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Abstract— Trade execution is concerned with the actual
mechanics of buying or selling the desired amount of a financial
instrument of interest. A practical problem in trade execution
is how to trade a large order as efficiently as possible. A trade
execution strategy is designed for this task to minimize total
trade cost. Grammatical Evolution (GE) is an evolutionary
automatic programming methodology which can be used to
evolve rule sets. It has been proved successfully to be able to
evolve quality trade execution strategies in our previous work.
In this paper, the previous work is extended by adopting two
different limit order lifetimes and three benchmark limit order
strategies. GE is used to evolve efficient limit order strategies
which can determine the aggressiveness levels of limit orders.
We found that GE evolved limit order strategies were highly
competitive against three benchmark strategies and the limit
order strategies with long-term lifetime performed better than
those with short-term lifetime.

I. INTRODUCTION

Trade execution is the process of trading a particular
instrument of interest. A practical issue in trade execution is
how to efficiently trade a large order, the size of which to be
traded is sizeable according to prevailing market conditions.
For example, an order with volume accounting for 10%
of average daily volume is potentially able to change the
price of that asset causing significant market impact cost.
To reduce such cost, a large order is always divided into
a number of smaller child orders and traded over time.
However, this incurs risk of suffering opportunity cost. An
efficient trade execution strategy seeks to balance out these
costs in order to minimize the total trade cost.

The task in devising an efficient execution strategy is
complex as it entails multiple sub-decisions including how
best to split up the large order, what style to adopt in
executing each element of the order (aggressive or passive),
what type of order to use, when to submit the order, and how
execution performance is to be measured. In addition, the
electronic order book(s) faced by the investor are constantly
changing.

Grammatical Evolution is an Evolutionary Automatic Pro-
gramming (EAP) technique which allows the generation of
computer programs in an arbitrary language. GE can conduct
an efficient exploration of a search space, and notably permits
the incorporation of existing domain knowledge in order
to generate ‘solutions’ with a desired structure. In finance
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(for example), this allows the users to seed the evolutionary
process with their current trading strategies in order to see
what improvements the evolutionary process can uncover.
Recently GE has been successfully applied to a number
of financial problems. These include financial time series
modelling, intraday financial asset trading, corporate credit
rating, and the uncovering of technical trading rules [2], [19].

In our previous work [6], GE has been used to evolve
quality trade execution strategies which determine appropri-
ate time to change limit orders to market orders. GE evolved
strategies have been proved to outperform two benchmark
strategies: simple market order strategy and simple limit
order strategy. This study extends our previous work. In this
paper, GE is used to evolve efficient limit order strategies
which determine the aggressiveness levels of limit orders
with short-term lifetime and long-term lifetime respectively.
And three benchmark limit order strategies are adopted,
which are simple aggressive limit order strategy, simple
modest limit order strategy and simple passive limit order
strategy. A simulated artificial limit order market is used to
test trade execution strategies. An advantage of doing this is
that the strategies can interact with the changing market.

This paper is organized as follows. The next section
provides a brief synopsis of the typical operation of an
electronic double auction marketplace; Section III discusses
trade execution strategies; Section IV explains the grammar
used in this study and describes our performance evaluation
approach; Section V explains agent-based modeling and
describes how we implement the artificial limit order market
used in this study; Section VI provides our results, with
conclusions and some future work being presented in the
final section of this paper.

II. BACKGROUND

Today most market places operate an electronic double
auction limit order book. Traders can either submit a limit
order or a market order. A market order is an order to buy or
to sell a specified number of shares. It guarantees immediate
execution but provides no control on its execution price. In
contrast, a limit order is an order to buy or to sell a specified
number of shares at a specified price. It provides control over
its execution price but does not guarantee its execution.
Table I shows a sample order book, where all the buy and sell
orders are visible to traders in the market. It consists of two
queues which store buy and sell limit orders, respectively.
Buy limit orders are called bids, and sell limit orders are
called offers or asks. The highest bid price on the order book
is called best bid, and the lowest ask price on the order book
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TABLE I
ORDER BOOK 1

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
200 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

TABLE II
ORDER BOOK 2

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 200
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

TABLE III
ORDER BOOK 3

Bid Ask
Shares Prices Prices Shares

300 50.19 50.22 100
500 50.18 50.23 300
400 50.17 50.24 100
500 50.16 50.25 300
300 50.15 50.26 200
100 50.14 50.27 400

is called best ask. The difference between best bid and best
ask is called bid-ask spread. Prices on the order book are not
continuous, but rather change in discrete quanta called ticks.

