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Abstract Knowledge of the subcellular location of a protein provides valuable
information about its function, possible interaction with other proteins and
drug targetability, among other things. The experimental determination of a
protein’s location in the cell is expensive, time consuming and open to human
error. Fast and accurate predictors of subcellular location have an important
role to play if the abundance of sequence data which is now available is to be
fully exploited.
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In the post-genomic era, genomes in many diverse organisms are available.
Many of these organisms are important in human and veterinary disease and
fall outside of the well studied plant, animal and fungi groups. We have de-
veloped a general eukaryotic subcellular localisation predictor (SCL-Epred)
which predicts the location of eukaryotic proteins into three classes which are
important, in particular, for determining the drug targetability of a protein –
secreted proteins, membrane proteins and proteins that are neither secreted
nor membrane.

The algorithm powering SCL-Epred is a N-to-1 Neural Network, and is
trained on very large non-redundant sets of protein sequences. SCL-Epred
performs well on training data achieving a Q of 86% and a GC of 0.75 when
tested in 10-fold cross-validation on a set of 15,202 redundancy reduced pro-
tein sequences. The three class accuracy of SCL-Epred and LocTree2, and in
particular a consensus predictor comprising both methods, surpasses that of
other widely used predictors when benchmarked using a large redundancy re-
duced independent test set of 562 proteins. SCL-Epred is publicly available at
http://distillf.ucd.ie/distill/.

Keywords Subcellular Localisation Prediction · Eukaryotes · N-to-1 Neural
Network · SCL-Epred

1 Introduction

As the gap between sequence-known and sequence-annotated proteins contin-
ues to grow so does the demand for quick and accurate automated annotation
systems. Subcellular localisation prediction web servers have been widely and
very successfully used in this context for more than a decade (Nielsen et al.,
1997; Nakai and Horton, 1999; Emanuelsson et al., 2000). Knowledge of the
subcellular location of a protein provides valuable information about its func-
tion, possible interaction with other proteins and drug targetability, among
other things. Experimental approaches to determine subcellular localisation
are time-consuming and expensive, whereas computational methods can pro-
vide fast and increasingly more accurate localisation predictions. Subcellular
localisation predictors have an important role to play if the abundance of
sequence data which is now available is to be fully exploited.

In this post-genomic era, the genomes of many diverse organisms are be-
coming available. Many of these organisms are important in human and vet-
erinary disease and fall outside of the well studied plant, animal and fungi
groups. In particular many important diseases are caused by parasites found
in the “SAR” group of Stramenopiles, Alveolates and Rhizaria (Burki et al.,
2007). For example, Malaria caused by Plasmodium spp. parasites kills over
a million people a year (Murray et al., 2012); Toxoplasmosis, Cryptosporidio-
sis and Isosporiasis, caused by Toxoplasma gondii, Cryptosporidium spp., and
Isospora belli respectively, are especially important in people with HIV-AIDS
or other immunocompromised individuals (Gellin and Soave, 1992); Babesio-
sis (caused by Babesia bovis) and Theileriosis (caused by Theileria annulata),
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diseases in cattle cause economic loss especially to farmers in Africa, limit-
ing economic development (Gardner et al., 2005; Brayton et al., 2007). Other
neglected tropical diseases such as Chagas disease , Human African Trypanoso-
miasis and Leishmaniasis are caused by parasites in the Excavate supergroup
(Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.).

New effective drugs are needed to fight these parasites and determining
which proteins may be targatable is one of the first steps. Other than a few
species specific predictors such as PATS (Zuegge et al., 2001), PlasmoAP (Foth
et al., 2003) and PlasMit (Bender et al., 2003), which are specialised for Plas-
modium falciparum proteins, very few predictors are suitable for use within
these groups. These species specific predictors do not generalise well to other
species and also have the disadvantage of being trained on very small datasets.
It is important for drug discovery to be able to identify if a protein is intracel-
lular, extracellular or a membrane protein. Even this simple classification when
performed on a genomic scale can greatly help in directing drug discovery ef-
forts since currently more than half of all drug targets are found in membrane
proteins (Bakheet and Doig, 2009). Drug targets are also more likely to be
extracellular than intracellular, with few targets found in organelles (Bakheet
and Doig, 2009).

