
Overlap Training to Mitigate Inconsistencies
Caused by Image Tiling in CNNs?

Yu An1�, Qing Ye2, Jiulin Guo3, and Ruihai Dong1

1 Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
yu.an@insight-centre.org

2 Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education,
China University of Geosciences, Wuhan, China

3 C&C Reservoirs, Brunel House, Reading, United Kingdom

Abstract. This paper focuses on the problem of inconsistent predic-
tions of modern convolutional neural networks (CNN) at patch (i.e. sub-
image) boundaries. Limited by the graphics processing unit (GPU) re-
sources, image tiling and stitching countermeasure have been applied
for most megapixel images, that is, cutting images into overlapping tiles
as CNN input, and then stitching CNN outputs together. However, we
found that stitched (i.e. recovered) predictions have discontinuous grid-
like noise. We propose a simple yet efficient overlap training frame-
work to mitigate the inconsistent prediction at patch boundaries with-
out changing the model architecture while improving the stability, ro-
bustness of the model. We have applied our solution to various CNNs
(such as U-Net, DeepLab, RCF) and tested them on two real-world
datasets. Extensive experiments suggest that the new framework is suf-
ficient in reducing inconsistency and outperform these countermeasures.
The source code and coloured figures are made publicly available online
at: https://github.com/anyuzoey/Overlap-Training.git

Keywords: Convolutional Neural Networks · Computer Vision · Image
Segmentation · Fault Recognition

1 Introduction

Convolutional neural networks (CNNs) and its recent variations have led to
extraordinary performances in various computer vision tasks. In general, CNN
models take image pixel as inputs and use multiple convolutional layers and
pooling layers to capture image features. The intermediate layers need to be
stored in the CNN calculation process. The memory size required by the model is
proportional to the number of input pixels [29]. Limited by the memory capacity
of the graphics processing unit (GPU), in many scenarios, CNN cannot directly
use the entire original size image as input, especially megapixel images (e.g.
seismic images). There are two main countermeasures: one of them is to down-
sample the input image, but it will considerably lose local details. Not suitable for

? Supported by Science Foundation Ireland SFI/12/RC/2289 P2

tasks such as fault recognition that make extensive use of local details. Another
prevailing countermeasure is to cut out the original size image as sub-images
(usually called patches) as model inputs and stitch the outputs.

We found that this image cutting off-dealing-stitching approach will create
discontinuous and grid-like noise (see black arrows in Fig. 1) on the stitched out-
puts of several trained fault recognition networks. Because the patch predictions
on the top, bottom, or left and right are inconsistent, the original continuous
geological fault is marked as discontinuous. Geological faults are the planar or
gently curved fractures in the earth’s crust. The relative displacement of rocks on
opposite sides of the fracture is usually related to the occurrence of earthquakes
[11]. Fault recognition is a critical process for seismic data interpreters to un-
derstand the subsurface geological structure. For seismic data interpreters, fault
recognition (i.e. identify and label certain types of discontinuous reflections) is
a manual process, which highly depends on data quality and experience, and
usually takes several months.

The discontinuities and grid-like noise greatly affect the user experience of
the fault recognition application. A single threshold cannot fix it as it can not
effectively distinguish between noise and potential faults among all data. Since
the grid-like noise only appears at the boundary position, we call it the boundary
effect. These effects are underestimated and rarely discussed in the literature.
Only a few relevant studies have suggested methods (proved using their datasets)
that might attenuate the boundary effect: use the largest possible patch size [14,
22]; pad extra zeros [15, 17]; or increase the number of overlapping pixels [14, 25].
These methods are either very complicated to use and cannot be widely applied,
or add a considerable redundancy and cannot fundamentally solve the problem.
We will review and discuss these methods in detail in section 2.

Fig. 1. Examples of different image stitching techniques on the Thebe dataset. (a)
None, images are cropped into non-overlapping patches as CNN input. The final pre-
diction after stitching can clearly distinguish the traces of image stitching. (b) Average,
the prediction of pixels in overlapping areas is averaged. (c) Crop, crop the boundary
pixels of the patch according to the number of the overlapping pixels. (d) Smooth, the
prediction of each patch first is multiplied by 2D spine window (i.e. position-related
2D weight) (e) Ours (f) Manual interpolation by an expert as ground truth. Coloured
vision is available in the code link.

