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Abstract

Motivation: The subcellular location of a protein can provide useful information for protein function
prediction and drug design. Experimentally determining the subcellular location of a protein is an expensive
and time-consuming task. Therefore, various computer-based tools have been developed, mostly using
machine learning algorithms, to predict the subcellular location of proteins.
Results: Here, we present a neural network based algorithm for protein subcellular location prediction.
We introduce SCLpred-EMS a subcellular localization predictor powered by an ensemble of Deep N-to-
1 Convolutional Neural Networks. SCLpred-EMS predicts the subcellular location of a protein into two
classes, the endomembrane system and secretory pathway versus all others, with an MCC of 0.75-0.86
outperforming the other state-of-the-art web servers we tested.
Availability: SCLpred-EMS is freely available for academic users at http://distilldeep.ucd.ie/SCLpred2/
Contact: catherine.mooney@ucd.ie
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The subcellular location of proteins is considered crucial information for
biological and medical research (Schwikowski et al., 2000; Rajendran
et al., 2010; Kawai et al., 1992). This biological and medical significance
of protein subcellular location is due to the fact that protein location
affects or determines protein interactions, accessibility to drug molecules,
the potential for vaccines and countless other applications. Even though
experimental protein subcellular location determination has significantly
progressed in the last two decades, experimental methods are still
expensive and time-consuming. As an alternative to experimental methods,

in recent decades, computational prediction of protein subcellular location
has been particularly active (Pierleoni et al., 2006, 2011a,b; Yu et al., 2014;
Savojardo et al., 2015, 2018).

The availability of accurately annotated large protein subcellular
location databases such as UniProt (UniProt Consortium, 2019) makes
this an attractive problem for machine learning algorithms. In the past
fifteen years, most of the predictors of protein subcellular localization
have been based on machine learning algorithms, from support vector
machines (SVM) (Yu et al., 2006) to Deep Neural Networks (Armenteros
et al., 2017). Even though many protein subcellular location prediction
systems were introduced in the recent past, we found that the performance
of these systems deteriorates considerably when an increasing level of
homology reduction is introduced into their testing sets. This suggests that
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the machine learning models predicting subcellular localization require
stricter homology reduction to genuinely learn how to generalise.

2 Approach
Here we introduce SCLpred-EMS, an ab-inito protein subcellular location
predictor powered by an ensemble of Deep N-to-1 Convolutional Neural
Networks. The system was trained on a recent UniProt Knowledgebase
(UniProtKB/Swiss-Prot) release 2019_06 (UniProt Consortium, 2019)
and the results were measured in five-fold cross-validation. SCLpred-
EMS predicts eukaryotic proteins into two classes, the endomembrane
system and secretory pathway (EMS) versus all others, from the amino
acid sequence. We employed a novel homology reduction protocol for
stricter homology reduction and used an in lab encoding scheme (Kaleel
et al., 2019) that has led to significant performance improvements in
similar predictive tasks. We comprehensively benchmarked SCLpred-
EMS against other freely available state-of-the-art web servers published
in the last five years and compatible for recasting the predicted classes into
EMS versus others. We used a strict independent test set of 216 sequences
and a less strict independent test set of 593 proteins for benchmarking.
We show that SCLpred-EMS compares favourably with other state-
of-the-art predictors on these sets. All of the predictors benchmarked
use some form of machine learning in the core of the prediction
algorithm. The benchmarked predictors and their prediction algorithms
are: DeepLoc (Armenteros et al., 2017) which uses a combination
of convolutional neural networks (CNN), bidirectional long short term
memory (LSTM), attention mechanism and hierarchical tree sorting
pathways; LocTree3 (Goldberg et al., 2014) which employs SVM and
homology; and SCL-Epred (Mooney et al., 2013) which employs an N-to-1
neural network.