SCL-Epred has been developed to address the need for an accurate gen-
eral predictor of eukaryotic protein subcellular location into three classes: ex-
tracellular/secreted, membrane or “other”. SCL-Epred is based on a N-to-1
Neural Network which we have previously described (Mooney et al., 2011;
Volpato et al., 2013) and is trained in 10-fold cross-validation on very large
redundancy reduced training sets generated from Swiss-Prot Release 2011 02
(Boeckmann et al., 2003). At present there is no other predictor available
which can preform this simple classification. The authors of the PSORT suite
of web servers (Nancy et al., 2010) provide a comprehensive list of subcellular
localisation predictors on their web-page (http://www.psort.org/). Out of the
approximately 50 web servers for the prediction of subcellular localisation in
eukaryotes about half are specialised for the prediction of plant, animal and
fungi proteins, or are even more specialised for a particular species e.g. hu-
man (Garg et al., 2005) or rice (Kaundal and Raghava, 2009), or location e.g.
Golgi membrane proteins (Yuan and Teasdale, 2002). About a quarter of the
servers are no longer working, or are not currently available. We found only
a small number of web servers that are available for the prediction of eukary-
otes in general and we have benchmarked SCL-Epred against these predictors
on an independent test set of 715 proteins generated from Swiss-Prot Release
2012 07.

SCL-Epred will be useful for the prediction of the subcellular location of
proteins from complete proteomes of species which fall outside of the well
provided for plant, animal and fungi groups and may also be used for pre-
dicting the subcellular location of proteins for species within those groups
for example, as a first step towards screening a whole proteome for drug tar-
gets. Proteins classified as secreted can be further examined using SignalP to
determine the location of the signal peptide and membrane proteins can be
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further classified using MemLoci (Pierleoni et al., 2011) which discriminates
between three membrane protein localisations: plasma, internal and organelle
membrane. Finally, intracellular locations could be further refined using Loc-
Tree2 (Goldberg et al., 2012), for all eukaryotes, or BaCelLo (Pierleoni et al.,
2006), WoLF PSORT (Horton et al., 2007), SherLoc (Shatkay et al., 2007)
or SCLpred (Mooney et al., 2011) for plant, animal and fungi proteins, for
example.

2 Materials and Methods

2.1 Datasets

We generated our training and test set from Swiss-Prot Release 2011 02. We
found 129,516 eukaryotic sequences with a “SUBCELLULAR LOCATION”
annotation. We removed sequences that had non-experimental qualifiers (Po-
tential, Probable, By similarity) or were less than 30 or greater than 1500
residues in length, leaving 47,521 sequences. We internally redundancy re-
duced this set using an all-against-all BLAST (Altschul et al., 1997) search
(with e = 10−3) removing any sequence with a hit with more than 30% se-
quence identity to any other sequence in the set (Table 1). Proteins were then
classified as secreted (having the keyword “Secreted” within their “SUBCEL-
LULAR LOCATION” annotation, and not “membrane” or “intermembrane”),
membrane (having the keyword “membrane” or “intermembrane” within their
“SUBCELLULAR LOCATION” annotation and not “Secreted”), or “other”
(not “Secreted”, “membrane” or “intermembrane”).

We created an independent test set from Swiss-Prot Release 2012 07 using
a similar method. We redundancy reduced this set with respect to the train-
ing set to less than 30% sequence similarity and then internally redundancy
reduced the remaining sequences to less than 30% sequence similarity, leaving
715 protein sequences (Table 1). We refer to this dataset as the independent
test set.

We further reduced the independent test set for use only when benchmark-
ing against other predictors. We only included cell membrane proteins in this
dataset to be fair to the other predictors, some of which were trained only to
identify cell membrane, and not other membrane, proteins. We further redun-
dancy reduced this dataset with respect to the LocTree2 training dataset in
order to make a fair comparison between SCL-Epred and LocTree2. As the
performance of SCL-Epred and LocTree2, on this redundancy reduced set, is
significantly better than that of all the other predictors which we tested we did
not consider it was necessary to redundancy reduce the dataset further with
respect to any other predictor’s training sets. This may give slightly inflated
results for these predictors but does not affect our overall conclusions.
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MSA

Multiple sequence alignments are extracted from UniRef90 from January 2011
containing 9,616,951 sequences (Suzek et al., 2007). The alignments are gen-
erated by three runs of PSI-BLAST with parameters b = 3000 (maximum
number of hits) and e = 10−3 (expectation of a random hit).

