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Abstract: 31 

Scope: The objectives are to develop a metabolomic-based model capable of classifying 32 

individuals into dietary patterns and to investigate the reproducibility of the model.  33 

Methods and Results: K-means cluster analysis was employed to derive dietary patterns using 34 

metabolomic data. Differences across the dietary patterns were examined using nutrient 35 

biomarkers. The model was used to assign individuals to a dietary pattern in an independent 36 

cohort, A-DIET Confirm (n=175) at four time points. The stability of participants to a dietary 37 

pattern was assessed.  Four dietary patterns were derived: Moderately Unhealthy, Convenience, 38 

Moderately Healthy and Prudent. The Moderately Unhealthy and Convenience patterns had 39 

lower adherence to the Alternative Healthy Eating Index (AHEI) and the Alternative 40 

Mediterranean Diet Score (AMDS) compared to the Moderately Healthy and Prudent patterns 41 

(AHEI = 24.5 and 22.9 versus 26.7 and 28.4, p < 0.001). The dietary patterns were replicated in 42 

A-DIET Confirm, with good reproducibility across four time points. The stability of participants’ 43 

dietary pattern membership ranged from 25.0-61.5%.  44 

Conclusion: The multivariate model classified individuals into dietary patterns based on 45 

metabolomic data. In an independent cohort, the model classified individuals into dietary 46 

patterns at multiple time points furthering the potential of such an approach for nutrition 47 

research.  48 
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1 Introduction 49 

Dietary pattern analysis has emerged as an important tool in nutritional epidemiology, with many 50 

authors favouring its use, concluding that dietary patterns are capable of capturing the variation 51 

of eating patterns in a population. [1, 2] Dietary patterns can provide descriptions of dietary 52 

intakes and exposures that correspond to more representative real-life scenarios compared to 53 

looking at a single food or nutrient effect. [3, 4] However, dietary pattern analysis is underpinned 54 

by data derived from traditional dietary assessment methods which have well documented 55 

limitations. [5] Dietary biomarkers were identified as a potential objective measure to enhance 56 

dietary assessment. [6] Dietary pattern biomarkers are a subclass of dietary biomarkers which 57 

comprise of a set of food intake biomarkers and food compound intake biomarkers that are 58 

reflective of an individual’s habitual dietary intake and have the capacity to distinguish between 59 

a range of dietary habits. [7]  60 

Ideally, dietary pattern biomarkers could classify individuals into a distinct dietary pattern and 61 

allow compliance to a priori dietary patterns to be examined. [6] There are a limited number of 62 

studies published in the area of classifying individuals into dietary patterns based on metabolite 63 

data. O’Sullivan and colleagues successfully identified metabolomic profiles reflective of three 64 

dietary patterns through identification of metabolites associated with intakes of certain food 65 

groups. [8] Recently published work assessed metabolite profiles of four predefined healthy diet 66 

pattern scores in American post-menopausal women. [9] The work resulted in the identification of 67 

similar metabolites predictive of the four healthy diet pattern scores, with the majority of the top 68 

5 metabolites reflecting the emphasis of fish and omega 3 consumption in the diet pattern scores. 69 

Of the studies that used metabolite data (urinary or plasma) to classify individuals into dietary 70 

patterns, most succeeded in creating multivariate models reflective of previously identified 71 
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dietary patterns. [10-14] Using urinary metabolite profiles, a multivariate model classified 72 

participants into a healthy or unhealthy dietary pattern in a cross-sectional study with 567 adults. 73 

[14] Dietary data supported the derived metabolomic-based dietary patterns.  Other research was 74 

successful in validating a multivariate model in two independent populations by assessing 75 

participants’ characterisation to the Dietary Approaches to Stop Hypertension (DASH) diet score 76 

based on urinary metabolite profiles. [12] Here, both independent populations supported the 77 

associations between urinary metabolite profiles and the DASH diet score.  78 

The potential for metabolomic-based dietary pattern analysis demonstrated in the literature to-79 

date is very promising, however, research is needed to ensure metabolomic-based models are 80 

supported by data such as nutritional status biomarkers and food intake data and applicable 81 

across populations. In addition, the generalizability of dietary patterns in terms of reproducibility 82 

over time is emerging as an important aspect and one that is essential for the future development 83 

of dietary patterns in Precision Nutrition. [15-16] Thus, the objective of the present study was to 84 

develop a multivariate model using urinary metabolomic data to classify participants into dietary 85 

patterns and employ it in an independent population group. The ability of this model to classify 86 

individuals into dietary patterns at four time points was examined.   87 
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2 Materials and Methods: 88 