3 Methods

3.1 Datasets

All eukaryotic entries were downloaded from the UniProt Knowledgebase
(UniProtKB/Swiss-Prot) release 2019_06 (UniProt Consortium, 2019)
– 189,818 proteins from 7,859 species. Approximately half of these
proteins came from three species: Homo sapiens (Human), Mus musculus
(Mouse) and Arabidopsis thaliana (Mouse-ear cress). 154,743 of these
proteins were labelled with a subcellular location; we removed any proteins
that were not supported by published experimental evidence (ECO code
ECO:0000269), leaving 28,430 proteins. This set was split into two
groups: the endomembrane system and secretory pathway; and “other”
as shown in Figure 1. 3,531 proteins that had annotations which could not
unambiguously be assigned to either EMS or “other” were removed. For
example, proteins labelled as “Nuclear Envelope” could arguably be either
EMS or “other”, proteins that did not have subcellular location information
other than “single-pass” or “multi-pass membrane”, or proteins with
subcellular location information for both EMS and “other” locations.
Finally, 10,223 sequences remained in the EMS class and 14,676 in the
“other” class.

This set of proteins was further reduced by removing any protein
that was less than 30 amino acids or greater than 10,000 amino acids in
length. The resulting set was then internally redundancy reduced, removing
sequences so that no two sequences were more than 80% similar to each
other leaving 20,722 sequences. A subset of sequences that were added
to UniprotKB after 2016 was set aside in the 80% Independent Test Set
(ITS-80). The remaining 19,579 sequences after removal of the ITS-80
became the Train-80 and were divided into five parts. These five parts
were used to form five folds that are used for five-fold cross-validation.

Fig. 1: Mapping of localization classes into EMS and other.

For each of the five-fold subdivisions, one of the five parts was assigned as
the test set, a second part was assigned as validation set and the remaining
three parts were combined to create the training set. The rest of the folds
were formed by repeating the same procedure (See Figure 2). Table 1
shows the number of proteins in each fold. In the resulting folds, the
validation set was redundancy reduced with respect to the test set using
BLAST (Altschul et al., 1997) with an e-value of 0.001. Then the test and
validation sets were internally redundancy reduced using BLAST with an
e-value of 0.001. Finally, the test set and validation sets were redundancy
reduced with respect to their corresponding training set using BLAST with
an e-value of 0.001.

Fig. 2: Figure showing the redundancy reduction process. (RR:
Redundancy Reduction; WRT: With Respect To.)

Two subsets of ITS-80 were used to benchmark other available web
servers. The ITS-80 set was internally redundancy reduced and redundancy
reduced to less than 30% sequence identity with respect to Train-80 leaving
593 sequences. We call the resulting set the ITS. We then created a second
“strict” set by internally redundancy reducing the ITS-80 set using BLAST
with an e-value of 0.001, and then redundancy reducing it with respect to
Train-80 using BLAST with an e-value of 0.001, leaving 216 sequences.
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Train Test Validation Total EMS EMS % of total

Fold 0 11,534 812 655 13,001 4,661 36%
Fold 1 11,540 842 607 12,989 4,662 36%
Fold 2 11,530 831 638 12,999 4,643 36%
Fold 3 11,542 853 631 13,026 4,674 36%
Fold 4 11,535 823 629 12,987 4,660 36%

Table 1. Table showing the number of protein sequences in each fold, the number
and the percentage of sequences in the EMS (positive) class.

Sequences EMS EMS % of total

ITS 593 236 40%
ITS_strict 216 110 51%

Table 2. Table showing the number of protein sequences in the ITS and
ITS_strict datasets the number and the percentage of sequences in the EMS
(positive) class.

We call this set ITS_strict. Table 2 shows the number of proteins belonging
to each class in ITS and ITS_strict.

This rather complex strategy of redundancy reduction ensures that there
is minimal similarity between the sequences in the test and validation
set with respect to each other and to the training set (e-value ≤ 0.001).
However, it allows for a larger training set with sequences with up to
80% sequence identity within the training dataset. Furthermore, the two
independent test set have been redundancy reduced with respect to the
training set to ≤ 30% sequence identity or e-value ≤ 0.001 ensuring that
these two set are indeed independent of the training set. Although, reducing
redundancy on the entire set of proteins at the beginning of the procedure
would be more straight forward this would have resulted in a much smaller
training set.

3.2 Alignments and data encoding

We generated alignments of multiple homologous sequences (MSA) for all
datasets used in SCLpred-EMS by iterating PSI-BLAST (Altschul et al.,
1997) for three rounds with an e-value of 0.001 against the June 2016
version of UniRef90 (UniProt Consortium, 2019). These alignments are
encoded into MSA profiles by calculating frequencies of residues and gaps.
The frequencies of the amino acid present in the original sequence were
then “clipped" to 1, similarly to (Kaleel et al., 2019; Torrisi et al., 2019)
where each amino acid is represented by a vector of 22 number frequencies
of an amino acid type from the list of homologous sequences.