Input coding

Similarly to Pollastri and McLysaght (2005) the input at each residue is coded
as a letter out of an alphabet of 25. Beside the 20 standard amino acids, B
(aspartic acid or asparagine), U (selenocysteine), X (unknown), Z (glutamic
acid or glutamine) and . (gap) are considered. The input presented to the
networks is the frequency of each of the 24 non-gap symbols, plus the total
frequency of gaps in each column of the alignment.

2.2 Predictive architecture: N-to-1 Neural Network

The N-to-1 Neural Network (N1-NN) has been previously described in detail
in Mooney et al. (2011). This implementation of the model maps a protein
sequence of variable length N into three subcellular locations i.e. secreted,
membrane or “other” (non-secreted, non-membrane). These features are stored
in a vector f = (f1, f2, f3), if the i-th residue in the sequence is represented as
ri, then f is obtained as:

f = k

N∑
i=1

N (h)(ri−c, . . . , ri+c) (1)

where N (h) is a non-linear function, which is implemented as a two-layered
feed-forward neural network with h non-linear output units (the sequence-to-
feature network). N (h) is replicated N times and k is a normalisation constant.
The feature vector f is obtained by combining information coming from all
windows of 2c + 1 residues in the sequence. In this work c = 20, therefore the
motifs have a length of 41 residues. The feature vector f is mapped into the
subcellular locations o, as follows:

o = N (o)(f) (2)

where N (o) is implemented as another two-layered feed-forward neural net-
work (the feature-to-output network). The whole compound neural network
(the cascade of N replicas of the sequence-to-feature vector network and
one feature-to-output network) is itself a feed-forward neural network and
is trained by gradient descent via the back-propagation algorithm. As there
are N copies of N (h) for a sequence of length N , there will be N contributions
to the gradient for this network, which are simply added together. See Mooney
et al. (2011) (Mooney et al., 2011) for more details.
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Training

Training was conducted in 10-fold cross-validation, i.e. 10 different sets of
training were performed in which a different tenth of the overall set was re-
served for testing. The 10 tenths are roughly equally sized, disjoint, and their
union covers the whole set. For each training the 9/10 of the set that were not
reserved for testing were further split into a validation set (1/10 of the overall
set) and a training set. The training set was used to learn the free parame-
ters of the network by gradient descent, while the validation set was used to
monitor the training process. In order to mitigate the effect of the imbalance
between the three classes every membrane sequence was presented twice as
often during training as a sequence in the “other” class, and secreted sequence
were presented four times as often. Three models were trained independently
for each fold and ensemble averaged to build the final predictor. Differences
among models were introduced by varying the architectural parameters of the
network.

The weights in the networks were updated every 152 examples (protein
sequences) and training continued until the walltime on the server was reached
(10 days, corresponding to between 1200 and 1700 epochs of training per
network). We saved the networks that performed best on the validation set,
ensemble averaged them and evaluate them on the corresponding test set. The
final result for the 10-fold cross-validation is the average of the results on each
test set. When testing on the independent test sets we ensemble-combined all
the models from all the cross-validation folds.

2.3 Evaluating performance

To evaluate the performance of SCL-Epred against other predictors we mea-
sure specificity (Spec), sensitivity (Sens), the false positive rate (FRP), the
percentage of correctly predicted sequences (Q), Matthews correlation coef-
ficient (MCC) and the generalised correlation (GC) (Baldi et al., 2000) as
follows:

Spec = 100
TP

TP + FP

Sens = 100
TP

TP + FN

FPR = 100
FP

FP + TN

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Q = 100

∑
i zii
N
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GC =

√√√√∑
ij

(zij−eij)2

eij

N(K − 1)

(3)

where:

– True positives (TP): the number of sequences predicted in a class that are
observed in that class.

– False positives (FP): the number of sequences predicted in a class that are
not observed in that class.

– True negatives (TN): the number of sequences predicted not to be in a
class that are not observed in that class.

– False negatives (FN): the number of sequences predicted not to be in a
class that are observed in that class.

– zij : the number of times a sequence of class i is predicted to be in class j
– eij : the number of sequences of class i expected to be predicted in class j

by chance
– N : the number of sequences
– K: the number of classes

We emphasise performances based on MCC or GC, as this index minimises
the effect of class sizes (see Baldi et al. (2000) for more details).

