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Abstract

Environmental monitoring has become an active research area due to the current rise in the global climate change crises. Current
environmental monitoring solutions, however, are characterized by high cost of acquisition and complexity of installation; often requiring
extensive resources, infrastructure and expertise. It is infeasible to achieve with these solutions, high density in-situ networks such as are
required to build refined scale models to facilitate robust monitoring, thus, leaving large gaps within the collected dataset. Low-Cost Sensors
(LCS) can offer high-resolution spatiotemporal measurements which could be used to supplement existing dataset from current environmental
monitoring solutions. LCS however, require frequent calibration in order to provide accurate and reliable data as they are often affected
by environmental conditions when deployed on the field. Calibrating LCS can help to improve their data quality and ensure they are
collecting accurate data. Achieving effective calibration, however, requires identifying factors that affect sensor’s data quality for a given
measurement. This study evaluates the performance of three Feature Selection (FS) algorithms including Forward Feature Selection (FFS),
Backward Elimination (BE) and Exhaustive Feature Selection (EFS) in identifying factors that affect data quality of low-cost IoT sensors in
environmental monitoring networks. Applying the concept of data fusion, sensors data were merged with environmental factors and integrated
into a single calibration equation to calibrate cairclipO3/NO2 and cairclipNO2 sensors using Linear Regression (LR) and Artificial Neural
Networks (ANN). The study showed the effectiveness of calibration in improving low-cost IoT sensor data quality and also demonstrated the
convenience of feature selection and the ability of data fusion to provide more consistent, accurate and reliable information for calibration
models. The analysis showed that the cairclipO3/NO2 sensor provided measurements that have good correlation with reference measurements
whereas the cairclipNO2 sensor showed no reasonable correlation with the reference data. Calibrating the cairclipO3/NO2 yielded good
improvement in its measurement outputs when compared to reference measurements (R2=0.83). However, calibrating the cairclipNO2 sensor
data yielded no significant improvement in its data quality.
c⃝ 2020 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Advances in sensor networks and Internet of Things (IoT)
technologies have created new epoch in environmental moni-
toring [1,2], facilitating the collection of high-resolution spa-
tiotemporal dataset and filling the gaps that existed within
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application of LCS in environmental monitoring, however, has
raised several concerns especially pertaining to their accuracy,
reliability, in-field applicability and performance. LCS are less
precise and less sensitive to compound or variables of interest
as their response is largely influenced by cross-sensitivities in
the case of gas sensors, particle properties as with particulate
matter sensors or environmental factors in both cases [6],
amounting to trade-offs when being used to replace or to
supplement existing monitoring solutions.
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Calibrating LCS can help to improve their data quality
and field performance and ensure they are collecting accurate
values [7]. Manufacturers of IoT sensors often calibrate the
sensors before releasing them to the market, the calibration,
however, is usually done under controlled laboratory condi-
tions which does not represent the exact conditions faced by
the sensors when deployed on the field. Hence, sensors may
continue to report inaccurate values on the field even after
being calibrated in the laboratory. Automatic/In-field sensor
calibration has been suggested as a means to reduce these chal-
lenges [8]. Machine Learning (ML) techniques can be used to
calibrate LCS on the field based on influencing environmental
factors [9–11]. To effectively accomplish this, it is essential to

• determine the factors that affect data quality for the given
sensor measurements

• Model the effects of these factors on sensor’s response
and

• Apply the model to correct sensor output errors

In this paper, we examine the performance of three feature
selection algorithms for the selection of best subset of features
suitable for building accurate calibration models for LCS in
an environmental monitoring network . We apply statistical
data fusion technique to merge and integrate selected features
into calibration models using Linear Regression and Neural
Network techniques. The developed models were then em-
ployed to calibrate cairclipO3/NO2 and cairclipNO2 sensors
and the performance of each of the model for this purpose was
compared against the rest. Although, the models were designed
for calibrating LCS in environmental monitoring networks, the
tools and techniques, can be applied to calibrate sensors used
in other domains. The contributions of this paper include to:

(i) compare the performance of Forward Feature Selection
(FFS), Backward Elimination (BE) and Exhaustive Fea-
ture Selection (EFS) methods in determining the factors
that affect IoT sensor data quality in environmental
monitoring networks.