2.1 The National Adult Nutrition Survey 89 

The study design is described elsewhere, and ethical approval was granted by the University 90 

College Cork Clinical Research Ethics Committee of the Cork Teaching Hospitals and 91 

University College Dublin Human Ethics Research Committee (ECM 3 (p) 04/11/08). [17] In 92 

brief, NANS recruited 1500 free-living males and females, aged 18 and older, and who were not 93 

pregnant or lactating. All eligible participants gave written consent according to the Helsinki 94 

declaration. A four-day semi-weighed food diary was collected to assess habitual dietary intake 95 

and anthropometric measurements including height, weight, waist and hip circumferences, body 96 

composition and blood pressure were also obtained. Upon completion of the four-day semi-97 

weighed food diary, fasting blood and urine samples were collected. The dietary data was 98 

analysed using WISP software (Tinuviel Software). Nutrient data in WISP was based on data 99 

from McCance and Widdowson’s The Composition of Foods, fifth and sixth editions and all 100 

supplementary editions. Dietary and urinary data from a subset of 567 participants who took part 101 

in the National Adult Nutrition Survey (NANS) were obtained for the present study. 600 102 

participants were randomly selected to represent equal numbers of males and females, with 33 103 

participants being excluded due to high ethanol and acetaminophen peaks. [14] The dietary data 104 

for this subset was collapsed into a set of food groups based on previous research. [18] The 105 

Alternative Healthy Eating Index (AHEI) and Alternative Mediterranean Diet Score (AMDS) 106 

were calculated to assess adherence to both diet pattern scores. The AHEI was scored based on 107 

work by McCullough and colleagues, while the AMDS scoring was adapted from work by Fung 108 

and colleagues. [19, 20] Details for measurements of nutrient biomarkers was previously described 109 

elsewhere. [14, 21-23] 110 
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2.2 A-DIET Confirm 111 

A-DIET Confirm was a longitudinal study examining the habitual dietary intakes of participants 112 

across a four-month period and involved the collection of biological samples. Ethical approval 113 

was granted for A-DIET Confirm by University College Dublin Sciences Human Research 114 

Ethics Committee (LS-16-91-Gibbons-Brennan). Participants included healthy males and 115 

females, between 18 and 60 years old, who were not consuming supplements or prescribed 116 

medication (the oral contraceptive pill was allowed) and had a BMI between 18.5 and 30 kg/m2. 117 

Exclusion criteria included pregnancy/lactation and any diagnosed health condition. Once 118 

consent was obtained, participants completed four study visits, once a month, for four 119 

consecutive months. Anthropometric measurements were collected in duplicate at each study 120 

visit including height, weight, waist, and hip circumference measurements. Dietary data was 121 

collected by administrating a 24-hour dietary recall at each visit, to assess the participants’ 122 

habitual dietary intake, based on the US Department of Agriculture Automated Multiple-Pass 123 

method and followed a protocol previously described. [24] A food atlas was used to verify portion 124 

sizes if the exact amount was not known by the participant. [25] Participants collected fasting first 125 

void urine samples into 50 ml collection vessels the morning of each of their study visits. The 126 

samples were inverted, centrifuged at 1800 x g for 10 minutes at 4 ºC, aliquoted into five 1 ml 127 

eppendorfs and were stored at -80 ºC.  128 

The 24-hour dietary recalls (n=673) were coded according to the food atlas used during data 129 

collection in relation to portion size. The dietary data was double entered independently by two 130 

researchers and cross-checked for any discrepancies in Nutritics (Dublin, Ireland). For food 131 

group analysis, each food or drink item was assigned to one of 32 predefined food groups based 132 

on previous studies (Supporting Information Table S1). [18, 27] As participants were asked to 133 
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avoid alcoholic beverages the day prior to each visit and exclusion criteria included the 134 

consumption of nutritional supplements, dietary intakes were analysed in A-DIET Confirm 135 

participants based on 30 food groups. In total, 191 participants were recruited for the A-DIET 136 