In this paper, we propose a novel overlap training framework to mitigate the
boundary effect that we discovered in fault recognition CNNs. The framework

uses a simple yet efficient overlap constraint to handle the boundary information
better, to improve consistency of CNN prediction in the boundary position, and
also the overall performance of the fault recognition application. Our framework
obtained the state-of-the-art performance compared with related solutions (see
Section 4.4, 4.5).

The rest of this article is organised as follows: Section 2 reviews related
literature on tiling and stitching techniques, potential causes of boundary effects,
and the recommended solutions. Section 3 details our proposed framework, the
datasets used and the CNN architectures we tested. In Section 4, we provide
experimental results and analysis of the proposed method and then summarise
in Section 5.

2 Related Work

Since the breakthrough of the AlexNet [19] in the 2012 ILSVRC (ImageNet
Large-Scale Visual Recognition Challenge), the CNN has achieved the state-of-
the-art results in various computer vision tasks (such as image classification [12,
31], image segmentation [5–8], edge detection [20, 32]). With the development of
imaging technology and explosive growth of data, we have encountered more and
more large-scale image processing tasks (e.g. remote sensing image processing).
Nevertheless, it is unlikely to store large-scale intermediate layers because of the
limited GPU resources. For higher accuracy, it is commonly recommended to
crop overlapping tiles (i.e. patches) as inputs, and then use averaging [2, 24, 25]
or weighted sum [9, 27] or cropping to stitch model predictions. Fig. 1 provides
an example of different image stitching methods on the fault recognition dataset.
Details of the dataset will be introduced later in section 3.1.

Improvements made by applying these image stitching approaches imply that
model outputs are not consistent in the overlapping area or more specifically, the
boundary area. This situation conflicts with the common assumption that CNN
is translation equalvariance or sometimes called translation invariance (that is,
CNN can successfully identify the target object, regardless of the position of
the object in the image.) [10, 16, 18]. Moreover, this also means that simple
post-processing like image stitching can not fundamentally find and solve the
problem.

A few recent studies link this boundary effect with zero padding [14, 15, 17]
and non-unary stride (i.e. stride > 1) operation [3, 14] in CNNs. Zero-padding
is the default setting for convolutional layers, which pad zeros on the boundary
of the input feature map to control output dimensions. If no zero is padded (i.e.
’valid’ padding), convolution output will be smaller than the input dimension.
’Same’ padding is used to make convolution output remains the same dimensions
as input. In convolution layers, boundary pixels are less supported than the
relative centre pixels [17]. For instance, a 3× 3 ’same’ padding convolution, one
output pixel is the dot product between the learnable kernel and corresponding
nine pixels in input feature maps. Thus, for the top-left pixel, the corresponding
nine pixels contain five zeros. Therefore, when more convolution stacked, zeros

are propagated closer and closer to centre pixels, which result in larger boundary
effect [17]. For non-unary stride operation, such as 2×2 Max-pooling operation,
that is, downsampling the input by selecting the maximum value among four
adjacent pixels, will directly lose information and even change output value for
shifted inputs.

Some researches recommended using the largest possible patches to reduce
boundary effect, because the larger the patch size, the fewer zero-padding pix-
els compared to the total patch pixels [14, 22]. However, the improvement in
model accuracy may not be mainly caused by the reduction of zero-padding,
but is related to a larger overlapping area. Besides, there are also tasks like our
fault recognition application, in which very large patch size may result in a less
generalised model.