3.3 Predictive architecture

In this work, we tested configurations of Deep Convolutional N-to-1 neural
networks of various depths and width during preliminary experiments.
Deep Convolutional N-to-1 Neural Network are composed of an input
kernel mapping a window of amino acids into a feature vector followed
by a stack of hidden convolutional kernels followed by an average pooling
unit over the whole sequence, and a final fully connected network (Figure
3). The input kernel learns a non-linear function I from a window of
amino acids îci at position i and predicts an intermediate state vector îsi
at position i.

îsi = I(îci)

îci = (i− c, ..., i, ..., i+ c)

Input convolution

N * hidden convolution

Fullly conected network

Output class

Pooling

Hidden Layer

Feature Vector

Feature Vector

Convolutional Kernel

Feature Vector

Convolutional Kernel

Output Layer

i i + 1 ..... i + contexti + 2i - context i - 1i - 2....

Fig. 3: Deep N-to-1 Convolutional architecture.

Each hidden convolutional kernel learns a non-linear function Hk at
hidden layer k from a window of intermediate states ĥc

k
j at position j

and predicts an intermediate state vector hski at position i.

hski = Hk(ĥc
k
j )

ĥc
k
j = (j − γ, ..., j, ..., j + γ)

The output vectors hslp of the last hidden kernel at each position p are
averaged element wise into a single vector v̂. A fully connected network
predicts the final subcellular location cls of each protein from the final
vector v̂. The fully connected network learns a non-linear function O.

cls = O(v̂)



i
i

“output” — 2021/1/16 — 11:59 — page 4 — #4 i
i

i
i

i
i

4 Kaleel et al.

Predictor EMS Other

DeepLoc-1.0 Extracellular Nuclear
(Armenteros et al., 2017) Golgi apparatus Cytoplasm

Cell membrane Mitochondrial
Lysosome/Vacuole Plastids
Endoplasmic reticulum Peroxisome

LocTree3 Secreted Mitochondrion
(Goldberg et al., 2014) Plasma membrane Nucleus

Endoplasmic reticulum Chloroplast
Golgi apparatus Cytoplasm

SCL-Epred Secretory Other
(Mooney et al., 2013) Membrane

Table 3. Classes predicted by other available web servers re-classified as
EMS/Other.

It should be noted that in our implementation, unlike standard
Convolutional Neural Networks, all convolutional kernels and the final
fully connected network are implemented by feed-forward neural networks
with one hidden layer. That is, each convolutional kernel has two layers,
and can be seen as a proper (1-layered) kernel followed by a non-linearity,
followed by a further kernel of size 1 and a further non-linearity. In all cases
we use sigmoidal non-linearities on the model’s internal units, rather than
rectified linear units. We found both the use of deeper convolutional stages
and sigmoidal units to be beneficial in preliminary tests. The resulting
architecture has a minimum of three internal (hidden) layers when no
hidden-to-hidden convolutional kernel is present, while an architecture
with k hidden-to-hidden kernels contains 3 + k hidden layers in total.

3.4 Training and ensembling

The models trained are stacks of two 2-layered convolutional layers
followed by average pooling and a 2-layered fully connected network,
with five inner layers in total containing roughly 2,000 weights and taking
in all motifs of 21 residues. In preliminary testing, we observed a marked
increase in performances for an increase in motif size up to 21, followed
by a gentle degradation thereafter. We also observed modest performance
improvements when increasing the depth of the stack up to five-seven
inner layers, provided the total number of weights was kept approximately
constant, and a slow degradation for deeper stacks. The models are trained
in five-fold cross-validation. For each fold, the five models with the highest
Matthews correlation coefficient (MCC) for the validation set were used in
the final system. The five-fold cross-validation performance was assessed
using the MCC for the test set for each fold. The final system tested on the
ITS and ITS_strict sets is the ensemble of all 25 models selected from the
five cross-validation folds.