Confirm study. Following the first study visit, 16 participants dropped out. As a result, 175 137 

participants completed two, three or four visits and were included for analysis. 138 

2.3 Metabolomic analysis 139 

Metabolomic analysis of urine samples collected from A-Diet Confirm was carried out using 140 

NMR spectroscopy. Urine samples (500 µl) were defrosted at room temperature for 30 minutes 141 

and prepared by addition of 250 µl potassium phosphate buffer (0.2 mol KH2PO4/l, 0.8 mol 142 

K2HPO4/l). After centrifugation at 5360 x g for 5 minutes at 4 ºC, 60 µl deuterium oxide, and 10 143 

µl sodium trimethyl [2,2,3-2H4] proprionate (TSP) were added to 540 µl of the supernatant. 144 

Spectra were acquired on a 600 MHZ Varian NMR Spectrometer (Varian Limited, Oxford, 145 

United Kingdom) by using the first increment of a nuclear overhauser effect spectroscopy 146 

(NOESY) pulse sequence at 25 ºC. Spectra were acquired with 16384 data points and 128 scans. 147 

Water suppression was achieved during the relaxation delay (2.5 s) and the mixing time (100 148 

ms). 1H NMR spectra were referenced to TSP and were processed manually with Chenomx 149 

NMR Suite (version 8.3, Chenomx Edmonton, Canada) by using a line broadening of 0.2 Hz, 150 

and all spectra were phase and baseline corrected. All spectra were converted into 550 spectral 151 

regions of 0.01 parts per million (ppm). The spectral regions from 0.505 ppm to 7.995 ppm were 152 

included for analysis, with the exclusion of the water region (4.0ppm to 6.0 ppm), and data were 153 

normalized to the total area of the spectral integral. Urinary metabolomic analysis was performed 154 

on the NANS samples in a similar manner to that described above, as previously detailed 155 

elsewhere. [14] In brief, urine samples (500 µl) were prepared by the addition of 250 µl potassium 156 
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phosphate buffer and centrifugation. A total of 60 µl deuterium oxide, and 10 µl TSP were added 157 

to 540 µl of the supernatant. 1H-NMR spectra were acquired using the first increment of a 158 

NOESY pulse sequence with the same parameters as described above. Metabolite identification 159 

was performed using Chenomx NMR suite.  160 

2.4 Statistical analysis 161 

Statistical analysis was performed using IBM SPSS Statistics version 24.  A total of 567 NANS 162 

urinary spectra were available and analysis of the data revealed four outlying samples which 163 

were removed for the remainder of the analysis. Using z-scores of the NANS urinary 164 

metabolomic data the number of clusters was determined using a hierarchical clustering analysis 165 

approach in SIMCA: a total of four potential clusters were identified (Supporting Information 166 

Figure S3). K-means cluster analysis was performed to derive the four clusters and roughly 167 

equal numbers of participants occupied the four clusters. This method of cluster analysis creates 168 

clusters by assuming a certain number of clusters, k, and using Euclidean distances, assigning 169 

participants to non-overlapping, mutually exclusive clusters.  Convergence was achieved 170 

following 11 iterations with convergence defined as a maximum absolute coordinate change for 171 

any centre of 0 (Supporting Information Table S2). Initial cluster centres were determined 172 

using the default approach in SPSS.  Analysis of the derived clusters was carried out to identify 173 

the characteristics of each cluster in relation to food group percentage energy contribution, 174 

nutrient intakes, nutrient status, diet quality scores and cluster demographics. Means and SD 175 

were derived for all data and one-way ANOVAs and chi-square test were used to identify 176 

differences. A one-way ANOVA was performed in Metaboanalyst 4.0 to identify significant 177 

spectral features (bins) from the urinary metabolomic data between the four clusters, with a false 178 
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discovery rate (FDR) adjusted p-value (based on the Benjamini-Hochberg method) ≤ 0.05 179 

considered statistically significant.  180 

Using cluster centers from the NANS four cluster model, the participants in A-DIET Confirm 181 

