-positive rate. This system combined two different
approaches: detection criteria on the sigma-band filtered EEG
signal, including fuzzy thresholds, and mimicking an expert’s
procedure for infants. The second approach, developed by
Estevez et al. [10] used a Merge Neural Gas (MNG) al-
gorithm and was trained on a single infant, and tested on
another achieving 62.9% sensitivity.

Machine Learning based algorithms can review large vol-
umes of data and discover specific trends and patterns that
may not be apparent to humans. In this study, we developed a
random forest based machine learning model to detect sleep
spindles in the EEGs of 141 ex-term born and 6 ex-preterm
born infants recorded at four month of age. This is the largest
dataset of its kind that we are aware of.

II. MATERIALS AND METHODS

A. Subjects

Ethical approval was granted from the Clinical Research
Ethics Committee of the Cork Teaching Hospitals, Cork,
Ireland and consent from parents or guardians of the infants
included in the study was obtained. A cohort of healthy
full-term infants (n=141) were recruited soon after birth
at Cork University Maternity Hospital (CUMH). EEG data
were recorded from sleeping infants at four months. Six ex-
preterm infants who were born at 32-36+6 weeks gestational
age (GA) and had an EEG recorded at four months adjusted
age were also included.

B. Data analysis

EEG (Lifelines, UK) was recorded with a sampling fre-
quency of 500 Hz. Sleep spindles of ex-term infants were
annotated by an experienced clinical physiologist on channel
F4-C4 (R-Spindle), and sleep spindles of ex-preterm infants
were annotated by an experienced research nurse on channel
F4-C4, as the gold standard. Figure 1 shows the pattern
of EEG signal in channel F4-C4 and Figure 2 shows the
frequency spectrum of a sleep spindle and non-sleep spindle
event. The number and duration of the sleep spindles in the
EEGs used in this study are presented in Table I.



Fig. 1. EEG signal in channel F4-C4 (the signal in shaded block indicates
the presence of of sleep spindle event).

(a) Sleep spindle (b) Non-sleep spindle

Fig. 2. (a) Frequency spectrum of 3 seconds ex-term infant’s EEG recording
during a sleep spindle event (b) Regular EEG frequency spectrum from the
same infant (3 seconds).

TABLE I
NUMBER AND DURATION OF SLEEP SPINDLES (R-SPINDLE) ANNOTATED

BY EXPERIENCED CLINICAL PHYSIOLOGISTS

Ex-term Ex-premature
Number of Infants 141 6
Average number of sleep spindles per infant 159 137
Total number of sleep spindles 22,477 823
Total duration of sleep spindles (s) 67,997 2,901
Total duration of non-sleep spindles (s) 509,535 20,357

C. Data Pre-processing

A 50 Hz notch filter was applied to remove power line
interference from the EEG recordings and the DC offset
was removed from each channel. The pre-processed channel
F4-C4 EEG (R-Spindle) was segmented into epochs of 0.5s
length with 0.25s overlap and used to estimate all features.
The length of 0.5 seconds was chosen as this is the minimum
required length of a sleep spindle [2].

D. Features Extraction

Time and frequency domain features were estimated. 6th
order Butterworth filters (IIR) were used to filter the signals
within the frequency bands of interest, which can reduce the
interference of other waves: alpha (8–12 Hz), sigma (12.5-
15 Hz) and spindle (10.5-16 Hz). 0.5 seconds epochs was
used to develop all these 15 features, these features are as
follows:

Standard features (4): The standard deviation of raw
EEG absolute amplitudes (without removing DC offset)
and mean and root mean squared of pre-processed absolute
amplitude, were calculated in the time domain. The mean
frequency of each epoch was calculated in the frequency
domain. These features were selected to provide time- and
frequency-based changes in EEG activity.

Features in sub-frequency bands (11): Sigma index,
alpha band ratio and spindle band ratio were calculated based
on prior work done by Patti et al. [11]. In addition, the

following features were also selected to provide information
in the sub-frequency bands: mean absolute amplitudes and
Hilbert mean envelope amplitude in sigma band; mean
absolute amplitudes and Hilbert mean envelope amplitude
in spindle band; relative and absolute band power in sigma
band; and relative and absolute band power in spindle band.