3.4.1 Comparison to other predictors
We used the ITS and ITS_strict sets to benchmark SCLpred-EMS against
other available subcellular localization predictors. Servers that were
published in the last five years and are compatible with SCLpred-EMS class
classification were benchmarked against SCLpred-EMS (see Figure 1).
The predicted classes of the benchmarking servers were re-cast into EMS
versus other as necessary (see Table 3). All the benchmarked predictors
were run through their web-server interfaces.

3.4.2 Evaluating performance
To evaluate the performance of SCLpred-EMS against other state-of-the-
art predictors we measure specificity (Spec), sensitivity (Sens), the false
positive rate (FPR) and Matthews correlation coefficient (MCC) (Baldi

Fig. 4: ROC curve of SCLpred-EMS predictor performance (a) in five-fold
cross-validation; (b) on the ITS; and (c) on the ITS_strict.

et al., 2000) as follows:

Spec = 100 ∗
TP

TP + FP

Sens = 100 ∗
TP

TP + FN

FPR = 100 ∗
FP

FP + TN

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where:

• True positives (TP): the number of sequences predicted to be EMS that
are observed in that class.

• False positives (FP): the number of sequences predicted to be EMS
that are not observed in that class.

• True negatives (TN): the number of sequences predicted to be “other”
that are not observed in that class.

• False negatives (FN): the number of sequences predicted to be “other”
that are observed in that class.

4 Results
For every protein, SCLpred-EMS predicts the probability (between 0 and
1) of that protein localising in the endomembrane system and the secretory
pathway. The closer the predicted probability is to 1, the more confident
SCLpred-EMS is in that prediction.

Initially, an extensive hyper-parameter search was run using the first
fold of the dataset to find the optimal model (model selection). The hyper
parameters were tuned based on the performance on the validation dataset.
The final model contains an input kernel, a hidden kernel, an average
pooling unit and, a fully connected network. The input kernel reads one
amino acid at a time and compresses it into a 10 element vector. The hidden
kernel reads a window of 31 of these compressed vectors (31 amino acids)
and maps it into 10 element vectors. The average pooling unit compresses
those 10 element vectors into a single vector with 10 elements for the
whole protein sequence. Finally, the fully connected network reads the
vector generated by the pooling unit and predicts the final results.

The five-fold cross-validation results for the training dataset, are shown
in Table 4 and in Figure 4 as a Receiver Operating Characteristic (ROC)
curve. The ROC curve is built by increasing between 0 and 1 the cut-
off above which a protein is considered to be predicted as localising into
the endomembrane system and the secretory pathway. The area under the
curve (AUC) for the ITS is 0.91 while the AUC for the ITS_strict is 0.95.

4.1 Benchmarking results

We benchmarked SCLpred-EMS against DeepLoc-1.0 (Armenteros et al.,
2017), LocTree3 (Goldberg et al., 2014) and SCL-Epred (Mooney
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MCC Spec Sen FPR

5F-CV 0.75 88.96 77.55 4.84%
ITS 0.82 96.00 81.36 2.24%
ITS_strict 0.86 97.03 89.09 2.83%

Table 4. Performance of SCLpred-EMS in Five-fold cross-validation (5F-CV)
and on the independent test set (ITS) and strict independent test set (ITS_strict).

ITS

MCC Spec Sen FPR
SCLpred-EMS 0.82 96.00 81.36 2.24
DeepLoc 0.80 93.66 81.36 3.64
SCL-Epred 0.75 91.05 77.54 5.04
LocTree3 0.67 83.49 75.00 9.80

ITS_strict

MCC Spec Sen FPR
SCLpred-EMS 0.86 97.03 89.09 2.83
DeepLoc 0.84 96.00 87.27 3.77
SCL-Epred 0.78 93.81 82.73 5.66
LocTree3 0.65 88.17 74.55 10.38

Table 5. Performance comparison of predictors on the ITS and ITS_strict.
Performance was evaluated with Matthews correlation coefficient (MCC),
specificity (Spec), sensitivity (Sens) and the false positive rate (FRP). Note:
We benchmarked against the accurate version of DeepLoc as opposed to the
faster version. LocTree3 did not predict subcellular locations for 11 proteins in
the ITS dataset.

et al., 2013). Ideally we would have benchmarked SCLpred-EMS against
DeepSig (Savojardo et al., 2017) and SignalP 5.0 (Armenteros et al., 2019)
but, unfortunately, this is not possible. As not all transmembrane proteins
actually have signal peptides they will potentially be predicted as “Other”
by SignalP 5, but labelled as EMS in our dataset. Although DeepSig
has a “transmembrane” output DeepSig only checks for transmembrane
segments in the N-termini of the proteins. Again, proteins that lack signal
peptides but have transmembrane segments in other parts of the sequence
will be predicted as “Other” by DeepSig.