From the perspective that CNN can exploit absolute spatial location, two
state-of-the-art studies discuss similar boundary effects and also point to zero-
padding [15, 17]. [15] proposed that CNN obtains absolute spatial information
through zero-padding to improve accuracy in position-related tasks. Their ex-
periments proved that increase padding value in convolution layer from 0 to 2
could consistent improve model accuracy. Similar but different, [17] proposed
that absolute spatial information can be removed by add zero padding. They
named this solution as ’FULL’ convolution. For the standard 3× 3 convolution,
’FULL’ convolution is equivalent to padding=2. Authors suggested replacing
’same’ padding or ’valid’ padding to ’FULL’ padding and add extra zero-padding
for residual connections to avoid encoding absolute spacial location. This solu-
tion is proved to give higher accuracy on image classification tasks and image
matching tasks. Although the main conclusions of the two studies conflict, they
both agree that extra zero-padding can improve model performance. In this pa-
per, we compared our proposed framework with this zero-padding solution in
Section 4.4 and achieved better performance. Besides, our framework is a more
flexible solution that does not require modification of the model architecture,
including the padding settings in convolution layers and the input size.

3 Proposed Framework

In this section, we describe our proposed overlap training framework in detail, see
Fig. 2. In general, pixel-level classification problems (e.g. image segmentation)
use batches of paired images and masks to train CNNs. The difference between
the predictions and the masks are used to update parameters through back-
propagation. However, the model trained in this standard approach does not
predict consistently at the overlap region of two adjacent patches. We believe
that although the absolute position of the target object in the two overlapping
patches shifted, the model output should follow the facts, that is, the overlapping
region should obtain consistent predictions. Therefore, we propose a constraint
to limit the difference between the two predictions in the overlapping region.
We construct pairs of overlapping images as inputs and add an overlap loss
as the constraint to force the model to predict the overlapping region more

consistently. More precisely, in the image preprocessing stage, we prepare pairs
of left and right overlapping input images (Inputleft and Inputright) and their
corresponding masks (GTleft and GTright), and the overlapping part accounts for
half of the patch size. Thus, 4×batchsize images are generated at each iteration.
A batch of Inputleft and a batch of Inputright are sequentially inputted into
one CNN model to obtain predictions Predleft and Predright, respectively. In
addition to calculating loss (lossleft and lossright) between the model prediction
and the corresponding masks, we also define and add an lossoverlap that will
compare the differences between the model predictions in the overlapping area
(i.e. Overlapleft and Overlapright). Here, we introduced two hyper-parameters:
N and α, where N means that the overlap loss is added only after the N th

epoch, and α represents the weight of the overlap loss. The total loss ltotal is the
weighted sum of three losses, see Eq. 1.

𝐼𝑛𝑝𝑢𝑡! 𝑃𝑟𝑒𝑑!

𝑃𝑟𝑒𝑑"𝐼𝑛𝑝𝑢𝑡"

CNN

𝐺𝑇!

𝐺𝑇"

Left
patches

𝑂𝑣𝑒𝑟𝑙𝑎𝑝!#$%

𝑂𝑣𝑒𝑟𝑙𝑎𝑝"&'(%

48 48 𝑙𝑜𝑠𝑠!"#$%&'

𝑙𝑜𝑠𝑠%#()

96

96×48

Right
patches

𝑙𝑜𝑠𝑠$*+,)

Fig. 2. The Overlap Training Framework

The overlap loss we added may have a certain degree of conflict with the
standard loss (lossleft and lossright). We observe that if the overlap loss is
not added, the difference of the predictions in the overlap region between two
adjacent patches will increase and then level off. The reason for this phenomenon
is that in the early stage of training, the model has not yet learned useful features
(weights are close to zeros), resulting in the model output close to zero, just like
random noise. Therefore, prematurely adding the overlap loss is equivalent to
continuous attack model using a large amount of noise or wrong labels. Thus,
the convergence of the model is delayed. However, we also do not recommend
adding the overlap loss too late. Firstly, it will make the training time longer.
Secondly, one of the purposes of adding overlap loss is to alleviate the overfitting
of the model, therefore to improve its generalisation. If the overlap loss is added
too late, the model cannot be prevented from overfitting because it is already
overfitting. Therefore, we recommend using a hyper-parameter to indicate the
appropriate time step to add the overlap loss.

losstotal =

{
lossleft + lossright + αlossoverlap, epoch > N
lossleft + lossright, otherwise

(1)

3.1 Datasets

The fault recognition dataset: Thebe is a large-scale 3-dimensional public dataset,
which contains the original seismic reflection dataset of the Thebe gas field in
the NW shelf of Australia and the corresponding fault labels labelled by experts
from Fault Analysis Group, University College Dublin. This dataset contains
1,803 consecutive grey-scale seismic images and corresponding mask image (i.e.
fault labels) with height and width of 1,537 and 3,174 pixels. Each seismic image
sampled at 12.5-meter intervals is a vertical slice of the subsurface. Faults are
labelled by polylines and converted to masks with a line width of approximately
8 pixels. First 900 pairs of seismic images and masks are the training set, the
following 200 pairs are the validation set, and the last 703 pairs are the test set.