Limit orders on the order book are typically (depending on
market rules) executed strictly according to (1) price priority
and (2) time priority. Bid (ask) orders with higher (lower)
prices get executed first with time of placement being used
to break ties. A buy (sell) market order is executed at the
best ask (bid) price. The limit order book is highly dynamic,
because new limit orders will be added into the order book,
and current limit orders will get executed or cancelled from
the order book throughout the trading day. Table II shows the
order book after a trader submits a buy limit order with 300
shares placed at price 50.18. Table III shows the order book
after a trader submits a buy market order with 100 shares.

III. TRADE EXECUTION STRATEGY

A trade execution strategy is a set of rules determining a
number of trade execution components designed to minimize
transaction cost. These components include number of orders
to be submitted, size of each order, what type each order
should be and when each order should be submitted to the
market.

The total trading volume of the order to be traded is
often expressed as a percentage of the average daily volume
(ADV) of the stock [12]. An order of less than 5% of ADV
can generally be traded over a day without using complex
strategies. On the contrary, if the target volume is larger than
15% of ADV, it may require execution over several days in
order to minimize market impact. Normally, 5-15% of ADV
is a reasonable order size which could expect to be tradable
over a day using appropriate trade execution tactics. In this
paper, the trading horizon of all strategies is one trading day
and hence the order size is assumed to be of this magnitude.
Formally, we assume that the order to be traded in one day
consists of V shares. The order is sliced into N smaller child
orders, with order size s1, s2, . . ., sN ,

V =
N∑

i=1

si

each of which is submitted to the market at regular intervals
over the trading day. In practice, the size of each child order
is determined from the intraday volume curve of the day, and

the time intervals mostly adopted are fifteen-minute or half-
hour intervals. For simplicity, we assume that the N child
orders have the same order size in all our strategies and these
orders are submitted to the market at a half-hour interval.

The simplest trade execution strategy is a pure market
order strategy in which each child order is submitted as
a market order at regular intervals over the trading day.
The strategy in Fig. 1 is an example. This strategy takes
market liquidity immediately by crossing the bid-ask spread.
It guarantees order execution at the cost of market impact.

Limit order strategies are more often used in which each
child order is submitted as a limit order at regular intervals
over the trading day. For each child limit order, traders
need to specify three parameters which are a lifetime, an
amendment frequency and a limit price. For example, a child
limit order to buy (sell) might have an lifetime of T minutes,
an amendment frequency of ∆t minutes and a limit price
which is the same as the best available price in the market.
This means that this buy (sell) limit order is placed at the best
bid (ask) price at submission time, and if ∆t minutes after
submission, it is not fully executed, it will be amended to
the best bid (ask) price. This amendment process continues
in ∆t intervals up to T minutes after submission, at which
time the uncompleted order(s) are traded as market orders
by crossing the bid-ask spread.

In the example just described, the limit price of the child
order is set to the best available price (modest level). Traders
also submit a more aggressive limit order (aggressive level)
to buy (sell) of which the limit price is one tick size above
(below) the best bid (ask) price, or a more passive limit order
(passive level) to buy (sell) of which the limit price is one
tick size below (above) the best bid (ask) price.

A more sophisticated limit order strategy would set limit
price of a limit order according to dynamic market condi-
tions. For example, some traders might submit aggressive
orders in times of favorable price movement, and place
passive orders in times of adverse price movement [13].