3 Results and Discussion

SCL-Epred performs well when tested in 10-fold cross-validation on the train-
ing set of 15,202 protein sequences and on the 715 protein sequences of the
independent test set (Table 2), predicting sequences into three classes: se-
creted, membrane and “other”. The number of correctly predicted sequences
(Q) is 86% and 83.2% respectively for the training and independent test sets.
However, if the class size is unbalanced, as it is here (secreted sequences make
up only 13% of the dataset), Q can be misleading, as if a predictor predicts
all sequences into the largest class a reasonable Q can still be achieved. For
example, a Q of 60% could be achieved on our independent test set by pre-
dicting all sequences into the “other” class, at the expense of predicting every
secreted and membrane protein incorrectly. Therefore, GC and MCC provide a
more accurate assessment of the performance of the predictor across all classes.
SCL-Epred achieves a GC of 0.75 for the training set and 0.7 for the test set.
The balanced performance of the predictor can be observed in Table 2, espe-
cially for the training set where MCC only varies from 0.72 to 0.78 across the
three classes.

Although the models were trained on sequences of length greater than
30 residues and less than 1500 residues, SCL-Epred can predict shorter and
longer sequences (up to 8192 residues). We tested the ability of the predictor
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to accurately predict some of these short and long sequences using an inter-
nally redundancy reduced (< 30% sequence similarity) set of sequences that
were less than 30 residues in length and had been excluded from the original
training set due to their short length. We found that 359 of these 387 short
sequences were labelled as secreted, and 97.5% of these were correctly pre-
dicted. However the 11 short membrane and 17 “other” short sequences were
incorrectly predicted as secreted. We see the opposite pattern for sequences
greater than 1500 in length. Only 13 of the 179 internally redundancy reduced
sequences in the set of long proteins which were excluded from our training
set were labelled as secreted. 36 were labelled as membrane proteins and 130
as “other”. 95% of the “other” and 64% of the membrane sequences were pre-
dicted correctly, but only 8% of the secreted. It is clear that the relative length
distribution of the classes needs to be considered when interpreting results for
these very short or very long sequences.

SCL-Epred does not predict multiple locations, however we tested the be-
haviour of the web server when predicting sequences which are annotated with
multiple locations in Swiss-Prot. We generated three test sets of sequences
which were excluded from our dataset due to having multiple subcellular lo-
cation annotations (membrane and cytoplasm; membrane and secreted; and
secreted and cytoplasm). We internally redundancy reduced this dataset as
previously described, and redundancy reduced it to less than 30% sequence
similarity with the training set. When submitted to the SCL-Epred web server
31 of the 32 of membrane/cytoplasm sequences were correctly predicted as
either membrane or “other” and all 5 of the secreted/cytoplasm sequences
were correctly predicted as secreted or “other”. There was only one mem-
brane/secreted sequence which was predicted as “other”.

We benchmarked SCL-Epred against a number of publicly available web
servers using the benchmarking subset of the independent test set of 562
protein sequences. First we assessed the ability of SCL-Epred to correctly
predict secreted proteins. A recent study which evaluated thirteen predictors
of secreted proteins found that SignalP (Petersen et al., 2011) achieved the
best overall accuracy (Choo et al., 2009). As well as SignalP we compared
our performance to Signal-BLAST (Frank and Sippl, 2008), another predic-
tor of signal peptides, and three other predictors not specifically trained to
predict secreted proteins or signal peptides in isolation, LocTree2 (Goldberg
et al., 2012), SLPFA (Tamura and Akutsu, 2007) and ESLpred2 (Garg and
Raghava, 2008). It is important to note that we do not specifically predict if
a protein has a signal peptide as some proteins may use other secretary mech-
anisms (non-classical or leaderless protein secretion) (Bendtsen et al., 2004).
For predictors which predict into more than two classes we classified predic-
tions as secreted (secreted–LocTree2/Extracellular–ESLpred2/Secretory(SP)–
SLPFA)) or “other”.

ESLpred2 with a Q of 81.7% only predicted four of the secreted proteins
correctly. However, a GC of 0.13 more accurately reflects the poor performance
of ESLpred2 on this dataset (Table 3) which demonstrated the importance of
not relying on Q as an overall indicator of performance. SCL-Epred has the



Title Suppressed Due to Excessive Length 9

highest Q and GC, however LocTree2 and SignalP also perform very well (all
Q > 90% and GC > 0.7 ). We tested the performance of a two class consensus
predictor made up of SCL-Epred, LocTree2 and SignalP, where a sequence was
predicted as secreted if more that one of the three predictors predicted it as
secreted, and predicted as non-secreted otherwise. Interestingly, the consensus
improved over all individual results giving a Q of 95.2% and a GC of 0.84. This
emphasises the importance of not relying on the results of a single predictor
and the power of consensus.