In addition to the primary fault recognition dataset, we also apply our pro-
posed framework on a medical dataset, purely for testing its generalisation ability
instead of pursuing a state-of-the-art result. It is a publicly available blood vessel
segmentation dataset called DRIVE (Digital Retinal Images for Vessel Extrac-
tion) [30]. It is selected because a blood vessel is thin (similar to faults) and
relatively sensitive to boundary effect than other segmentation objects. This
dataset contains 40 coloured (RGB) retinal images with 768 × 584 pixels (a
reasonable size for a medical dataset). Each image has a circular field of view
(FOV) with a diameter of approximately 540 pixels. Only pixels within the FOV
are considered when evaluation. This group of 40 images has been divided into
training and test sets, each containing 20 images. Test set labels are not publicly
available, and test set performance can be acquired by upload prediction to the
official website. In our experiment, we split the 20 training images into the train
(16 images) and validate set (4 images) for hyper-parameter search.

3.2 Applied Convolutional Neural networks

For fault recognition, we consider it as either image segmentation or edge de-
tection task. Thus, we apply this framework to these two types of CNNs (image
segmentation models: U-Net [23] and DeepLab V3+ [5–8] with a MobileNet V2
[13, 26] encoder, edge detection model: RCF (Richer convolution features) [20])
In this paper, we will observe whether our proposed framework is valid on these
three models and whether they have the same improvement trend. We briefly
reviewed the three models mentioned above and introduced our modifications.

The U-Net model is a classic image segmentation network, which removes
the fully connected layer of the classic VGG16 network [28] as an encoder, and
then adds a symmetric decoder and shortcuts to locate the boundary positions
accurately. Here, we remove a few convolution layers and reduce feature maps
in each convolution layer because our input patch size is much smaller than the
original U-Net input size. A sigmoid layer is added at the end of the network to
give soft classification outputs range from 0 to 1.

The DeepLab V3+ model is a advanced image segmentation network [8]. It
stacks more convolutional layers and uses the atrous spatial pyramid pooling
(ASPP) to obtain long-distance information, which implies a larger reception

field, thereby improving the accuracy of the model. A larger reception field,
however, may lead to a more significant boundary effect. Limited by GPU re-
sources, we select MobileNet V2 as the backbone encoder. Similarly, a sigmoid
layer is added to the outputs of this model to give target object probability.

The RCF model is a classic edge detection network, which is also modified
from the classic VGG16 network and another edge detection network called HED
(Holistic edge detection) [32]. The classic VGG16 network contains five stages of
convolution layers divided by four Max-pooling layers and some fully-connected
layers. RCF replaces these fully-connected layers by up-sample layers, convolu-
tion layers and one sigmoid layer. The model has a total of six outputs, including
five prediction maps up-sampled to the input dimension from the feature map
obtained from the convolutional layers of each stage, and another prediction
map obtained by fusing the five prediction maps. All six feature maps learn pa-
rameters by weighted binary cross-entropy. The last output is used as the final
prediction output of the model.

3.3 Overlap Loss

Binary cross-entropy (Eq. 2) is used for all three CNN models listed above. ln
stands for loss of the nth pixel, wn represents the weights. ŷn stands for model
prediction while yn stands for the ground truth value (0 or 1). Here, wn is equal
to 1 for all pixels (n) in the two segmentation models, while RCF use Eq. 3 to
calculate weights. In Eq. 3, Y stands for the total number of pixels of the input
image. |Y−| and |Y+| represents negative pixels (i.e. label=0) and positive pixels
(i.e. label=1) respectively.

ln = −wn [yn · log ŷn + (1− yn) · log (1− ŷn)] (2)

wn =

{
|Y+|/|Y |, yn = 0
|Y−|/|Y |, yn = 1

(3)