In our GE evolved strategies, the aggressiveness level
of each limit order is determined by an execution rule
evolved using GE. Three aggressiveness levels are adopted.
At each submission time or each amendment time (an integral
multiple of ∆t minutes after submission), an appropriate
aggressiveness level of limit price is chosen according to the
execution rule based on the market conditions. The market



variables representing the market condition are examined in
the next section.

A. Information Indicators

There are a large number of studies in the literature
analyzing the relationship between order placement and the
information content of limit order books.

TABLE IV
DEFINITIONS OF MARKET VARIABLES

Variables Definitions
BidDepth Number of shares at the best bid
AskDepth Number of shares at the best ask

RelativeDepth
Total number of shares at the best five ask prices
divided by total number of shares at the best five
bid and ask prices

Spread Difference between the best bid price and best ask
price

Volatility Standard deviation of the most recent 20 mid-quotes

PriceChange
Number of positive price changes within the past ten
minutes divided by the total number of quotes
submitted within the past ten minutes

Traders are willing to place limit orders more aggressively
if the depth away from the best price on the same side of
the market is high, because higher depth away from the
best bid (ask) price reduces the execution probability of
incoming limit buy (sell) order [3], [8], [21], [26]. If the
market depth on the opposite side is larger, traders prefer
to submit limit orders conservatively. As the bid-ask spread
narrows, the benefits of the better price available to limit
order traders decrease, causing them to place more aggressive
limit orders [8], [20], [21], [25], [26]. Oppositely, when the
bid-ask spread widens, passive limit orders are preferable
[3], [8], [21]. When the market is volatile, limit buy (sell)
order traders have to post lower (higher) bid (ask) prices
in order to protect themselves from trading disadvantage,
because higher volatility increases the probability of trading
against informed investors [26].

Hence, prior literature suggests a range of possible ex-
planatory variables, but indicates that we have an incomplete
theoretical understanding of how these factors interact. This
suggests that there will be particular utility for the application
of evolutionary methods to uncover a suitable model structure
(trade execution strategy). Based on the explanatory factors
considered in the literature, we selected six information
indicators to construct a dynamic trade execution strategy
(Table IV).

IV. EXPERIMENTAL APPROACH

In this study we consider a large order of 10% of ADV of
the artificial market, which is to be traded over one day (5
hours in the artificial market). This order is equally divided
into ten child orders which are submitted to the market
at intervals of thirty minutes over the trading day. Each
child order is submitted as a limit order with an amendment
frequency of ten minutes. We adopt two different lifetimes,
one is short-term lifetime and the other is long-term lifetime.
The short-term lifetime is half an hour, and the long-term

lifetime is up to the end of the trading day, which are used
separately. In all trade execution strategies, any uncompleted
orders are crossed over the spread at the end of trading
day in order to ensure order completion. GE is used to
evolve efficient trade execution strategies which determine
the aggressiveness level of each limit order at submission
time and at amendment time.

A. Grammar of Grammatical Evolution Algorithm

The grammar adopted in our experiments is defined as
follows:

<lc> ::= if (<stamt>)
class = "AggressiveLimitPrice"

else {
if (<stamt>)

class = "PassiveLimitPrice"
else

class = "ModestLimitPrice"
}

<stamt> ::= (<stamt><op><stamt>)|<cond1>|
<cond2>|<cond3>|<cond4>|<cond5>|
<cond6>|<cond7>|<cond8>

<op> ::= and
<cond1> ::= (BidDepth<comp>AvgBidDepth)
<cond2> ::= (AskDepth<comp>AvgAskDepth)
<cond3> ::= (RelativeDepth

<comp>AvgRelativeDepth)
<cond4> ::= (Spread<comp>AvgSpread)
<cond5> ::= (Volatility

<comp>AvgVolatility)
<cond6> ::= (PriceChange

<comp>AvgPriceChange)
<cond7> ::= (PercOfTradedVolume

<comp><threshold>)
<cond8> ::= (PercOfPastTime

<comp><threshold>)
<comp> ::= <less>|<more>|<lessE>|<moreE>
<less> ::= "<"
<more> ::= ">"
<lessE> ::= "<="
<moreE> ::= ">="
<threshold> ::= 0.1|0.2|0.3|0.4|0.5|