(n=175) were classified using the metabolomic data at each visit. Individuals with missing data 182 

for a particular timepoint were not included at that timepoint.  Food group means and SD for 183 

each cluster were derived at each visit. A Kruskal-Wallis test was performed to identify 184 

differences in food group intakes across the four clusters, based on the average percentage 185 

energy contribution means and SD. Statistical significance was determined in SPSS using p-186 

value ≤ 0.05. The stability of the dietary patterns in A-DIET Confirm were examined by 187 

identifying the movement of participants from visit 1 to visit 2, 3, and 4. The strength of 188 

association or the level of agreement of cluster membership between visit 1 (reference visit) and 189 

visit 2, 3 or 4 was also assessed by obtaining Cohen’s kappa, Goodman and Kruskal’s gamma 190 

and Kendall’s tau-b correlation coefficient in SPSS. We define reproducibility of dietary patterns 191 

as the similarity of the dietary patterns obtained over multiple timepoints. [28]   192 
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3 Results  193 

3.1 Defining four dietary patterns using metabolite data 194 

 Urinary metabolomic data from 567 NANS participants were included for analysis. A total of 195 

four outliers were identified and removed from further analysis due to high hippurate, 196 

trimethylamine N-oxide and acetylsalicylate peaks. K-means cluster analysis was performed on 197 

the remaining participants (n= 563) using a four-cluster solution. Comparison of demographics 198 

and anthropometric characteristics between participants in each cluster identified significant 199 

differences (p < 0.05) in age, social class, smokers, and supplement users (Table 1). 200 

Analysis of the food intake data revealed that several food groups were significantly different 201 

across clusters (Table 2). Furthermore, analysis of nutrient status, nutrient intakes, diet quality 202 

scores and demographics indicated that the clusters identified using the metabolomic data were 203 

significantly different in food group intake, nutrient intake, and dietary pattern scores (Table 1, 204 

Tables 3-4). In line with the food intake data and nutrient intakes, we considered cluster 1 and 205 

cluster 2 as ‘unhealthy’ dietary patterns. We defined cluster 1 as Moderately Unhealthy. The 206 

participants in cluster 1 had the highest intakes of processed white meat, and low intakes of fish, 207 

fish dishes and products and potatoes, however, they had high intakes of wholemeal, brown 208 

bread and rolls, and fruit. In addition, the participants had a lower adherence to the AHEI and 209 

AMDS compared to the Moderately Healthy and Prudent dietary patterns indicating participants 210 

consumed a less healthy diet, as well as having the lowest intake of protein and vitamin B6. The 211 

participants in cluster 2 were characterised by an unfavourable nutritional profile with low folate 212 

status along with high levels of erythrocyte glutathione reductase activation coefficient (EGRac), 213 

osteocalcin, cross-linked c-telopeptide, γ-tocopherol, urinary sodium, and urinary creatinine. 214 

Food group analysis demonstrated that participants in cluster 2 had the highest intakes of 215 
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processed red meat, chips and processed potatoes, savouries, and high energy beverages. These 216 

participants also had the lowest intakes of vegetables and vegetables dishes, fruit, low fat and 217 

skimmed milks, and wholemeal, brown bread and rolls, consistent with a Convenience dietary 218 

pattern. [29, 30] Furthermore, participants in cluster 2 had the highest sodium intake and the lowest 219 

adherence to the AHEI and AMDS. Interestingly, participants in cluster 2 had the lowest mean 220 

age and the highest rate of smoking.  221 

We described clusters 3 and 4 as ‘healthy’ dietary patterns, again supported by analysis of 222 

dietary data and nutrient status. Food group intakes for participants in cluster 3 included the 223 

highest contribution to energy from vegetables and vegetable dishes, fruit, and fish, fish dishes 224 

and products. In addition, those in cluster 3 had the lowest intakes of processed red meat and 225 

processed white meat. However, compared to cluster 4, participants had high intakes of chips 226 

and processed potatoes and lower dietary scores, therefore cluster 3 was identified as a 227 