For three class results we benchmarked SCL-Epred against LocTree2, Euk-
mPLoc (Chou and Shen, 2010), SLPS (Jia et al., 2007) and Cello (Yu et al.,
2006) using the benchmarking subset of the independent test set (Table 4).
We chose these predictors for comparison with SCL-Epred as they all predict
secreted and membrane proteins as well as other protein classes. As before,
SCL-Epred and LocTree2 perform best in both Q and GC, with a Q of 90%
and GC of 0.7 for both. Q for Euk-mPLoc, SLPS and Cello is good, 84.2%,
83.5% and 79.9% respectively, but all three exhibit a much lower GC (0.54%,
0.48% and 0.48% respectively).

As only two predictors performed well for three class predictions (SCL-
Epred and LocTree2) we looked at ways of creating a consensus between the
two. LocTree2 is more accurate at predicting membrane sequences than SCL-
Epred (MCC of 0.65 and 0.57 respectively), however the MCC for SCL-Epred
is higher than LocTree2 for secreted and “other” sequences. Therefore, we
created a consensus predictor which took the SCL-Epred prediction if the
sequence was predicted as secreted or “other” and we took the LocTree2 pre-
diction if the sequences was predicted as membrane. This resulted in 90.7%
of sequences being predicted correctly in the benchmarking test set (Q) and
a GC of 0.72. Although this might be considered only a small improvement
over the independent results of either predictor it does illustrate the potential
advantage of having a number of highly accurate predictors which can be en-
sembled to give more accurate results, similar to meta-predictors which have
been used successfully to improve protein structure predictions for many years
(Mariani et al., 2011).

To estimate the statistical significance of these results, we measured the
standard deviation of the error distribution by sampling with replacement N
sequences from the set of 562 sequences M times. In our case M = 1000 and N =
562. If we consider two standard deviations apart as safe (i.e. <5% probability
that the order is random) we can observe that there is little to distinguish
SCL-Epred, LocTree2, SignalP and the consensus predictor from each other.
However, it is clear that these predictors are substantially outperforming the
other predictors tested. It should be kept in mind that the test sets are small
(562 sequences) and although we do not see a statistically significant separation
in all cases, our results, and in particular the results of the consensus predictor,
are generally better.

We wished to investigate if SCL-Epred could accurately predict the loca-
tion of proteins sequences of species outside of the large plant, animal and
fungi groups for which there are many specialised predictors. As the number
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of sequences annotated with a subcellular location outside of these groups is
limited, species specific predictors for non plant, animal or fungi groups have
the disadvantage of being trained on very small datasets. Therefore, having
trained SCL-Epred using all available eukaryotic sequences we examined the
training set results (in 10-fold cross-validation) categorising each sequence into
one of five supergroups (Keeling et al., 2005), as follows, to assess the predictive
power for each supergroup. We found 723 unique species in the training set.
First we grouped these sequences by their UniProt taxonomy (Table 5), and
then organised them into one of the five supergroups: Unikonts (Amoebozoa,
Fungi and Metazoa), Plantae (Viridiplantae, Rhodophyta and Glaucocysto-
phyceae), Chromalveolates (Stramenopiles, Alveolata, Cryptophyta and Hap-
tophyceae), Excavates (Diplomonadida, Heterolobosea, Jakobida, Parabasalia
and Euglenozoa) and Rhizaria. As the number of non-Plantae/Unikont se-
quences was still quite small we grouped the SAR group (Rhizaria and Chro-
malveolates) and Excavates together. Table 6 shows that 85% of the dataset se-
quences are Unikonts, with only 2% coming from the Chromalveolates/Rhizaria
/Excavate supergroups. However, even with only such a small number of se-
quences SCL-Epred has some predictive power with a Q of 75.1% and a GC of
0.56. Importantly, the predictive power is balanced across all three classes with
MCC only varying from 0.53 to 0.57. The real strength of the predictor, nev-
ertheless, still lies within the Unikonts which have a very strong performance
with a Q of 86.4% and a GC of 0.77. We then compared the performance of
SCL-Epred on the SAR Excavate dataset to that of LocTree2, Euk-mPLoc
and Cello (Table 7). SCL-Epred is more accurate than the other predictors
across each of the three classes except for the “other” class where the MCC
for LocTree2 is better. GC and Q are better in all cases. A consensus pre-
dictor which selects the SCL-Epred prediction if the LocTree2 prediction is
either secreted or membrane, and keep the LocTree2 prediction if it is “other”
is more accurate than either SCL-Epred or LocTree2 across all classes (Table
7). It should be kept in mind that the SAR Excavates dataset is a subset of
SCL-Epred training data and that the method performs better on the training
data than on independent test data (Table 2). Second, it may overlap with the
training data of other methods. This should be kept in mind when evaluating
these results.