0.6|0.7|0.8|0.9

In the grammar, AvgBidDepth represents the average bid
depth of the market, AvgAskDepth represents the average
ask depth of the market, AvgRelativeDepth represents the
average relative depth of the market, AvgSpread represents
the average spread of the market, AvgV olatility represents
the average volatility of the market and AvgPriceChange
represents the average price change of the market. The
six financial variables are observed at the time of order
submission or order amendment. The other two variables
PercOfTradedV olume and PercOfPastT ime represents
the percentage of the traded volume accounting for the
total volume V shares and the percentage of the past time
accounting for the whole trading period at the observed time
respectively.

If the output is class = ”AggressiveLimitPrice”, the
limit orders to buy (sell) will be placed at one tick size above
(below) the best bid (ask) price; if the output is class =
”PassiveLimitPrice”, the limit orders to buy (sell) will
be placed at one tick size below (above) the best bid (ask)
price; if the output is class = ”ModestLimitPrice”, the



limit orders to buy (sell) will be placed at the best bid (ask)
price.

B. Performance Evaluation

The standard industry metric for measuring trade execu-
tion performance is the VWAP measure, short for Volume
Weighted Average Price. It is calculated as the ratio of the
value traded and the volume traded within a specified time
horizon

V WAP =
∑

(V olume ∗ Price)∑
(V olume)

where V olume represents each traded volume and Price
represents its corresponding traded price. An example is
shown in Fig. 1.

In order to evaluate the performance of a trade execution
strategy, its VWAP is compared against the VWAP of the
overall market. The rationale here is that performance of a
trade execution strategy is considered good if the VWAP
of the strategy is more favorable than the VWAP of the
market within the trading period and bad if the VWAP of
the strategy is less favorable than the VWAP of the market
within the trading period. For example, if the VWAP of a buy
strategy (V WAP strategy) is lower than the market VWAP
(V WAPmarket), it is considered as a good trade execution
strategy. Conversely, if the V WAP strategy is higher than
the V WAPmarket, it is considered as a bad trade execution
strategy. Although this is a simple metric, it largely filters
out the effects of volatility, which composes market impact
and price momentum during the trading period [1]. The
performance evaluation functions for each trading day are
as follows:

V WAP Ratio =





104∗(V WAP strategy−V WAP market)
V WAP market

(BuyStrategy)
104∗(V WAP market−V WAP strategy)

V WAP market

(SellStrategy)

where V WAPmarket is the average execution price which
takes into account all the trades over the day excluding the
strategy’s trades. This corrects for bias, especially if the order
is a large fraction of the daily volume [17]. For both buy
and sell strategies, the smaller the VWAP Ratio, the better
the strategy is.

V. SIMULATING AN ARTIFICIAL MARKET

In our experiments, the training and evaluation of all trade
execution strategies are implemented in an artificial limit
order market, which is simulated using an agent-based model.

Agent-based modelling is a computerized simulation con-
sisting of a number of agents. The emergent properties of an
agent-based model are the results of “bottom-up” processes,
where the decisions of individual and interacting agent at
a microscopic level determines the macroscopic behavior

of the system. For a more detailed description of agent-
based modelling in finance, please refer to [5], [14], [15],
[16], [22], [23]. In this paper, our agent-based artificial limit
order market is built based on the Zero-Intelligence (ZI)
model [7] with a continuous double auction price formation
mechanism. The notion of ZI agents was first mentioned in
Gode and Sunder [11]. These agents randomly generate buy
and sell orders. The orders are then submitted to a market
agent, who manages all incoming orders according to the
order matching mechanism in a real limit order market. The
trading process is continuous, where unmatched orders are
stored in an order book.