DeepLoc is trained on 13,858 protein sequences from the UniProt
database, release 2016_04. LocTree3 is an improved version of
LocTree2 (Goldberg et al., 2012) that was developed on 2,240 sequences
extracted from SWISS-PROT release 2011_04. LocTree3 uses a
redundancy reduced dataset from LocTree2 and tested with an additional
three UniprotKB datasets releases between 2011_04 and 2014. SCL-Epred
used Swiss-Prot Release 2011_02 to train and test the system.

The predicted locations of these servers are recast into EMS versus
all others for benchmarking purposes. Table 3 shows the class division
for recasting multi-location web servers into two classes. In these tests
SCLpred-EMS outperforms all other predictors tested on both the ITS and
ITS_strict sets with an MCC of 0.82 and 0.86, respectively (Table 5). While
we observe generally higher MCC on the stricter dataset, this is likely due
to the strict dataset being more balanced.

5 Web-Server
SCLpred-EMS has been implemented as a publicly available web server.
The user can submit a list of protein sequences in FASTA format, and
SCLpred-EMS predicts the probability that each of these proteins will
localise in the endomembrane system and secretory pathway versus

all other locations. “Confidence” shows the level of confidence in the
prediction. SCLpred-EMS accepts multiple queries at the same time,
processes the queries in the background and sends the results to the user
via an optional email address if provided. A submission query of up to 64
kbytes can be sent per submission, which is approximately 200 average
sized proteins. Larger queries can be broken down into 64 kbyte chunks,
or a request can be sent to lift the limit on a one-off basis. A submission
query may contain spaces, newlines and tabs as they will be ignored by the
system. Only 1 letter amino acid code format is understood and characters
not corresponding to any amino acid will be treated as "X". Unlike some
other web servers, the results are sent in the order that they were submitted
via an optional email rather than a web-link which expires after some time.
SCLpred-EMS responses are sent in text format and the results of multiple
sequences are sent in a single email/web page. The web server version of
the results is updated incrementally (every 60 seconds) until the query is
complete.

6 Discussion
Recent advancements in protein subcellular localization prediction
research have helped to shed light on protein interactions and subcellular
location. Even though many protein subcellular localization predictors
were introduced in the past fifteen years, protein subcellular location
prediction still remains an unsolved problem due to the expensive and
time consuming nature of experimental methods and the lack of universally
reliable computational predictors.

In this work, we have introduced a new comprehensive dataset for
training, testing and validation and two independent test sets. We have used
a combination of pure sequence identity and BLAST e-values for stricter
homology reduction. We have built a new predictor, SCLpred-EMS, based
on deep Convolutional N-to-1 neural networks. This architecture has the
ability to represent relatively lengthy sequence motifs while keeping the
overall number of internal parameters small thereby minimising the risk
of overfitting the data.

We developed and benchmarked SCLpred-EMS against other
predictors published in the last five years. SCLpred-EMS outperforms
the benchmarked predictors on both the ITS and the ITS_strict
sets with an MCC of 0.82 and 0.86 respectively. SCLpred-EMS is
freely available for academic users with a user-friendly web-interface
(http://distilldeep.ucd.ie/SCLpred2). Multiple queries can be submitted to
the predictor in fasta format. The datasets used in training and testing are
available here: http://distilldeep.ucd.ie/SCLpred2/data/.

Even though Deep N-to-1 Convolutional neural networks perform well,
convolutional neural networks do not learn the full sequential information
from a protein, which is critical in the prediction of many biological
sequence properties. In future work, as datasets grow ever larger and
this becomes feasible, we anticipate that improvements in subcellular
localisation prediction may arise from using combinations of recurrent
neural network stages alongside convolutional layers similarly to Kaleel
et al. (2019).
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