(ii) develop a process based on error modelling and sen-
sor data fusion for in-field calibration of low-cost IoT
sensors.

(iii) present reliable technique for error correction and data
quality improvement of LCS in environmental monitor-
ing systems.

The remaining parts of this paper are structured as follows,
Section 2 details the current state of the art in IoT-based en-
vironmental monitoring. Section 3 presents the motivation for
this work and Section 4 describes the dataset used in this study.
Section 5 deals with error modelling for sensor calibration,
outlining the techniques for feature selection, data fusion and
data quality improvement in LCS. Results and performance
evaluation are presented in Section 6 and Section 7 has the
conclusion.

2. State of the art

Several studies have been conducted in the area of IoT-
based environmental monitoring systems and showed signif-
icant benefits. Syafrudin et al. and Manes et al. utilized LCS
to examine the environmental conditions of real sites [12,13].
The results from their studies demonstrated the practicability
and effectiveness of the sensors in providing real-time environ-
mental data. Although IoT sensors can provide high-resolution
spatio-temporal dataset, this, however, may be subject to a
short time period as low-cost sensors have exhibited limited
applications in long term monitoring [14]. Current studies have
also shown that IoT sensors are sensitive to environmental
conditions [15]. Calibrating LCS can help to address these
issues, improve the data quality of the sensors and ensure that
they are collecting accurate values. Simple Linear Regression
(SLR) method has been suggested for use in calibrating IoT
sensors. Badura et al. suggested this method for calibrating
PMS7003 Particulate Matter (PM2.5) sensor [16]. Although
this approach was sufficient in relating the raw sensor output
to reference measurements, it was not able to capture the
temporal variability of sensor measurements with respect to
environmental conditions. In a bid to overcome this shortcom-
ing, they applied Multi Linear Regression (MLR) in fitting
of the sensor’s data to the reference measurement with the
inclusion of environmental parameters; Temperature (T) and
Relative Humidity (RH) in the calibration equation. Their
work established the impact of high RH on the sensors output
and showed T to have moderate correlation with RH.

Multi-parameter regression models and supervised machine
learning methods have been applied for calibrating sensor
devices. Munir et al. developed MLR models and Generalized
Additive Models (GAM) in [17] for the calibration of the
Environ watch E-MOTES for capturing concentrations of Ni-
trous Oxide (NO) and Nitrogen Dioxide (NO2) for a one-year
collocation period with a reference monitor. Their additive
model was applicable to both normal and non-normal data
distribution and does not assume a linear relationship between
dependent (reference data) variables and explanatory variables.
Although, various goodness of fit indicators upon which the
models were evaluated, showed good agreement of the models
results with reference measurements, the absence of previ-
ous work using similar sensors, however, does not allow for
qualitative evaluation of this model especially in comparison
to results from previous studies. Yamamoto et al. proposed
a machine learning-based method for calibrating temperature
sensor using Artificial Neural Network (ANN) [18]. Their
investigation was based on a one year dataset collected from
three locations in Japan using the SHT-71 sensors which
measures air temperature and relative humidity, these sensors
were collocated with a reference monitor (Automated Meteo-
rological Data Acquisition System-AMeDAS), developed by
the Japan Meteorological Agency. Abrupt changes in envi-
ronmental conditions caused several calibration errors during
their study. Their work showed the effect of using data from
widely separated locations for sensor calibration, highlighting
the impact of environmental differences between the sites.
Zimmerman et al. investigated three calibration approaches
including laboratory calibration, MLR and Random forest
calibration techniques for the RAMP sensor package which
measures CO, NO2, O3 and CO2 in [19]. Their work investi-
gated the accuracy of the models across different concentration
ranges and also examined the importance of model variables.
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Multiple variables included in a multi-parameter calibration
model can help improve the performance of the model and
produce more accurate results [20,21]. Integrating data from
different sensor nodes into a calibration model through the
process of data fusion can also produce more consistent,
accurate and useful information for the model in predicting
the target variable far beyond what an individual sensor can
provide [22]. Including many irrelevant parameters, however,
can make the calibration equation more complex and dif-
ficult to interpret [23]. Excluding redundant variables from
a calibration models can improve the model’s accuracy and
simplify the signal processing and data acquisition processes.
Stepwise regression has been suggested as a viable strategy for
feature selection when building multi-parameter models [23].
The Best Subset Regression (BSR) technique was proposed
in [24] for selecting the best subset of features/predictors for
calibration models.

