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analysis of critical loading scenarios  
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Abstract 

The development of accurate codes for the design of bridges and the evaluation of 

existing structures requires adequate assessment of heavy traffic loading and also the 

dynamic interaction that may occur as this traffic traverses the structure. Current 

approaches generally first calculate characteristic static load effect and then apply an 

amplification factor to allow for dynamics. This neglects the significantly-reduced 

probability of both high static loading and high dynamic amplification occurring 

simultaneously. This paper presents an assessment procedure whereby only critical 

loading events are considered to allow for an efficient and accurate determination of 

independent values for characteristic (lifetime-maximum) static and total (including 

dynamic interaction) load effects. Initially the critical static loading scenarios for a 

chosen bridge are determined from Monte Carlo simulation using weigh-in-motion data. 

The development of a database of 3-dimensional finite element bridge and truck models 

allows for the analysis of these various combinations of vehicular loading patterns. The 

identified critical loading scenarios are modelled and analysed individually to obtain the 

critical total load effect. It is then possible to obtain a correlation between critical static 

load effect and corresponding total load effect and to extrapolate to find a site-specific 

dynamic amplification factor.  
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1. Introduction 

 

Correct evaluation of the behaviour of highway bridges under heavy loading is 

extremely important both for the enhancement of design techniques, and for the 

assessment of existing infrastructure. It is widely accepted that codes for the design of 

new bridges are highly conservative in their allowance for dynamics which is 

appropriate given the small marginal cost of increasing capacity in most cases, but such 

conservatism is inappropriate for the assessment of highway bridges [1,2].  

In the case of short/medium span bridges (20 - 30 m), the critical traffic loading 

event typically consists of two heavy trucks meeting or passing on the bridge. These 

critical events are commonly obtained using Monte Carlo simulation in tandem with 

measured Weigh in Motion (WIM) data [3,4,5]. Once the worst static case is known, the 

final traffic load is commonly calculated through the application of a Dynamic 

Amplification Factor (DAF), that accounts for the dynamic component contained in the 

bridge response [6,7,8]. DAF is defined as the ratio of maximum total load effect to 

maximum static load effect for a given loading event (combination of trucks crossing).  

It is known that dynamic interaction is influenced by numerous bridge- and 

vehicle-dependent dynamic parameters, such as vehicle velocity, road profile, 

suspension and tyre stiffness [9,10,11]. The dynamic amplification factors prescribed in 

design/assessment codes are sometimes based on dynamic load tests of existing bridges 

and tend to be conservative. There is considerably discrepancy among the values 

recommended by different codes due to the complexity of the vehicle bridge interaction 

problem. They typically suggest a dynamic amplification which is function only of a 

few general parameters (i.e., bridge length or natural frequency, number of lanes and 
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load effect) that ignore many of these significant bridge and truck dynamic 

characteristics. As part of the SAMARIS project [12], experiments took place on a 

medium-span bridge showing evidence that the dynamic amplification decreases as the 

gross vehicle weight increases and also that the dynamic load factors for two truck 

loading events are less than for one truck loading events.  

Complex dynamic bridge truck interaction models have been developed, using 

finite element packages, to aid understanding of the interaction that can be expected in 

vehicle crossing events [1,13-16]. This paper uses a finite element analysis approach to 

assess the levels of dynamic interaction occurring for the statistically obtained critical 

loading scenarios of a beam-and-slab bridge. A procedure is described by which a site-

specific allowance for dynamics can be found. This dynamic allowance can be 

extrapolated to the 100-year bridge lifetime using multivariate extreme value analysis 

[4]. 

 

2. Description of vehicle bridge interaction finite element models 

 

 An elaborate vehicle bridge interaction model is necessary to allow for 3-

dimensional aspects, such as the transverse effect of multiple vehicles, that have a 

significant influence on the total response and simpler models can not capture.  