In our overlap training framework, lossleft and lossright in Fig. 2 remain the
original binary cross-entropy. Since they are log loss, we define the lossoverlap
as a log version of mean absolute error (see Eq. 4) so that the range for hy-
perparameter search should be small. Also, we believe a symmetric loss will be
beneficial as the boundary position in one patch is the centre position (i.e. better
predicted) in the opposite patch. It can be easily implemented using the detach
function in PyTorch, see Eq. 5.

logMAE = −log(1− abs(prediction− target)) (4)

lossoverlap = logMAE(Overlapleft, Overlapright.detach())

+ logMAE(Overlapright, Overlapleft.detach())
(5)

4 Experiments

In this section, we first detail the general training settings of the experiments.
Then, the evaluation method used is introduced. Finally, three different experi-
ments were designed to systematically and comprehensively test and analyse the
performance of our overlap training framework.

4.1 Training Setup

For a fair comparison, model setting like input size (96× 96 pixels), overlap size
(48 pixels), batch size (128 individual images if without overlap while 64 pairs if
with overlap), validation loss monitors: learning rate (lr) scheduler (factor=0.1,
patient=5) and early stopping scheduler (patient=10) is consistent among all
experiments. Optimiser settings (Adam for segmentation network with initial lr
of 0.01, SGD optimiser for RCF with initial lr of 1e-6 and momentum of 0.9,
weight decay of 0.0002) is consistent for the same architecture. Unless specified,
random seed is 1. All images are recovered by smooth stitching [9] and evaluated
on the area of interest. We selected the hyper-parameters N and α that obtained
the best validation set results through a grid search. The last layer is used to
calculate the overlap loss for the edge detection model.

Thebe dataset is a highly imbalanced dataset. The expert only label faults
that they are certain to be geological faults in the area of interest. A sliding
window of size 96×96 with a stride of 48 pixels and a filter (fault pixels > 3%) are
used to generate the left patches. The corresponding right patches are obtained
by right shifting left patches 48 pixels. Overall, 181, 029 × 2 and 64, 317 × 2
pairs (i.e. image and mask) of patches as the training set and the validation set,
respectively.

For the DRIVE dataset, we divide the original training set (20 images) into
the train (16) and validation (4) set. We augment each instance three times
using basic methods: horizontal flip, vertical flip, rotate 180◦. We also augment
each training instance using the commonly used Contrast-Limited Adaptive His-
togram Equalization (CLAHE) transform [4, 21]. A sliding window of 96×96 pix-
els with a stride of 24 pixels is used to generate more patches. Overall, 33, 440×2
half overlap pairs of patches and 6, 688 × 2 pairs of patches are generated for
training and validating sets. Since DRIVE dataset is an RGB dataset, we modify
U-Net and DeepLab V3+ to take 3 channel input instead of 1 channel. We did
not modify model architecture or generate more training patches to optimise the
test set performance.

4.2 Evaluation Metrics

We apply the evaluation method used by the public edge detection BSDS500
dataset [1], which can give comprehensive summarise of soft classification (0 to
1 probability) performance. Given 99 thresholds, this evaluation method calcu-
lates precision, recall, F1 score 99 times for each test set image. Thereby, eight
evaluation results can be obtained, which are Threshold, Recall, Precision, fixed

contour threshold (ODS), Best Recall, Best Precision, per-image best threshold
(OIS), average precision (AP). The first four metrics are optimal on the entire
test set level while the next three represents the average of the per-image optimal
precision, recall, F1 score, respectively. AP is the area under the precision-recall
curve (AUCPR). Three global evaluation results ODS, OIS, AP, are the pri-
mary evaluation metrics for comparison. The ground-truth of the DRIVE test
set, however, is not disclosed, test set evaluation result (i.e. mean, maximum,
minimum F1 score) is obtained by uploading binary masks.