While there have been significant research in the individual
fields of IoT, Machine Learning (ML), data fusion and sensor
calibration, there is currently no study on the aggregation of
these technologies into a complete solution in environmental
monitoring, where significant improvement in data quality
of LCS can be achieved by the integration of data fusion
and machine learning techniques for error modelling and IoT
sensor calibration.

3. Motivation

Achieving high spatial density ground-based coverage in
environmental monitoring networks is essential to provide
additional dataset that could be used for validating remote
and satellite-based monitoring. LCS play significant role in
achieving high density in-situ monitoring networks. The major
challenge of using LCS for this purpose, however, is the high
chance of recruiting erroneous data. Identifying and eliminat-
ing these errors are important for the adoption of LCS for
environmental monitoring purposes. The processes involved
in calibrating sensors in order to eliminate sensor response
errors and ensure collection of quality data are costly, cum-
bersome and time consuming. Several environmental factors
may affect sensor outputs, it is therefore necessary to identify
and account for the effects of these variables on the sensor’s
output. Furthermore, effective feature selection is essential to
make the learning task of calibration model more efficient and
accurate while also facilitating the modelling of sensor output
errors. The task of selecting variables with high influence on
a model’s predictive power is quite challenging particularly in
small sized samples [25]. The approach adopted in this study
involves identifying environmental features which affect LCS
outputs using FS, BE and EFS and modelling sensor errors
based on identified features. This method facilitates sensor
calibration and makes the process of data quality improvement
more efficient.

4. Dataset description and processing

The dataset used in this study was presented by Duvall et al.

in [26], it consists of measurement concentration of Ozone n
(O3) and Nitrogen Dioxide (NO2) which were collected using
airclipO3/NO2 and CairclipNO2 sensors in Houston Texas.
he cairclipO3/NO2 sensor provides the sum concentration of
3 and NO2 while the cairclipNO2 sensor measures only NO2.
he sensors were collocated with Federal Reference Moni-

ors (FRM) within the period of 4–27 September 2013. O3

easurement was obtained using ethylene-chemiluminescence
RM with a Bendix Model 8002 analyzer. NO2 was measured
y a gas-phase chemiluminescence FRM using a Teledyne
odel T200U analyzer (Teledyne API; San Diego, CA, USA).

urther details regarding the sensors and FRM can be obtained
n [26]. Values of O3 were obtained from the cairclipO3/NO2

ensor by subtracting the NO2 values from the cairclipNO2

ensor closest to the cairclipO3/NO2 sensor following the
rocedure described by the manufacturer in [27]. Although
he cairclipO3/NO2 sensor was designed to measure the sum
oncentration of O3 and NO2, previous studies have identified
he sensor to exhibit less sensitivity to NO2 [28]. The separate

3 data obtained from the cairclipO3/NO2 sensor showed good
greement with the data from the O3 reference instrument
Pearson correlation coefficient r=0.82). The NO2 data from
he cairclipNO2 sensor however showed low agreement with
eference NO2 data(r=0.08).