 

2.1 Vehicle bridge interaction modelling 

 

The authors use MSc/NASTRAN [17] and a Lagrange technique to model the 

load imposed by a truck crossing a bridge. The Lagrange multiplier formulation allows 
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for the representation of the compatibility condition at the bridge/vehicle interface 

through a set of auxiliary functions. Cifuentes [18] uses this formulation to solve for the 

motion of a single circular mass moving at constant speed on a one-dimensional bridge 

model. This approach can be extended to allow for the presence of multiple masses 

travelling in given paths at different speeds [15]. The bridge structure along any travel 

path is divided into (N-1) finite elements, with coordinates x1,x2,...xN  adopted for the N 

nodes. The variables defining the behaviour of the bridge are: 

 

The variables defining the behaviour of a series of moving masses j (one per 

wheel or one per axle in a 3D or 2D problem respectively) are: 

vj = vj(t) : time-dependent velocity of the vehicle. If there are different 

vehicles, vj might be different for each vehicle. 

mj : mass of wheel j, 

),()( tztww jjj ζ==  : vertical displacement of wheel j measured with respect to the 

horizontal axis, 

Rj = Rj(t) : Interaction force at contact point of wheel j, 

ζj = ζj(t) : Distance x travelled on the bridge by moving wheel j at time t. 

 

z(x,t) : vertical deflection of the bridge in position x at time t, 

zi = zi(t) : deflection of node i at time t, 

θi =θi(t) : rotation of node i at time t, 

iz��  = )(tzi
��  : acceleration of vertical displacement in node i at time t, 

iθ��  = )(tiθ��  : acceleration of rotation in node i at time t. 



 

    5 

The variable ζj denoting position of mass j on the bridge at time t can be defined 

as a function of the velocity input vj(t) as: 

∫ ∑
=

∆==
t

t

t

tt

jjj
j

j

ttvdttv )()(ζ          0 ≤ ζj ≤ L (1) 

 

where time tj is the instant at which mass j enters the bridge and L is the bridge length.  

For an undamped model, the equation of motion of the bridge finite element 

model can be written as: 
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 (2) 

 

where [mij]2Nx2N is the mass matrix of the finite element model and [kij]2Nx2N is the 

stiffness matrix, representing the dynamic characteristics of the bridge model. {zi}2Nx1 is 

a vector containing displacements (zi) and rotation (θi) of the nodes, and {
iz�� }2Nx1 

 their acceleration at time t. In the right-hand side of the equation, vector {f}2Nx1 

represents the forces  fi(t) and moments Mi(t) acting on each node i at a time t due to the 

moving loads. 

A compatibility condition between the vertical displacement wj(t) of each mass j 

and the bridge at the contact point must be established at any time t. For this purpose, a 

set of auxiliary functions Aij(t) and Bij(t) are defined for every mass j, and the 

compatibility condition at the contact point of mass j is formulated as [18]: 
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1 1

( ) ( ) ( ) ( ) ( )
N N

j i j i i j i

i i
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= =

= +∑ ∑  ;   j=1,2, …p (3) 

 

where zi(t) and θi(t) are the displacement and rotation at each node i, N is the total  

number of bridge nodes, p is total number of moving loads, and Aij(t) and Bij(t) are the 

auxiliary functions for load j. Aij(t) and Bij(t) can adopt different values in each node i at 

each instant t.  

The shape of these auxiliary functions is shown in Fig. 1. The functions have 

zero value out of the interval between adjacent nodes. Aij(t) and Bij(t) are completely 

defined once vj(t), approach length, axle spacings and the coordinates of the bridge 

nodes are known. Each axle takes a different time to reach the same node and each 

wheel of the same axle follows a different path on the bridge. Thus, the auxiliary 

functions are different for each mass j , and for each time t. 

According to Cifuentes [18], the interaction force, Rj(t),  between a moving 

circular mass mj and the bridge structure, is composed of the inertial force due to 

vertical motion of the mass (
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Hence the interaction force can be defined as: 
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function. If 0, =≠ jj Rx ζ , where ζj is the distance travelled by the mass j as defined in 

Eq. (1). 