4.3 Exp1: Can Overlap Training Improve Accuracy, Stability?

The primary focus of this framework is to improve the performance of our fault
recognition application. Here, we hypothesis that using overlap training frame-
work can improve model accuracy and stability. Model stability is evaluated by
the standard deviation of the three random initialisation. The benchmarks for
this experiment (named with the suffix of ’ w/o’) are the models that have not
been trained with our framework. The experimental group, that is, the models
obtained by overlap training, are named suffix of ’ w’

0.
48

3

0.
51

3

0.
78

7

0.
40

3

0.
40

0

0.
70

7

Threshold
w/o
w

0.
82

4

0.
81

2

0.
75

1

0.
81

7

0.
81

1

0.
80

0

Recall

0.
69

7

0.
71

3 0.
72

3

0.
73

8

0.
73

8 0.
80

6

Precision

0.
75

5

0.
75

9

0.
73

6

0.
77

5

0.
77

3

0.
80

3

ODS

UNet DeepLab RCF

0.
76

9

0.
78

6

0.
74

0

0.
78

8

0.
81

8

0.
84

1

AP

UNet DeepLab RCF

0.
83

2

0.
82

1

0.
76

6

0.
82

6

0.
82

2

0.
81

5

Best_Recall

UNet DeepLab RCF

0.
69

8

0.
71

1 0.
72

1

0.
73

5

0.
73

5 0.
80

4

Best_Precision

UNet DeepLab RCF

0.
75

9

0.
76

2

0.
74

3

0.
77

8

0.
77

6

0.
80

9

OIS

Fig. 3. Exp1: Thebe test set performance

According to Figure 3, overlap training can bring consistent accuracy im-
provements among the three architectures. For both image segmentation archi-
tectures (U-Net and DeepLab), the use of overlap training framework has im-
proved all global metrics, including ODS by about 2.7% and 1.8%, OIS by 2.5%
and 1.9%, and AP by 2.5% and 4.1%. The overlap training framework is partic-
ularly prominent for the improvement of the model RCF. The two recall metrics
and the two precision metrics are significantly improved by approximately 6.5%
and 11.5%, respectively. These improvements lead to a significant improvement

of the global evaluation metrics ODS and OIS by approximately 9%, and metric
AP rise from 0.74 to 0.841, soaring by almost 14%. Besides, our framework also
improves model stability, which is proved by the consistent decreases of standard
deviations. According to visual examples in Fig. 4, our framework can provide
cleaner predictions even when compared to smooth stitching.

Fig. 4. Exp1: Three Thebe test set examples of the Thebe dataset.

To test the generalisation ability of our proposed framework, we also per-
form the same experiment on the DRIVE dataset. Since the DRIVE dataset is
an image semantic segmentation problem, we only tested two segmentation ar-
chitectures, namely U-Net and DeepLab. As shown in Table 1, for model U-Net,
overlap training increases the average F1 value by 4%, in which the maximum F1
value is increased by 2%, and the minimum F1 value is increased by more than
7%. Overlap training does not improve DeepLab as significantly as U-Net on the
DRIVE dataset. The average, maximum, and minimum F1 values are improved
by 1%, 0.2%, and 0.8%, respectively. This experiment once again validates our
conclusion that using overlap training framework can train models with higher
accuracy and better robustness.

Table 1. Exp1: DRIVE test set performance

Model F1 Mean F1 Max F1 Min

U-Net w/o 0.7650 0.8318 0.6389
U-Net w 0.7984 0.8492 0.6858

DeepLab w/o 0.7829 0.8313 0.7628
DeepLab w 0.7905 0.8329 0.7688

4.4 Exp2: How Overlap Training Affect Boundary Inconsistency?

We designed a mean absolute error versus distance experiment to investigate how
the overlap training framework improves the boundary effect and how it performs
compared to the state-of-the-art solution. We define the distance is the maximum
value of the horizontal and vertical distance from the patch centre, see Fig. 5.
Here, we use all non-overlap patches from the area of interest of the Thebe test
set. For each architecture, the baseline (i.e. no overlap training) is drawn with a
dashed line, and the model trained with overlap framework is shown with a solid
line, see Fig. 6. The dot lines, which named with ”fullconv”, are the state-of-
the-art solution suggested by the related work [15, 17]. The ”fullconv” solution
set zero-padding=2 for every standard 3 × 3 convolution and pad extra zeros
before all residual connections. Due to the large number of residual connections
used in the DeepLab MobileNet v2 [26], change to ”fullconv” solution is very
complicated, so we have not modified this architecture.