Moderately Healthy dietary pattern. The characteristics of participants in cluster 4 included the 228 

lowest levels of urinary sodium along with EGRac, cross-linked c-telopeptide, γ-tocopherol and 229 

urinary creatinine, as well as the highest serum levels of folate. Cluster 4 was defined as a 230 

Prudent dietary pattern, in line with the literature. [29, 31] Food groups that significantly 231 

contributed to the intakes of participants in cluster 4 included the highest intakes of low fat and 232 

skimmed milks, high intakes of vegetables and vegetable dishes, fruit, and wholemeal, brown 233 

bread and rolls and lowest intakes of processed red meat, similar to cluster 3, savouries, chips 234 

and processed potatoes, and high energy beverages. Adherence to the AHEI and AMDS was 235 

highest in those classified into cluster 4. The participants in cluster 4 had the highest mean age, 236 

showed higher intakes of supplements, and had the lowest rate of smokers. 237 
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There was a total of 351 NMR features discriminating, significantly, across the four clusters 238 

(Figure 1). The metabolites that differed across the four clusters included alanine, citrate, 239 

pantothenic acid, creatinine, isobutyrate, hippurate, trimethylamine n-oxide (TMAO), and 240 

leucine (Supporting Information Table S3). 241 

3.2 Reproducibility and stability of dietary patterns in a longitudinal study over 4 months  242 

Repeated measures of urine samples (two to four) were obtained from 175 participants in a 243 

longitudinal study over four months. Three participants had their urinary metabolomic data from 244 

visit 3 excluded due to poor quality data. Using the cluster centers from the NANS model, 245 

participants from A-DIET Confirm were classified into one of the four derived dietary patterns at 246 

each of the four visits using the metabolomic data. Significant differences were observed for sex 247 

between the four clusters (p = 0.020) (Supporting Information Table S4). Analysis of the 248 

dietary data demonstrated similar results in the food groups contributing to the four patterns 249 

compared to the results of the NANS dietary data analysis (Supporting Information Table S5). 250 

Furthermore, similar dietary patterns were obtained across the four timepoints: the foods with the 251 

highest contribution to energy were similar across time (Figure 2-3). Analysis of the food groups 252 

for each cluster across time revealed no major differences: only one food group in cluster 3 253 

changed across time (Supporting Information Tables S6-S9). The stability of A-DIET Confirm 254 

participants’ dietary pattern membership was examined based on the participants’ classification 255 

at visit 1. Membership remained stable for 25 to 61.5% of participants between visit 1 and visit 256 

2, 3, or 4 (Table 5). On average 29.3% of participants classified into cluster 1 at visit 1 retained 257 

their cluster membership at visit 2, 3 or 4. This was similar in cluster 3, whereby 32.1% of 258 

participants remained in the same cluster at visit 2, 3, or 4. The average level of stability for 259 

cluster 2 was 45.8%. The highest level of stability was observed in cluster 4 with on average 260 
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51.9% of participants classified at visit 1 remaining in cluster 4 at visit 2, 3, or 4. Using cluster 1 261 

membership as the reference, Kappa statistics revealed the best agreement between visit 1 and 2 262 

(Table 5).   263 

4 Discussion 264 

The present study successfully developed a metabolomic-based multivariate model which was 265 

capable of classifying participants into one of four dietary patterns. The dietary patterns were 266 

supported by significant differences in nutritional status, food group intakes and diet quality 267 

scores across the clusters. Importantly, this model was employed in an independent population 268 

across four time points.  269 

K-means cluster analysis was successful in classifying 563 participants into one of four dietary 270 

patterns based on their urinary metabolomic data independent of dietary data. Paramount to this, 271 

the classification of the participants into each pattern was supported using biomarkers of 272 

nutritional status and food intake data. Of note, the classification was supported by the adherence 273 

to both the AHEI and AMDS dietary pattern scores as well as nutrient status biomarkers. The 274 

importance of this work is emphasised by the fact that there are only a limited number of studies 275 

to-date where metabolomic data has been used to derive dietary patterns, without the use of the 276 

participants’ dietary intakes. In particular, the present work derived dietary patterns comparable 277 

to those of a posteriori approach, while previous research used metabolomic data to examine the 278 

adherence to various predefined diets. Research by Andersen and colleagues used urinary 279 

metabolomic data to develop models to assess adherence to the New Nordic diet (NND) and the 280 