4 Conclusion

We have developed a general de novo subcellular localisation predictor for
eukaryotic protein sequences which predicts into three classes (secreted, mem-
brane and “other”) based on a N-to-1 Neural Network architecture (N1-NN).
We have trained SCL-Epred in 10-fold cross-validation on large non-redundant
subsets of annotated proteins from Swiss-Prot 2011 02 and benchmarked it
against other subcellular localisation prediction servers on an independent
test set. SCL-Epred performs favourably on these benchmarks. We have ex-
plored the possibility of using a subcellular localisation predictor trained on a
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diverse set of eukaryotic sequences to predict the localisation of proteins from
the often overlooked Chromalveolates, Rhizaria and Excavate supergroups.
We have shown that SCL-Epred has some predictive power here and expect
that as larger datasets become available these will to be especially beneficial
towards improving prediction accuracy for these sequences. In this work, we
have used the primary sequence and multiple sequence alignments as inputs to
the network. Additional residue-level information could be included, such as
predicted secondary structure, solvent accessibility, location of binding sites,
or the inclusion of putative homology to proteins of known localisation, this
is the subject of future work.

As the amount of sequence information generated by experimental methods
keeps expanding at an ever-increasing pace, it is crucial to develop and make
available faster and more accurate computational methods if this abundance
of sequence data is to be fully exploited. Subcellular localisation prediction
is a step toward bridging the gap between a protein sequence and the pro-
tein’s function and can provide information about potential protein-protein
interactions and insight into possible drug targets and disease processes.

Consensus or meta-predictors have been used successfully for many years
to improve protein structure predictions accuracy (Mariani et al., 2011) and
we have shown that consensus predictions may be used to increase the ac-
curacy of subcellular localisation prediction also. Alternative predictors have
implemented different training methods (e.g. neural network-based methods
such as SignalP or SCL-Epred, or methods trained using support vector ma-
chines (SVM) such as LocTree2), different training datasets, prediction into
different locations or number of locations. Accordingly, some predictors are
more accurate than others at prediction into any one class. This variability
among methods can be exploited to lead to more accurate overall consensus
predictions. We have shown that a simple consensus predictor built using pre-
dictions from SCL-Epred, LocTree2 and SignalP leads to improved prediction
of secreted versus non-secreted proteins over any of the individual methods
with a increase in GC from 0.79 to 0.84. Similarly, a consensus predictor of
SCL-Epred and LocTree2 showed improvement in three class prediction accu-
racy from a GC of 0.7 to 0.72.

There is very little difference in terms of accuracy, ease of use and speed
between SCL-Epred and LocTree2. As SCL-Epred and LocTree2 have both
been implemented as web servers there is no need to install software locally,
predictions are fast and are returned to the user via email. However, as we
have shown a consensus of both predictors is better than either individually,
and the end user should keep this in mind. Both methods are significantly
more accurate than the other predictors tested (with the exception of two
class predictions for SignalP). Importantly, we have shown that SCL-Epred
performs better than any other predictor in the SAR-Excavates group and if
this is the area of interest for the end user then SCL-Epred should be the
predictor of choice, however, there are many other predictors available which
are specialised for animal, plant and fungi sequences.
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Table 1 Number of sequences per class for the training set and the independent test set.

Training Independent Independent
set test set test set (subset)

Secreted 1944 115 105
Membrane 4247 170 37
Other 9011 430 420

Total 15202 715 562

Table 2 Results for SCL-Epred trained and tested in 10-fold cross-validation on the training
set and independent test set. SD - standard deviation.