At each time step, an agent is equally likely to generate a
buy order or a sell order. This order can be a market order,
or a limit order, or a cancellation of a previous order, with
probabilities λm, λl, and λc respectively. The sum of these
probabilities is one (λm + λl + λc = 1). For a limit buy
(sell) order, it has a probability of λinSpread falling inside
the bid-ask spread, a probability of λatBest falling at the
best bid (ask) price, and a probability of λinBook falling off
the best bid (ask) price in the book, (λinSpread + λatBest +
λinBook = 1). The limit price inside the spread follows a
uniform distribution. The limit price off the best bid (ask)
price follows a power law distribution with the exponent of
(1+µ1). The log order size of a market order follows a power
law distribution with the exponent of (1+µ2), while the log
order size of a limit order follows a power law distribution
with the exponent of (1 + µ3).

TABLE V
INITIAL PARAMETERS FOR ARTIFICIAL LIMIT ORDER MARKET

Explanation Value
Initial Price price0 = 50
Tick Price δ = 0.01

Probability of Order Cancellation λc = 0.34
Probability of Market Order λm = 0.16
Probability of Limit Order λl = 0.50

Probability of Limit Order in Spread λinSpread = 0.32
Probability of Limit Order at Best Quote λatBest = 0.33

Probability of Limit Order off the Best Quote λinBook = 0.35
Limit Price Power Law Exponent 1 + µ1 = 2.5

Market Order Size Power Law Exponent 1 + µ2 = 2.7
Limit Order Size Power Law Exponent 1 + µ3 = 2.1

As each incoming buy (sell) market order arrives, the
market agent will match it with the best ask (bid) limit order
stored in the order book. If this market order is fully filled
by the first limit order, the unfilled part will be matched to
the next best ask (bid) limit order until it is fully filled. As
each incoming limit order arrives, the market agent will store
it in the order book according to price and time priority. As
each incoming cancelation order arrives, the market agent
will delete the relevant limit order in the order book.
In order to ensure that the order flows generated by the ar-
tificial market are economically plausible, all the parameters
in our model are derived from empirical evidence [4], [9],
[10], [18], [24]. The parameters used in our simulation are
presented in Table V.



Submission Shares Traded ValueTime Price
Child Order 1: t0 400 ∗ 50.15 = 20,060

600 ∗ 50.16 = 30,096
Child Order 2: t1(t0 + ∆t) 1,000 ∗ 50.40 = 50,400
Child Order 3: t2(t0 + 2∆t) 200 ∗ 50.34 = 10,068

800 ∗ 50.36 = 40,288
Child Order 4: t3(t0 + 3∆t) 1,000 ∗ 50.39 = 50,390
Child Order 5: t4(t0 + 4∆t) 1,000 ∗ 50.68 = 50,680
Child Order 6: t5(t0 + 5∆t) 1,000 ∗ 51.10 = 51,100
Child Order 7: t6(t0 + 6∆t) 1,000 ∗ 50.87 = 50,870
Child Order 8: t7(t0 + 7∆t) 700 ∗ 50.98 = 35,686

300 ∗ 51.00 = 15,300
Child Order 9: t8(t0 + 8∆t) 1,000 ∗ 50.39 = 50,390

Child Order 10: t9(t0 + 9∆t) 1,000 ∗ 50.26 = 50,260
Total: 10,000 505,588

VWAP = 505, 588/10, 000 = 50.5588

Fig. 1. VWAP Calculation of A Sample Buy Strategy

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our experiments comprise of two periods (training and
test periods). In the training period, GE is used to evolve
trade execution strategies. Each individual is exposed to 20
continuous trading days in the artificial market and their
fitness is calculated as their average VWAP ratio over the 20
trading days. The GE experiment is run for 40 generations,
with variable-length, one-point crossover at a probability of
0.9, one point bit mutation at a probability of 0.01, roulette
selection, steady-state replacement and a population size of
100. In the test period, the best evolved strategy in the
training period is tested out of sample over 240 days in the
artificial market.