Average Danish diet (ADD). [11] The study successfully classified 81% of participants into the 281 

correct dietary group. Classifying individuals into metabolomic-based dietary patterns offers 282 
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great potential in nutritional epidemiology. This approach may provide an objective method and 283 

allows us to overcome issues relating to under-reporting of dietary intakes. 284 

An important aspect of our work is that assessment of food intake and nutrient status corroborate 285 

the metabolomic-based dietary pattern classification. Significant differences were observed 286 

across all four clusters with respect to percentage energy contribution of food groups and nutrient 287 

intakes. Clusters 1 and 2 were representative of ‘unhealthy’ dietary patterns, defined as a 288 

Moderately Unhealthy dietary pattern and a Convenience dietary pattern, respectively. We 289 

categorized clusters 3 (Moderately Healthy) and 4 (Prudent) as ‘healthy’ dietary patterns, with 290 

distinct aspects differentiating them from one another in terms of food group intakes, nutrient 291 

intakes and nutritional status. For example, cluster 3 had higher intakes of fruit and vegetable 292 

dishes compared to cluster 4, while cluster 4 had the lowest intakes of chips and processed 293 

potatoes. It is noteworthy that findings from the dietary analysis demonstrated that clusters 1 and 294 

2 had a lower adherence to the AHEI and AMDS scores compared to clusters 3 and 4. High 295 

scores of the AHEI corresponds with a healthier diet while lower scores represent individuals 296 

following a less healthy diet. [32] This is supportive of our distinction between ‘healthy’ and 297 

‘unhealthy’ dietary patterns. The fact that both the ‘healthy’ and ‘unhealthy’ dietary patterns, 298 

derived in previous research, could be further broken down demonstrates that there can be many 299 

variations of healthy and unhealthy diets within a population. [14] The literature to-date supports 300 

this concept of more variations of dietary patterns. Walthouwer and colleagues examined three 301 

dietary patterns, with two representing healthier diets compared to the third: healthy, moderately 302 

healthy, and unhealthy. [33] Pryer and colleagues also identified four diets within a male 303 

population ranging from “Convenience” (unhealthy) to a “Healthier” dietary pattern. [34] These 304 

distinctions may be important in guiding individuals towards an improved dietary intake. Our 305 
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study was successful in reproducing the metabolomic-based dietary patterns in an independent 306 

population. The multivariate metabolomic model was capable of classifying participants of the 307 

A-DIET Confirm study into one of the four dietary patterns, at four different time points. 308 

Additionally, the dietary data collected in the A-DIET Confirm study further supported the 309 

model developed in NANS with similar differences in food group contribution across the four 310 

clusters evident between both studies. It should be noted that there were fewer significant food 311 

group differences in the A-DIET clusters probably due to the lower number of individuals in the 312 

study.  Metabolomic analysis identified metabolites including hippurate, creatinine, citrate, and 313 

tryptophan to be discriminating across the four clusters. These metabolites were also identified as 314 

discriminating metabolites between a healthy and unhealthy cluster in previously published 315 

work, with hippurate also identified to be present in higher concentrations of those following a 316 

Mediterranean diet compared with a Western diet. [14, 35] It is also important to acknowledge that 317 

the metabolomic profile will capture biomarkers that are not dietary biomarkers but potentially 318 

as a metabolic consequence of a certain diet. We consider this is the case for the endogenous 319 

metabolites, creatinine, citrate, and tryptophan. It should also be noted that the full profile was 320 

used as opposed to individual metabolites and consider that the success of the model is due in 321 

part to combination of multiple metabolites.  322 

With the increased interest in the use of dietary patterns to demonstrate the links between diet 323 

and disease, the stability of dietary pattern membership is important because it will permit 324 

studies to account for changes in dietary habits. Understanding that individual’s dietary pattern 325 

membership may fluctuate over time is key for the development of more effective public health 326 

policies and interventions, especially relating to dietary intakes associated with health outcomes. 327 