(a) Distance = 0 (b) Distance = 1 (c) Distance = 2 (d) Distance = 3

3

Fig. 5. Exp2: An 8×8 pixels patch example of distance masks. The distance represents
Max(hi, vj), where hi and vj is the horizontal and vertical distance between pixel (i, j)
to the patch centre (i.e. the dot). The pixels marked black are the pixels with the same
corresponding distance from the centre of the patch. For each distance, the mean
absolute error of all test set patches on the corresponding pixels is calculated.

According to Fig. 6, our overlap training method, obtained the lowest mean
absolute error on all three architectures, especially at the patch boundary (i.e.
around 30 pixels away from patch centre). Compared with the ”FULL” convolu-
tion solution, our overlap training solution not only can easier apply to different
models but also achieved lower mean absolute error.

4.5 Exp3: Is Overlap Training Better than Stitching?

We hypothesis that our overlap training framework improves consistently across
different image stitching methods. We evaluate this hypothesis on both Thebe
dataset and DRIVE dataset using architecture U-Net. According to Table 2 and
3, overlap training consistently improves test set performance among different
image stitching methods, in which apply overlap training on crop stitching in-
crease performance the most. In Table 2, overlap training significantly improves
the minimum F1 score by 7.339%, 16.886%, 20.937% when applying smooth
stitching, average stitching, crop stitching, respectively. Meanwhile, improve the
maximum F1 score by 1-2% and improve the average F1 score by 2-6%. The

0 20 400.00
0.05
0.10
0.15
0.20
0.25
0.30

M
SE

U-Net

w
w/o
fullconv_w/o

0 20 40
Distance to Patch Centre (Pixels)

DeepLab
0 20 40
RCF

Fig. 6. Exp2: Mean absolute error versus the distance to the centre of the patch on
the three models: U-Net (left), DeepLab(middle), RCF(right)

significant improvements on the minimum F1 score indicate our framework is
more robust to outlier images.

Similarly, different image stitching method also improves Thebe test set per-
formance, see Table 3. Although the image stitching method is different. The
trends for all metrics except AP are the same. When applying overlap training,
the test set optimal threshold decreased, recall, and best recall slightly decreased
by less than 1%, precision and best precision increased 3-7%. Thus, two F1 scores,
that are ODS and OIS increased 1-3%. Overall, these improvement trends in-
dicate that our overlap training framework can train better and more robust
models.

Table 2. Exp3: DRIVE test set performance across 3 image stitching method

Method Model F1 Mean F1 Max F1 Min

smooth
U-Net w/o 0.7650 0.8318 0.6389
U-Net w +4.366% +2.095% +7.339%

average
U-Net w/o 0.7729 0.8385 0.6008
U-Net w +2.424% +1.110% +16.886%

crop
U-Net w/o 0.7496 0.8234 0.5805
U-Net w +6.290% +2.950% +20.937%

5 Conclusion

In this paper, we focus on reducing the boundary effect discovered in the fault
recognition application. The boundary effect caused by inconsistent predictions
between adjacent overlapping tiles. A simple yet effective overlap training frame-
work is proposed. This framework reduces the boundary effect by preparing pairs
of left and right overlapping input patches and adding a constraint on the pre-
diction difference of overlapping positions. Extensive experiments have proved

Table 3. Exp3: Thebe test set performance across 3 image stitching method

Method Model Threshold Recall Precision ODS Best Recall Best Precision OIS AP

smooth
U-Net w/o 0.4900 0.8288 0.6919 0.7542 0.8367 0.6929 0.7580 0.7691
U-Net 4 0.5 -24.490% -0.334% +5.294% +2.656% -0.910% +5.344% +2.416% -0.390%

average
U-Net w/o 0.4500 0.8112 0.6955 0.7489 0.8221 0.6943 0.7528 0.7898
U-Net 4 0.5 -24.444% -0.250% +3.585% +1.779% -0.348% +3.339% +1.618% +0.164%

crop
U-Net w/o 0.5100 0.8292 0.6639 0.7374 0.8400 0.6638 0.7416 0.7102
U-Net 4 0.5 -23.529% -1.012% +7.650% +3.618% -0.937% +7.014% +3.353% -1.866%

that our framework can provide consistent performance improvements on vari-
ous CNNs (such as U-Net, DeepLab, RCF) and different domain datasets (such
as Thebe, DRIVE). Finally, compared with state-of-the-art solutions that deal
with the boundary effect, our overlap training framework is not only easier to
apply to different models but also achieved smaller error.