All implementation in this study was completed in python
on a Jupyter notebook available with Anaconda distribution.
dditional library packages were installed including mlx-

end which promotes convenience in model implementation,
eras [29] and TensorFlow [30] used for Neural Network

mplementation. This study was conducted using data from
ix CairclipO3/NO2 sensor (S1, S2, S3, S4, S5, S6), four
airclipNO2 sensors (N1,N2, N3, N4), data from O3 and NO2

eference instruments as well as data from Temperature (T)
nd Relative Humidity (RH) sensors. Sensors S1 and N1 along
ith T and RH were collocated on the same location with

he FRMs and the sensors were placed on the roof of the
ampling trailer near the inlet of the FRM analyzers. The
ther sensors were operated by citizen scientists in schools
ithin the vicinity. A correlation analysis performed on the

ollected data showed good correlation between most of the
3 sensors and the O3 reference data, with no correlation
bserved between data from the different O3 sensor nodes.
ll the NO2 sensors showed no correlation with each other

s well as with the reference data. For all the sensors and
eference monitors, data was collected every minute and was
veraged into hourly measurements. Initial evaluation of the
ataset showed few missing values, missing data were handled
sing mean imputation which allowed for the replacement of
ach missing data point with the mean of the observed values.

total of 576 data points were obtained and used in this study.
0% of the dataset was used for training the model and 30%
as reserved for testing the model. The testing data being

he most recent part of the dataset. For all the models, their
erformances were evaluated on the testing dataset which was

ot used in training the model.
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Table 1
Performance comparison of FFS, BE and EFS feature selection models.

FFS BE EFS

O3

Total no of features 8 8 8
No of features selected 6 6 6
R2 0.806 0.808 0.977
Selected features S1, S3, S4, S5, S6, T S1, S2, S4, S6, T, RH S1, S2, S4, S5, S6, RH

NO2

Total no of features 6 6 6
No of features selected 5 5 5
R2 0.513 0.513 0.936
Selected features N1, N3, N4, T, H N1, N3, N4, T, RH N1, N3, N4, T, RH
t
c
t
v
s
a
w
f
e
o
a
f

Fig. 1. General feature selection procedure.

. Error modelling for sensor calibration

Previous studies have identified the weakness of SLR mod-
ls in capturing the temporal variability of sensor response in
elation to environmental conditions [31]. To achieve effective
alibration in a network of low-cost IoT sensors, it is essential
o model the error rate of the sensors by comparing sensors
bservations to observations from reference instrument. This
rocess would be more effective if the effects of environmental
actors such as temperature and relative humidity on the sensor
utputs can adequately be accounted for. In this study, factors
hat impact concentration estimation for O3 and NO2 are
dentified through a feature selection method. The process of
ata fusion is then employed to merge identified influencing
actors into a calibration equation to correct errors in LCS to
mprove the data quality of the sensors.

The inclusion of insignificant features in calibration models
an lead to complexity, overfitting and low performance of the
odel. It is therefore necessary to ensure that only features
ith strong correlation to the target variable are included in the

alibration equation. A general method for feature selection is
llustrated in Fig. 1.

.1. Feature selection

The performance of three methods of feature selection
ncluding Forward Feature Selection (FFS), Backward Elimi-
ation(BE) and Exhaustive Feature Selection (EFS) were eval-
ated to determine their ability to select the best subset of
eatures necessary for the quantification of O3 and NO2 con-
entrations using cairclipO3/NO2 and cairclipNO2 sensors re-
pectively. The system is able to determine the impacts of
nvironmental variables T, RH on the estimation of the target
asses. For each of the method, a random forest regressor was
sed to find the optimal features by evaluating all possible
ombination of the features(sensor nodes and environmental
actors) and selecting the combination that produces the best
results for estimating the true values of the target gases.
In all the three methods, the number of trees (n estimators)
were set to 100 and n jobs=-1. A 4-fold cross validation was
performed on both FFS and BE, however, no cross validation
was performed on EFS. A grid search cross validation (Grid-
SearchCV) performed showed these parameters to be the best
for the models, hence, the reason for choosing them for model
implementation.