Spec Sens FPR MCC Q GC

Training set

Secreted 75.11 86.73 4.24 0.78
Membrane 89.21 69.91 3.29 0.72
Other 87.49 93.44 19.46 0.75

86.0 (0.28) 0.75 (0.005)

Independent test set

Secreted 84.91 78.26 2.67 0.78
Membrane 80.49 58.24 4.40 0.61
Other 83.54 94.42 28.07 0.70

83.2 (1.38) 0.70 (0.024)

Table 3 Two class results (secreted/non-secreted) for SCL-Epred benchmarked against
LocTree2, SignalP, SLPFA, Signal-BLAST and ESLpred2 on the benchmarking subset of
the independent test set. The concensus predictor is made up of SCL-Epred, LocTree2 and
SignalP. SD - standard deviation.

Q SD GC SD

Consensus 95.2 0.88 0.84 0.030
SCL-Epred 93.7 1.07 0.79 0.036
LocTree2 92.3 1.11 0.74 0.038
SignalP 91.8 1.13 0.72 0.038
SLPFA 87.2 1.39 0.55 0.047
Signal-BLAST 82.6 1.60 0.51 0.042
ESLpred2 81.7 1.63 0.13 0.055

SCL-Epred is available as part of our web server for protein sequence anno-
tation. Our server is designed to allow fast and reliable annotation of protein
sequences on a genomic-scale. The servers are freely available for academic
users at http://distillf.ucd.ie/distill/. Linux binaries and the benchmarking
sets are freely available for academic users upon request.
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Table 4 Three class results (secreted, membrane and other) for SCL-Epred benchmarked
against LocTree2, Euk-mPLoc, SLPS (results calculated on 170 sequences, “no determinant”
for other 392 sequences) and Cello on the benchmarking subset of the independent test set.
The concensus predictor is made up of SCL-Epred and LocTree2. Standard deviations are
shown in brackets for GC and Q

Consensus SCL-Epred LocTree2 Euk-mPLoc SLPS Cello

MCC MCC MCC MCC MCC MCC

Secreted 0.82 0.79 0.74 0.66 0.22 0.50
Membrane 0.59 0.57 0.65 0.38 0.61 0.45
Other 0.79 0.79 0.73 0.62 0.56 0.48

GC 0.72 (0.034) 0.70 (0.032) 0.70 (0.038) 0.54 (0.034) 0.48 (0.085) 0.48 (0.042)
Q 90.7 (1.25) 89.9 (1.25) 89.3 (1.34) 84.2 (1.46) 83.5 (1.88) 79.9 (1.69)

Table 5 UniProt taxonomic classification of the species in the training set.

Number

Alveolata 104
Amoebozoa 237
Cryptophyta 20
Diplomonadida 10
Euglenozoa 123
Fungi 4528
Glaucocystophyceae 23
Haptophyceae 6
Heterolobosea 4
Jakobida 5
Metazoa 8175
Parabasalia 3
Rhizaria 12
Rhodophyta 127
Stramenopiles 26
Viridiplantae 1799

Table 6 Results for SCL-Epred tested in 10-fold cross-validation on the training set with
sequences classified into the five supergroups. The results for Chromalveolates, Rhizaria and
Excavates have been combined due to their small number. SD - standard deviation.

SAR Excavates Plantae Unikonts

Num MCC Num MCC Num MCC

Secreted 19 0.53 107 0.57 1818 0.80
Membrane 88 0.56 467 0.70 3692 0.73
Other 206 0.57 1375 0.69 7430 0.77

GC 0.56 (0.039) 0.64 (0.019) 0.77 (0.005)
Q 75.1 (2.33) 85.0 (0.82) 86.4 (0.30)



14 Catherine Mooney et al.

Table 7 Results for SCL-Epred, LocTree2, Euk-mPLoc and Cello tested on the
SAR Excavates dataset. SD - standard deviation.

Consensus SCL-Epred LocTree2 Euk-mPLoc Cello

MCC MCC MCC MCC MCC

Secreted 0.55 0.53 0.32 0.41 0.34
Membrane 0.66 0.56 0.40 0.40 0.19
Other 0.63 0.57 0.69 0.52 0.33

GC 0.61 (0.046) 0.56 (0.039) 0.51 (0.031) 0.45 (0.042) 0.33 (0.047)
Q 81.5 (2.14) 75.1 (2.33) 65.6 (2.54) 64.5 (2.56) 54.5 (2.69)

research frontiers grant (10/RFP/GEN2749) to G. Pollastri. The authors wish to acknowl-
edge UCD IT Services, and in particular the Phaeton administrators, for the provision of
computational facilities and support. We thank Tatyana Goldberg from the Rost Lab at TU
Munich for providing LocTree2 predictions.
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