We also compare our GE strategies to three benchmark
limit order strategies, which are simple aggressive limit
order strategy (SA), simple modest limit order strategy (SM)
and simple passive limit order strategy (SP), where the
aggressiveness levels of limit orders are aggressive level,
modest level and passive level. These strategies adopt the
same amendment frequency and the same lifetimes as GE
strategies.

The results (all out of sample) of buy strategies and
sell strategies are provided in Table VII. The “S-T” repre-
sents short-term lifetime and the “L-T” represents long-term
lifetime. The “Mean” is the average VWAP ratio of each
strategy over the 240 days, and “S.D.” represents the standard
deviation of the average (daily) VWAP ratio. P-values for the
null hypothesis H1 : meanSA ≤ meanGE , H2 : meanSM ≤
meanGE , H3 : meanSP ≤ meanGE are also shown in
the table, to indicate the degree of statistical significance of
the performance improvement of GE strategies over the two
simple strategies. The figures show that the null hypotheses
are rejected at the ≤ 0.01 level.

Based on the results, GE evolved strategies notably outper-
form the three benchmark strategies, simple aggressive limit
order strategy (SA), simple modest limit order strategy (SM)

and simple passive limit order strategy (SP). The negative
VWAP ratios show that the GE evolved strategies achieve
better execution prices than the average execution price of
the market. Comparing the performance of the strategies for
buy and sell orders, we observe that the performances of sell
strategies are better than those of buy strategies in most cases.
And L-T strategies all perform better than S-T strategies,
which indicate that strategies with longer lifetime can achieve
better execution prices than those with short lifetime.

VII. CONCLUSIONS AND FUTURE WORK

Trade execution is concerned with the actual mechanics of
trading an order. Traders wishing to trade large orders face
tradeoffs in balancing market impact and opportunity costs.
Trade execution strategies are designed to balance out these
costs, thereby minimizing transaction cost relative to some
benchmark like VWAP.

In this paper, we applied GE for the aim of evolving
efficient limit order strategies which determine the aggres-
siveness levels of limit orders, and simulated an artificial
limit order market for testing the evolved trade execution
strategies. Three benchmark trade execution strategies were
adopted, which were simple aggressive limit order strategy,
simple modest limit order strategy and simple passive limit
order strategy. While this paper extends previous our work,
it again proves the ability of GE for the purposes of evolving
efficient trade execution strategies. And we found that limit
order strategies with long-term lifetime performed better than
those with short-term lifetime.

There is notable scope for further research utilizing GE
in this problem domain. One obvious route is to widen the
number of market variables which can be included in the
evolved execution strategies. Another route is to evolve the
full structure of the trade execution strategy. In our approach,
we focused on one aspect of trade execution strategy (ag-
gressiveness level of limit order), and other components like
the number of child orders, submission time, lifetime and



TABLE VI
RESULTS OF BEST EVOLVED GE STRATEGIES AND THREE BENCHMARK STRATEGIES (BUY ORDERS)

SA SM SP GE
Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2 H3

S-T 14.7 (1.74%) 66.25 (2.53%) 13.19 (1.76%) -2.35 (1.52%) 0.01 0.00 0.01
L-T 5.14 (1.69%) 60.7 (2.03%) 9.37 (1.48%) -5.86 (1.3%) 0.01 0.00 0.00

TABLE VII
RESULTS OF BEST EVOLVED GE STRATEGIES AND THREE BENCHMARK STRATEGIES (SELL ORDERS)

SA SM SP GE
Mean (S.D.) Mean (S.D.) Mean (S.D.) Mean (S.D.) H1 H2 H3

S-T 24.7 (1.86%) 43.6 (2.18%) 6.78 (2.03%) -8.15 (1.87%) 0.00 0.00 0.01
L-T 5.28 (1.56%) 37.23 (2.27%) 4.91 (1.39%) -12.07 (1.53%) 0.00 0.00 0.01

amendment frequency of each limit order are determined in
advance. Future work will embrace the evolution of the full
structure of trade execution strategy.
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