[36-38] Previous research demonstrated that examining dietary intakes at multiple time points 328 
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would help to understand the nature of changes that occurs over time in an individual’s dietary 329 

pattern. [28] Our study demonstrated that stability of participants differed across the dietary 330 

patterns with stability higher for two of the dietary patterns.  Participants in dietary pattern 1 and 331 

3 displayed a greater variability in their dietary patterns: future exploitation of such variability 332 

could be used to promote a healthier diet. In the literature, the level of stability that individuals 333 

retain depends on the number of time points used in the longitudinal studies. When two 334 

timepoints were examined higher stability (66 to 73%) was reported compared to studies where 335 

three timepoints were used (41.8%). [28, 33, 39] Furthermore, these previous studies were based on 336 

two or three dietary patterns, compared to the present study, where membership of four dietary 337 

patterns was examined. Taking these observations into account the range observed in our study 338 

for dietary pattern 2 and 4 compares well to the previous literature. Stability of dietary pattern 1 339 

and 3 was lower than previously reported but may result from a combination of use of more 340 

timepoints and dietary patterns in the present study. However, one must be cognisant of this 341 

lower stability and overall, it supports the collection of multiple samples to capture the variation 342 

in dietary intake of individuals in longitudinal studies. 343 

A limitation of the present study relates to use of two different dietary intake instruments in the 344 

two studies. The A-DIET Confirm study used 24-hour dietary recalls which are generally 345 

reflective of recent dietary intakes compared, for example to the use of food frequency 346 

questionnaires (FFQs) (assess habitual dietary intakes over a period of time) or food diaries that 347 

offer a more detailed description of recent dietary intakes. This may have limited the 348 

identification of food group differences to support dietary pattern classification using 349 

metabolomic data. However, in the development of the model in the NANS study we used four-350 

day food diaries and were able to identify a large number of differences in food group intake 351 
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across the clusters. Self-reported data is prone to a number of well-defined bias and in an effort 352 

to overcome this we used nutrient status biomarkers in conjunction with the dietary data to 353 

confirm the dietary patterns.   K-means cluster analysis was selected as the method to derive 354 

dietary patterns because it can group individuals into non-overlapping clusters. [40] This was 355 

particularly useful for tracking of individuals across the timepoints. However, a limitation of k-356 

means is that it is necessary to predefine the number of clusters. The ability to classify 357 

individuals into dietary patterns using urinary metabolomic data and the reproducibility of the 358 

model in an independent population across four time points are major strengths of our study. The 359 

results add to the limited research in the area of dietary pattern biomarkers as an objective 360 

method of dietary pattern classification. There is limited knowledge to-date surrounding the 361 

stability of dietary pattern membership and our results support the requirement for multiple time 362 

points to be examined. The ability to distinguish the derived dietary patterns supported by 363 

nutritional status and dietary data is another strength of the present study.  364 

The present work derived a metabolomic-based multivariate model that was successful in 365 

classifying individuals into dietary patterns and was reproducible in an independent study at 4 366 

time points. While the overall dietary patterns were reproducible, our work indicated that there 367 

was movement between dietary patterns over time. Further work is warranted to establish the 368 

importance of such movement between dietary patterns and to perform similar work in larger 369 

more diverse population groups. The ability to utilize the metabolomic-based model in a 370 

different study is an important step forward in the development of the potential of such 371 

approaches. Further development of this approach in different population groups will be 372 

important for the development of metabolomic-based dietary assessment. To conclude, the 373 

present study demonstrates the potential that metabolomic-based dietary patterns offers in the 374 
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search for an objective method of dietary assessment, however, it is now imperative that the 375 

reproducibility and stability of such dietary patterns is extensively investigated.376 
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Tables: 

Table 1. Demographics and Anthropometric Characteristics across the four clusters in the National Adult Nutrition Survey (n=563) 

Characteristic Cluster 1 (n=131) Cluster 2 (n=112) Cluster 3 (n=167) Cluster 4 (n=153) P-value 