By combining Eqs. (3) and (4), the interaction force, Rj, between the bridge and 

the jth mass can also be expressed as: 

 

]2[ 2
zvzvmgmwmR jjjjjjj

′′+′−−−= ���  (5) 

 

Using the Lagrange multiplier functions and re-ordering terms: 

 

∑ ′′+′−−=+
i

iijiijijjjjj zvzvAmgmRwm ]2[ 2
���  (6) 

 

where vij = vj(ti), that is, velocity of mass mj when it reaches node i. 
 

The roughness of the pavement surface r(x) can be imported into Equation (6) 

by taking into account that vertical displacement of the mass mj will be equal to the 

vertical deformation of the beam minus the depth of the irregularities at the same 

location. This gives: 

 

∑ ′′+′′+′−−=+
i

iijiijiijijjjj rvzvzvAmgmRwm ]2[ 22
���  (7) 
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An initial deflected shape of the bridge can be introduced in the same way. 

Therefore, the total force fi(t) and moment Mi(t) acting on a bridge node i at time t due 

to p different masses can be expressed using the auxiliary functions as: 
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Finally, the equations of motion of the complete moving load plus finite element 

model are given by: 

[ ]

1
1

1
11

1

1

1 1

1 1 1

1 1
1

1

...
...

...
[ ]

...

[ ]

r

j j

j

r

j j

j

r

N j j

N j

r
N

N j j

j

N

i i i i
p i

p

p p

N

i p i i p i

i

A R

B R
z

A R
z

S B R
w

R m g c

A z B
w

R

m g c

A z B

θ

θ

θ

θ

=

=

=

=

=

=

 
 
 
 
 

   
   
   
   
   
   
    

=   
   
   − +
   
   

+   
   
    

 − +



+
 

∑

∑

∑

∑

∑

∑




  

(9) 



 

    9 
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The last (2p) rows in Eq. (9) represent the equations of motion of each moving mass and 

the compatibility condition between deflections of the moving masses and the bridge. In 

these last rows of the global load vector, the parameter cj is given by: 
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(11) 

 

When the dynamic simulation of a truck travelling over a bridge is carried out in 

the following section, this term c is ignored. Also, the centripetal and Coriolis forces 

are not taken into account as most of the vehicle mass (except wheel mass) is not under 

circular motion and the vehicle speeds are relatively small.  

 

2.2 Bridge and truck finite element models 
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The bridge chosen for this study is the Mura River Bridge in Slovenia. The 

bridge is 32m long and has two lanes of bi-directional traffic flow. The bridge, of beam 

and slab construction, is simply supported and forms part of a larger structure. Five 

concrete longitudinal beams support a concrete slab, with a layer of asphalt acting as the 

road surface. Five concrete diaphragm beams are also present in the transverse 

direction. The bridge has been previously modelled, instrumented and validated [19] 

and it is modelled using beam and plate elements as shown in Fig. 2. The vibrational 

mode shapes of the model are consistent with experimental results (first natural 

longitudinal frequency of 3.5 Hz, first torsional frequency of 4.6 Hz, and damping 3%).  

The finite element truck models are modelled using rigid bodies supported by 

suspension and tyre systems. The body mass in the trucks is distributed uniformly 

throughout the frame in addition to mass elements representing the cabin and cargo 

masses rigidly connected to the frame. The 5-axle and 4-axle vehicle models allow for 

articulation between the tractor and trailer. The 3-axle and 2-axle vehicle models are 

rigid bodied. The suspensions and tyres are modelled as standard spring dashpot 

systems, taking typical stiffness and damping values from literature [14,15]. Fig. 3 

shows two typical modes of vibration for the NASTRAN model of the 5-axle truck 

trucks. Body and axle hop frequencies vary with laden weight but they generally fall in 

the ranges [1.5-4.5 Hz] and [8-16 Hz] respectively. 

A smooth road profile (Class ‘A’ according to the ISO standard [20]) is used to 

excite dynamics, and a section of this profile is presented in Fig. 4. 