R2 score was used as the scoring metric for evaluating
he performance of the feature selection models. R2 is the
oefficient of determination and it measures the strength of
he linear relationship between the predicted and observed
alues. Table 1 presents a comparison of all three feature
election methods. For O3 estimation, the total number of
vailable features is 8 and each of FFS, BE and EFS algorithm
as set to select 6 optimal performing subset of features

rom the whole feature set. The list of feature selected by
ach method is shown in Table 1. From the analysis, EFS
utperformed the rest of the methods with R2 score of 0.977
gainst 0.808 and 0.806 for BE and FFS respectively. Also,
or NO2 estimation, the EFS performed best with R2 of 0.936

outperforming both BE and FFS which both had R2 of 0.513.
The feature selection process is important for the task aimed to
be completed in this work as it facilitates efficient selection of
nodes and environmental factors with significant contributions
to the target gasses estimation. It eliminates redundancy by
excluding from the model, variables that are highly corre-
lated to other variables, helping the calibration model to train
faster, reducing computational cost and complexity, thereby
promoting convenience in the overall calibration processes.
Subsequently, we apply data fusion technique to merge the
features selected by EFS (the best performing feature selection
method in this study) to build linear regression and artificial
neural network calibration models for cairclipO3/NO2 and
cairclipNO2 sensors.

5.2. Data fusion

To ensure provision of more consistent and accurate infor-
mation for the calibration model, data fusion technique was
applied to enable the merging of data from different sensor
nodes into the calibration equation used for model implemen-
tation. Here, we present an objective means of combining
observations from different nodes through a linear estimation
method to provide more useful information for the calibration
model. This approach would not only help to close any gap
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xisting on the dataset of individual sensor but would facilitate
he provision of detailed spatial pattern of observations far
eyond what a single sensor can provide. Using data fusion,
e first combine the data from all available sensors including
ata from the temperature and relative humidity sensors to
stimate the values for O3 and NO2 using observations from

the FRMs as reference. Finally, the best subset of features
needed for the estimation of the gasses as identified by EFS
feature selection model were applied in a separate equation to
model and correct sensor errors. The estimated concentration
(Ŷ ) at a particular time (t0) is computed using Eq. (1)

Ŷ (t0) = α + β1x1(t0) + β2x2(t0) + · · ·βnxn(t0) + ϵ(t0) (1)

where α is the intercept, β1 to βn are the regression coeffi-
cients, x1 to xn are the values of the predictor variables and ϵ

is a constant error term.

5.3. Sensor calibration

The cairclipO3/NO2 sensors used in this study for O3 mea-
surements and the cairclipNO2 sensors for NO2 measurements
were calibrated using SLR, MLR and ANN models. The
SLR model used only one independent variable/feature (i.e.
measurements from only one sensor), using this method, each
sensor was calibrated separately to correct the bias in their
outputs. With the MLR and ANN models, the sensors were
calibrated using:

(i) All available features.
(ii) subset of feature selected by EFS.

5.4. Simple Linear Regression (SLR)

Out of the six O3 sensors examined, three of them showed
sufficient correlation (r>0.6) with the reference measurements
however, all the NO2 sensors showed poor correlation(r<0.1)
with the reference data. SLR model was used to calibrate each
individual sensors to correct their measurement errors. During
calibration the sensor measurements were regressed against
reference measurements using Eqs. (2) and (3) for O3 and
NO2 sensors respectively. This process was able to reduce the
average RMSE of the O3 sensors from 28.72 ppb to 20.65 ppb.

O3 Ref erence = α + β1S1 + ϵ (2)

NO2 Ref erence = α + β1 N1 + ϵ (3)

O3 Reference and NO2 Reference are concentrations from
reference monitors, S1 and N1 are values of O3 and NO2 con-
centrations from one of the cairclipO3/NO2 and cairclipNO2

ensors respectively.

.5. Multiple Linear Regression (MLR)

To account for the effect of multiple variables on the
ensors measurements, MLR was used to calibrate the sen-
ors. The process of data fusion was applied to merge data
rom different sensor nodes, including environmental data as
escribed in Section 5.2 into a single calibration equation,
 d
roviding more useful information for the model in estimating
he target gasses. The relationship between the variables is
escribed in Eqs. (4) and (5).

O3 Ref erence = α + β1S1 + β2S2 + β3S3 + β4S4 + β5S5

+β6S6 + β7(T emp) + β8(RH ) + ϵ

(4)

NO2 Ref erence = α + β1 N1 + β2 N2 + β3 N3 + + β4 N4

+β5(T emp) + β6(RH ) + ϵ

(5)

The measurement unit of all sensors and FRMs are in part
er billion(ppb).