E. Dataset balancing
The duration of the spindle periods in the dataset was

shorter than the duration of non-spindle periods resulting in
a class imbalance problem that can make training a machine
learning algorithm challenging. Therefore, Synthetic Minor-
ity Over-sampling Technique (SMOTE) [12] was used to bal-
ance the data. SMOTE is a method of oversampling, in which
the minority class is oversampled by creating ‘composite’
examples [12]. Composite examples are generated in a less
application-specific manner by operating in the feature space.
The minority classes are over-sampled, and a comprehensive
example is introduced by taking samples of each minority
class and following the line of segments connecting the
nearest neighbour of any k minority classes. The neighbour
from the k nearest neighbour is randomly selected according
to the required excessive sampling quantity. In this work, we
use five nearest neighbours with the random state of 2.

F. Classification algorithms
Several classification algorithms were tested for spindle

detection during this study, including neural networks and
support vector machine techniques [11], [13], [14]. Although
these methods have achieved success in many classification
problems the random forest classifier had the best perfor-
mance in this study. The random forest was implemented
using the ‘RandomForest’ package of the sklearn library
[15] within the Python 3 environment. 81 ex-term infants
were used for training and 30 ex-term infants for validation,
and the other 30 ex-term infants were used for independent
testing of the model. Three parameters were optimized: the
number of decision trees grown based on a bootstrap sample
of the observations (n-estimators); the minimum number of
samples required to split an internal node (min-samples-
split); and the minimum number of samples required to
be at a leaf node (min-samples-leaf). These parameters (n-
estimators, min-samples-split, and min-samples-leaf) were
optimized based on the performance of the validation set, to
improve the performance of the algorithm for the detection
of spindles in the EEG recordings. The n-estimators values
were tested from 10 to 200, min-samples-split were tested
from 2 to 150 and min-samples-leaf were tested from 2 to
20. The best performance on the validation set was achieved
when n-estimators = 100, min-samples-split = 120, and min-
samples-leaf = 20. In addition, the sleep spindles detected by
the random forest algorithm with the duration greater than
0.5s were extended from the start time of the first component
to the end time of the last component.

G. Performance evaluation
Automatic spindle detection is a binary classification task

and we used the following metrics to evaluate the perfor-



mance of our model: specificity (Spec), sensitivity (Sens),
Matthews correlation coefficient (MCC) and accuracy (Acc).

Sens =
TP

TP + FN

Spec =
TN

TN + FP

TPR =
TP

TP + FN

FPR =
FP

FP + TN

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Acc =
TP + TN

TP + TN + FP + FN
(1)

where:
• True Positives (TP): the number of sleep spindles pre-

dicted as sleep spindles
• False Positives (FP): the number of non-sleep spindles

predicted as sleep spindles
• True Negatives (TN): the number of non-sleep spindles

predicted as non-sleep spindles
• False Negatives (FN): the number of sleep spindles

predicted as non-sleep spindles.
The area under the receiver operating characteristics curve

(AUROC) was calculated by plotting the TPR against the
FPR while increasing the discrimination threshold from 0
to 1. The AUROC is equivalent to the probability that the
model will rank a randomly chosen positive instance. MCC
measures the correlation coefficient between the observed
and predicted classifications. A value of 1 represents a
perfect prediction, 0 a random prediction and -1 an inverse
prediction and is a good indicator of the overall performance
of the predictive methods in both sleep spindle and non-sleep
spindle classes.

III. RESULTS

A. AUROC Curve

The default threshold of the random forest algorithm is
0.50. However, the original data set contains a large number
of non-spindle periods compared with the spindle events,
so the algorithm tended to be biased towards predicting
new data as “non-spindle”. Therefore, the threshold was
adjusted based on the AUROC curve in order to improve
the sensitivity of the algorithm, as sensitivity is particularly
essential for identifying all sleep spindle. In this study, setting
the threshold of the random forest algorithm to 0.45 gave
the best performance. Table II show the performance on the
validation data set of the original random forest algorithm
trained with a 0.50 threshold compared to the random forest
algorithm trained with a 0.45 threshold.