 

3. Calculation of critical static loading events 
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3.1 Simulation set-up 

 

In order to conduct Monte Carlo simulation of a great number of static load 

cases for the bridge it is necessary obtain from the NASTRAN bridge model the static 

response to an axle of unit weight at any point on the travel path. The load effect of 

interest is taken to be midspan stress. Therefore, the influence lines of midspan stress, 

for each of the 5 longitudinal beams, for both of the lane loading possibilities are 

obtained from the FE model. It is noted that the longitudinal beams are not symmetrical 

about the bridge centre line, and as a result the influence lines for both allowable lane 

loadings must be obtained. Continental European driving laws are applicable (driving 

on right). Consequently the wheel paths for trucks in either lane are at 840 mm and 

2660 mm from bridge centre-line for driver and passenger sides respectively. A 

schematic layout of the bridge is shown in Fig. 5. 

The influence lines for each lane loading are obtained by placing a static load of 

5 kN on each of the wheel paths for the respective lane. This is equivalent to a static 

axle load of 10 kN being applied by a particular truck axle. The loads are moved at 1m 

increments in the direction of traffic flow to obtain the influence lines of beam stress at 

midspan as shown in Figs. 6(a) and (b) for load directions D1 and D2 respectively.  

The obtained influence lines are then normalised to give the response due to a 

unit axle load. Piece-wise polynomial equations are used to algebraically model the 

influence lines obtained. These can be used to rapidly calculate bridge static response 

due to random traffic flow. Eq. (12) gives the superposition equation. 

1 1

( ) ( ( ))
jNM

static ij ij

j i

t W I x tε
= =

=∑∑  (12) 
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where εstatic(t) is the static load effect at time t, M is the number of trucks, Nj is the 

number of axles in truck j, xij(t) is the position on the bridge of axle i in truck j at instant 

t, I(xij) is the influence line ordinate at the specified location xij at instant t, and Wij is the 

static weight of axle i in truck j.  

 

3.2 Statistical calculation of critical loading events 

 

One week of WIM data was taken from the A6 motorway near Auxerre, France. 

The site has 4 lanes of traffic (2 in each direction) but only the traffic recorded in the 

slow lanes was used and it is acknowledged that this results in conservative loading. In 

total 17756 and 18617 trucks were measured in the north and south slow lanes 

respectively, with an average daily truck flow of 6744 trucks [4]. Statistical 

distributions were fit to the traffic characteristics of the site for each lane. 

The load effect chosen for analysis is the maximum midspan stress in 

longitudinal beam 1 (Fig. 5). Monte Carlo simulation is applied, using the fitted 

distributions to generate 10 years of bi-directional, free-flowing traffic data. This traffic 

is passed over the influence line for beam 1 to determine the static load effects that 

result. In the case of medium span bridges (< 40 m), the critical traffic event typically 

consists of two heavy trucks crossing the bridge at the same time. However, all possible 

configurations of vehicles and vehicle meeting events were considered, and some of the 

worst cases consisted of 3-truck event crossings involving 2 trucks in the same lane 

over beam 1. 

Each year of simulated traffic consists of 10 representative periods, loosely 

termed months, of 25 working days each (allowing for 52 weekends and 11 public 
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holidays per annum). The events corresponding to monthly-maximum static load effect 

are retained, for each ‘month’ in each of the 10 years of flow. This is done to minimize 

the number of events that are to be dynamically analysed, as well as providing a shorter 

‘extrapolation distance’. Thus there are 100 critical events corresponding to the 100 

monthly maxima, retained for dynamic analysis. The data retained for a typical critical 

event is presented in Table 1 (this event consists of the meeting of a 5-axle vehicle in 

lane D1 with a 4-axle vehicle in Lane D2). 

Of the 100 monthly-maximum events, 20 are found to be one-truck events, 77 to 

be two-truck events and 3 are three-truck events. The influence surface for beam 1 is 

asymmetrical (Fig. 6); therefore trucks in lane D1 dominate, reducing the effect of 

trucks in lane D2. Hence the monthly-maximum events are derived from the occurrence 

of heavy trucks in lane D1, and trucks with less extreme gross weight in lane D2, as can 

be seen in Table 1. 