The sensors were first calibrated using all available features,
hen subset of features selected by the EFS feature selection
lgorithm was also used. The sensors data, T and RH data
ere used as the predictor variables and the FRM data were
sed as reference. Calibrating the sensors using this approach
ielded better agreement between the sensor and reference
ata, reducing the Mean Absolute Error (MAE) between the
eference and sensor data by 7.15 ppb.

.6. Artificial Neural Network (ANN)

A three-layer back propagation ANN model was imple-
ented and used for the calibration of the sensors. The model
as built using all available features as well as features se-

ected by the EFS model as input variables. For O3 measure-
ents, the calibration model had 8 inputs (S1...S6, temperature,
H data), six hidden layers (each with 13 neurons) and 1 out-
ut layer (FRM measurements). This architecture was chosen
fter evaluation of different architectures mostly involving n
idden layers ( n=3, 6, 9, 12) and different training rounds.
he network architecture with n=6 and trained for 250 epochs
chieved the best performance and was therefore choosing for
his study. Adam was used as the optimizer, the activation
unction used was ReLu, mean squared error was used as the
oss function and the learning rate was set to 0.003. Cali-
rating the cairclipO3/NO2 sensor using this method yielded
good improvement in the data quality of the sensor, how-

ver, calibrating the caiclipNO2 sensor yielded no significant
mprovement in the result.

.7. Evaluation metrics

To evaluate the performance of the calibration models,
he sensors measurements before and after calibration were
ompared to reference measurements using three goodness
f fit indicators; Mean Absolute Error (MAE), Root Mean
quared Error (RMSE) and coefficient of determination (R2).
AE measures the average magnitude of the errors in a set of

rediction without considering their direction, in this study, we
ake MAE as the average over the test dataset of the absolute
ifferences between the predicted and observed values. RMSE
rovides a measure of the model error by calculating the

istance between predicted values and the actual values. A
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Fig. 2. O3 Reference and sensor (a) Time series measurement (b) Correlation plot.
Fig. 3. NO2 reference and sensor (a) Time series measurement (b) Correlation plot.
a

lower value of both MAE and RMSE indicates good model
performance. While MAE is a high performing metric for
evaluation, we have also used RMSE in this study as it turns
out to be useful in this case where large errors are undesirable
in the calibration models. R2 is the proportion of the variance
in the dependent variable that is predictable from the inde-
pendent variable. It is the square of the correlation coefficient
(r), where r is the strength of the linear relationship between
the observed and predicted values. Usually in the range of 0
to 1, R2 closer to 1 reflects good agreement with reference
measurements whereas small R2 indicates poor fitting quality.

6. Results and performance evaluation

Figs. 2 and 3 present the time series data and correla-
tion plot between the sensors and reference data for O3 and
NO2 measurements respectively. While the O3 measurements
from the sensor have shown good correlation with reference
data, NO2 sensor measurements showed poor correlation to
reference data.

To test the performance of the calibration models, the
models were applied to the testing dataset that were not
used for model fitting. The concentrations of O3 and NO2
from the sensors were compared to data from their respective
Table 2
Comparison of cairclipO3/NO2 sensor outputs with reference measurements
when the sensor is uncalibrated (S1Raw), calibrated using simple linear
regression method S1(SLR), calibrated using multiple linear regression
(Sn(MLR) and Neural Networks (Sn(ANN) with all available features(All)
nd features selected by EFS.