B. Performance on Infant EEG

Table III shows the performance of the random forest
algorithm on the training set, validation set and test set on

TABLE II
COMPARISON BETWEEN THE ORIGINAL THRESHOLD (THRESHOLD =
0.50) AND THE ADJUSTED THRESHOLD (THRESHOLD = 0.45) OF THE

RANDOM FOREST ALGORITHM ON THE VALIDATION SET.

Threshold Sens (%) Spec (%) Acc (%) MCC
0.50 91.4 95.7 95.3 0.780
0.45 92.4 94.9 94.7 0.761

ex-term infant EEG recordings and the 6 ex-preterm infant
test set EEGs.

TABLE III
PERFORMANCE OF THE RANDOM FOREST ALGORITHM ON THE TRAIN,

VALIDATION, TEST SET AND EX-PRETERM BORN INFANTS.

Sens (%) Spec (%) Acc (%) MCC
Train (N=81) 94.1 94.9 94.5 0.891
Val (N=30) 92.4 94.9 94.7 0.761
Test (N=30) 92.1 95.2 94.8 0.788
Ex-preterm (N=6) 80.3 91.8 90.4 0.632

C. Benchmarking

Research to-date for the automatic detection of sleep
spindles on infants has been limited. However, several other
studies have applied various algorithms to detect sleep spin-
dles automatically in adults. Compared with previous work
(Table IV), the models developed here used a larger number
of infants and demonstrated higher sensitivity (92.1%).

TABLE IV
COMPARED WITH SLEEP SPINDLES DETECTION APPROACHES DONE

PREVIOUSLY (S: TRAINING AND TESTING SET ARE THE SAME)

Ref Subjects Total No Test No Sens(%) Spec(%)
[10] Infants 2 1 62.9 -
[9] Infants 5 2 87.7 -
[16] Children 56 19 88.2 89.7
[17] Adults 6 2 79.0 -
[13] Adults - - 95.4 -
[18] Adult 1 S 83.4 92.9
[19] Adults 6 - 76.9 90.0
[20] Adults 9 S 81.2 81.2
[21] Adults 12 S 70.0 98.6
[22] Adults 12 - 92.9 -
[23] Adults 10 S 98.96 88.49
[24] Adults 6 S 70.2 98.62
[25] Adults 19 S 84 90
[25] Adults 8 S 76 92
[11] Adults 15 12 71.2 96.73
[26] Adults 20 S 65.1-74.1 -
[27] Adults 110 - 68 -
This Infants 141 30 92.1 95.2
work Ex-preterm 6 6 80.3 91.8

IV. DISCUSSION

We have developed a new random forest based method to
detect sleep spindles in infant EEG. Fifteen EEG features
from 81 EEG signals were used to train the model. As the
quantity of spindle events is greater than the non-spindle
events SMOTE was used to balance the training set. A



validation set of 30 EEGs was used to adjust the parameters
of the random forest algorithm. The results on the test set
(N=30) show high specificity and sensitivity, 95.2% and
92.1%, respectively. The model was also tested on six ex-
preterm born infants, which were not used in training (91.8%
specificity and 80.3% sensitivity) showing that the model can
generalise to ex-preterm born infants. MCC was used as an
additional evaluation metric due to the imbalanced nature of
the dataset. MCC takes into account true and false positives,
and negatives are generally considered a balancing measure
that can be used even if the classes are of very different sizes.
The test set yielded an MCC of 0.788 on the ex-term and
0.632 on the ex-preterm infant EEGs demonstrating that the
model performs well at identifying both the negative (non-
spindle) and the positive (spindle) events.

A limitation of the current study is the range of ages of
the infants. Our algorithm was trained on four-month old ex-
term infant EEGs and tested on four-month old ex-term and
ex-preterm infants. Therefore, we did not test the algorithm
on infants of other ages, and it is not clear how accurate this
algorithm is in detecting sleep spindles in younger or older
infants. In future work, we would like to see if this algorithm
works well on EEGs for other age groups of infants.

In this study, we describe a novel supervised machine
learning-based algorithm to detect spindles in infant EEG
recordings. The model can generalise well on infant EEG, in-
cluding ex-preterm born infants not used in the development
of the algorithm. In addition, the duration of spindles can be
accurately detected. This will allow for faster, more reliable,
and more reproducible detection of infant sleep spindles in
long-duration, single-channel EEG recordings.
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