 

3.3 Dynamic analysis of worst monthly loading cases 

 

Each of the 100 cases is individually modelled and simulated using 

MSc/NASTRAN and the FE models described in Section 2. An entry is generated in the 

assembled stiffness matrix of the vehicle-bridge NASTRAN finite element system as 

shown in Eq. (9), and the interaction forces Fj at the contact point of each wheel j on the 

bridge are defined as in Eq. (8) through a bulk data file. From the generated responses it 

is possible to obtain the maximum total load effect in beam 1, for each individual 

loading event. The length of the approach is modified to ensure that vehicles meet at the 

prescribed location in the monthly-maximum static load case. A minimum approach 
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length of 100m is specified to ensure the dynamic models have achieved a suitable level 

of stability before crossing the bridge. Figs. 7(a) and (b) illustrate some examples of the 

monthly-maximum events and the corresponding total stress at midspan; the prevalence 

of heavy trucks in lane D1 (top lane) is again evident. 

 

4. Determination of site-specific dynamic amplification factor 

 

The static and total stress results from the FE simulations of the 100 events are 

presented in Fig. 8, which illustrates the scatter in the results. A best fit line through the 

data corresponds to a ratio of total to static of about 1.05. This best fit is approximately 

parallel to the best fit line through the static maxima. In Fig. 9, the results are ranked by 

monthly-maximum static stress. The static response is approximately linear while the 

total response is more variable. Bridge DAF is also plotted in the figure.  

The Eurocode working group recommends a DAF value of 1.17 for a bridge 

length of 32 m and 2 lanes [6], but even though it is apparent that DAF values of 

magnitude 1.2 to 1.5 may be obtained for the chosen bridge and light trucks [16,19], 

these high order DAF values are not evident in the analysis of the bridge’s critical 

loading events. For example, within these 100 critical loading events, the mean DAF is 

1.035 with a standard deviation of 0.041. The ratio of the maximum total response to 

the maximum static response over this 10-year sample period is 1.06, which in this case 

corresponds to the same traffic event. Therefore, the 100th worst static load effect is 

22% less than the load effect due to the heaviest statically weighed truck. This means 

that a static loading case below the 100th would require a DAF well in excess of 1.3 

(=1.22*1.06) to cause higher strain than the derived maximum stress.  
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5. Conclusions 

 

In this paper, the current means of allowing for dynamic interaction of bridge 

and truck(s) have been reviewed for a particular bridge specific and specific traffic 

conditions. Monte Carlo simulation of static load effect has been used to obtain monthly 

maximum loading events, which are then modelled and analysed dynamically using 

NASTRAN to obtain the total load effect. It has been shown that by individually 

assessing the dynamic response due to critical loading a more bridge specific value of 

DAF can be obtained. The procedure has been demonstrated for an existing beam-and-

slab bridge with a very good road profile subject to traffic from a typical European 

route. Simulation results have shown that the dynamic amplification factor may result 

lower than the value proposed by design codes and that accurate dynamic finite element 

modelling can lead to significant savings in structural assessment.  
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Table 1 Typical two-truck meeting event data file. 

Lane  Axle Weights (kg/100)  Axle Spacings (m)  Velocity 
(m/s) 

 Approach 
(m) 

  W1 W2 W3 W4 W5  AS1 AS2 AS3 AS4   

D2  49 80.4 46.1 46.1 -  3 5.7 1.3 -  20.2  100 
D1  92.2 198.1 148.1 148.1 148.1  3.5 5.1 1.1 1.1  24.7  128.5 
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Figure 1 Auxiliary functions. 
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Figure 2 Bridge model. 
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Figure 3 Truck model. 
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Figure 4 Road surface profile. 
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Figure 5 Schematic of bridge showing beam layout. 
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Figure 6(a) Midspan influence lines due to load moving in lane D1. 

 

Figure 6(b) Midspan influence lines due to load moving in lane D2. 
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Figure 7(a) Example of one-truck crossing monthly maximum event. 

 

Figure 7(b) Example of two-truck crossing monthly maximum event. 
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Figure 8 Correlation between maximum static and total stress. 
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Figure 9 Ranking of events by maximum static response. 

 