S1(Raw) S1(SLR) Sn(MLR) Sn(ANN)

ALL EFS ALL EFS

Intercept 18.17 120.5 31.6
MAE 16.18 9.03 10.65 7.81 9.01 7.19
RMSE 18.57 12.58 12.93 10.24 12.26 9.69
R2 0.03 0.71 0.69 0.81 0.71 0.83

reference monitors. A comparison between the performance
of the different models when used to calibrate the O3 data is
presented in Table 2. The result showed a good improvement
in the correlation between the raw sensor data and reference
data after calibrating the sensor data using SLR method. The
process reduced the MAE existing between the sensor and
reference data by more than 40% and increased R2 from 0.027
to 0.706. The MLR calibration model yielded an improvement
to this result, however, the ANN model outperformed both the
MLR and SLR models. The result also showed that the MLR
and ANN models which were built using the features selected
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Fig. 4. Time series of hourly average data of O3 sensor (S1) and reference
measurements (O3_Reference) before calibration and after calibration with
ANN.

by the EFS feature selection algorithm yielded better results
than models developed using all available features. The result
presented by this study not only showed the effectiveness
of sensor calibration in improving the data quality of low-
cost IoT sensors and the high performance of artificial neural
network for this purpose but it also showed the importance
and convenience of feature selection in in-field calibration of
sensors in environmental monitoring networks.

In Fig. 4, we present the time series of the O3 reference
measurement with the raw and ANN calibrated sensor outputs.
The plot shows how the calibration process was able to close
the gap in the error existing between the sensor and reference
measurements. The bar plots of MAE and R2 between the
reference and sensor raw data, SLR, MLR and ANN cali-
brated data are presented in Figs. 5 and 6 respectively. The
figures show the effect of the various calibration methods in
improving the data quality of the sensors against the reference
data.

The analysis shows that the MAE between the raw (un-
calibrated) cairclipO3/NO2 sensor output and FRM output is
significantly high, showing the limitation of the sensor in accu-
rately capturing O3 concentration, this error was halved when a
SLR model was used to calibrate the sensor. An improvement
to the SLR model was observed when MLR calibration was
applied to calibrate the sensor outputs. The ANN model built
using the features selected by EFS as predictors, however, gave
the best result. Observe also in Fig. 6, the low R2 value existing
between the uncalibrated sensor data and reference data and
the improvement in this value when the various calibration
models were applied, signifying the improvement in agreement
between the sensor and reference data after the calibration
process.

7. Conclusion

Low-cost IoT sensors have the capacity to contribute to
real time environmental monitoring, providing high resolution
Fig. 5. MAE of O3 sensor and reference measurements when the sensor is
ncalibrated (S1Raw), calibrated using SLR method (SLR), calibrated using
LR with all available features (MLR(All)) and features selected by EFS

MLR(EFS), calibrated using ANN(All) and ANN(EFS).

Fig. 6. R2 of O3 sensor and reference measurements when the sensor is
uncalibrated (S1Raw), calibrated using SLR method (SLR), calibrated using
MLR with all available features (MLR(All)) and features selected by EFS
(MLR(EFS), calibrated using ANN(All) and ANN(EFS).

spatiotemporal dataset. Low-cost sensors, however, require
frequent calibration when deployed on the field to ensure
collection of accurate data. Machine learning methods such
as linear regression and neural networks can be employed for
calibrating low-cost sensors; adjusting the sensors measure-
ments to compare to concentrations from reference monitors.
Low-cost sensors can be affected by environmental factors
such as temperature and humidity. It is therefore necessary
to include these factors in the calibration model to account
for their effects on the sensors response in order to ensure
effective calibration. Including several insignificant variables
in a calibration equation, however, will increase its computa-
tional complexity and reduce the accuracy of the calibration
model. Therefore, it is important to identify the environmental
factors that affect the data quality of sensor for a given
measurement, and then apply these factors in developing the
calibration model. In this study, three methods of feature
selection including forward selection method, backward elim-
ination and exhaustive feature selection method were applied
in determining factors that affect the cairclipO3/NO2 sensors
for measuring O3 concentration and cairclipNO2 sensor for
NO2 measurements. The performance of all three methods
were compared against each other and the exhaustive feature
selection method gave the best result. The result from the EFS
method was then applied to linear regression and artificial neu-
ral network models to calibrate the sensors, using the process
of data fusion to merge and integrate data from different nodes
into the calibration model. The results from this study showed
the importance of feature selection in building accurate multi-
parameter calibration models as well as the effectiveness of
SLR, MLR and ANN in the calibration of low-cost sensors in

environmental monitoring network.
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