References

1. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33(5), 898–916 (5 2011). https://doi.org/10.1109/TPAMI.2010.161

2. Audebert, N., Saux, B.L., Lefèvre, S.: Semantic segmentation of earth observation
data using multimodal and multi-scale deep networks (2016)

3. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly
to small image transformations? Journal of Machine Learning Research 20, 1–25
(2019)

4. Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin, A.A.: Albu-
mentations: fast and flexible image augmentations (2018)

5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets and fully connected crfs (2014)

6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs (2016)

7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation (2017)

8. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation (2018)

9. Chevalier, G.: Smoothly-blend-image-patches (Aug 2017),
https://github.com/Vooban/Smoothly-Blend-Image-Patches

10. Cohen, T.S., Welling, M.: Group equivariant convolutional networks (2016)

11. Fossen, H.: Structural Geology. Cambridge University Press (2010).
https://doi.org/10.1017/CBO9780511777806

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications (2017)

14. Huang, B., Reichman, D., Collins, L.M., Bradbury, K., Malof, J.M.: Tiling and
stitching segmentation output for remote sensing: Basic challenges and recommen-
dations (2018)

15. Islam, M.A., Jia, S., Bruce, N.D.B.: How much position information do convolu-
tional neural networks encode? (2020)

16. Kauderer-Abrams, E.: Quantifying translation-invariance in convolutional neural
networks (2017)

17. Kayhan, O.S., van Gemert, J.C.: On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location (2020)

18. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in
neural networks to the action of compact groups (2018)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1. p. 1097–1105. NIPS’12,
Curran Associates Inc., Red Hook, NY, USA (2012)

20. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features
for edge detection (2016)

21. Luo, Z., Zhang, Y., Zhou, L., Zhang, B., Luo, J., Wu, H.: Micro-vessel image
segmentation based on the ad-unet model. IEEE Access 7, 143402–143411 (2019)

22. Reina, G.A., Panchumarthy, R., Thakur, S.P., Bastidas, A., Bakas, S.: Systematic
evaluation of image tiling adverse effects on deep learning semantic segmentation.
Frontiers in Neuroscience 14, 65 (2020). https://doi.org/10.3389/fnins.2020.00065,
https://www.frontiersin.org/article/10.3389/fnins.2020.00065

23. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation (2015)

24. Roth, H.R., Oda, H., Zhou, X., Shimizu, N., Yang, Y., Hayashi, Y., Oda, M., Fuji-
wara, M., Misawa, K., Mori, K.: An application of cascaded 3d fully convolutional
networks for medical image segmentation (2018)

25. Saito, S., Yamashita, T., Aoki, Y.: Multiple object extraction from aerial imagery
with convolutional neural networks. Electronic Imaging 2016(10), 1–9 (2016)

26. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks (2018)

27. Shi, Y., Wu, X., Fomel, S.: Saltseg: Automatic 3d salt segmentation using a
deep convolutional neural network. Interpretation 7, SE113–SE122 (04 2019).
https://doi.org/10.1190/int-2018-0235.1

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014)

29. Siu, K., Stuart, D.M., Mahmoud, M., Moshovos, A.: Memory requirements for
convolutional neural network hardware accelerators. In: 2018 IEEE International
Symposium on Workload Characterization (IISWC). pp. 111–121. IEEE, Raleigh,
NC (2018)

30. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., Ginneken, B.: Ridge-based
vessel segmentation in color images of the retina. IEEE transactions on medical
imaging 23, 501–9 (04 2004). https://doi.org/10.1109/TMI.2004.825627

31. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks (2019)

32. Xie, S., Tu, Z.: Holistically-nested edge detection (2015)