Age (years) 47.0 ± 17.2a 37.7 ± 14.4b 48.2 ± 14.9a,c 52.1 ± 15.9c <0.001 

Sex (% males) 53.4 58.9 49.7 42.5 0.055 

Social Class (%PMT) 44.8 40.9 58.1 51.3 0.017 

Smokers (%) 22.5 26.8 17.6 5.2 <0.001 

Supplement users (%)  40.3 42.3 46.7 60.1 0.030 

BMI (kg/m2) 28.0 ±6.0 27.0 ± 4.9 27.5 ± 4.9 27.3 ± 4.7 0.491 

Systolic Blood Pressure (mmHg) 126.9 ± 18.7 123.4 ± 9.4 126.7 ± 18.7 125.8 ± 18.6 0.462 

Diastolic Blood Pressure (mmHg) 78.8 ± 10.6 77.9 ± 10.8 79.3 ± 11.2 78.7 ± 11.3 0.809 

Data is mean ± SD, n; number of participants, %; percentage, %PMT; percentage of participants employed in a professional, managerial or technical capacity, mmHg; 

millimetres of mercury, P-value determined using a one-way ANOVA; P-value <0.05 was considered significant. Bold values describe the clusters with the highest 

demographic and anthropometric characteristics. Underlined values describe the clusters with the lowest demographic and anthropometric characteristics. a,b,c Mean values 

with unlike superscript letters are significantly different between clusters (P< 0·05). Cluster 1 = Moderately Unhealthy dietary pattern; Cluster 2 = Convenience dietary 

pattern; Cluster 3 = Moderately Healthy dietary pattern; Cluster 4 = Prudent dietary pattern.  
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Table 2. Diet quality scores and food group intake (%TE) across the four clusters in the National Adult Nutrition Survey (n=563) 

Diet quality score/Food Group 

Cluster 1 

(n=131) 

Cluster 2 

(n=112) 

Cluster 3 

(n=167) 

Cluster 4 

(n=153) 

P-value 

Diet quality scores:      

AHEI 24.5 ± 9.1a,b 22.9 ± 8.8b 26.7 ± 10.5a,c 28.4 ± 12.1c <0.001 

AMDS 3.16 ± 1.49a,b 2.70 ± 1.53b 3.39 1.59a,c 3.57 ± 1.66c <0.001 

Food groups:      

Rice, Pasta, Flours and Starches 1.6 ± 2.8 2.2 ± 3.6 2.0 ± 2.9 2.2 ± 3.1 0.291 

Savouries  2.7 ± 5.2 4.3 ± 6.7 2.7 ± 5.3 2.6 ± 5.1 0.042 

White Bread, Rolls, Scones and Croissants 7.4 ± 7.0 7.3 ± 6.5 7.7 ± 7.1 7.5 ± 6.8 0.948 

Wholemeal, Brown Bread and Rolls 7.5 ± 6.5 5.3 ± 6.3 7.4 ± 6.7 7.4 ± 6.4 0.026 

Ready-to-eat Breakfast Cereals 3.8 ± 4.8 4.1 ± 4.5 4.1 ± 4.9 4.6 ± 5.6 0.612 

Other Breakfast Cereals 1.7 ± 3.4 1.3 ± 3.4 1.9 ± 4.0 2.4 ± 4.2 0.100 

Biscuits, Cakes and Pastries 5.6 ± 6.3 6.2 ± 7.1 6.2 ± 6.0 6.0 ± 5.9 0.862 

Whole-milk 2.6 ± 4.2 2.6 ± 3.8 2.5 ± 3.7 2.6 ± 4.5 0.992 

Low Fat and Skimmed Milks 2.4 ± 3.3a,b 2.1 ± 3.0a,b 2.1 ± 3.1a 3.1 ± 3.8b 0.024 

Other Milk and Milk-based Beverages 0.2 ± 0.8 0.3 ± 1.1 0.8 ± 2.8 0.4 ± 2.1 0.095 

Cream, Ice-creams, Rice Puddings, Custards & Desserts 1.9 ± 3.0 1.8 ± 2.6 2.1 ± 3.2 2.2 ± 3.4 0.794 
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Cheese 2.3 ± 3.0 2.5 ± 3.3 2.4 ± 2.9 2.1 ± 2.7 0.640 

Yogurts 1.7 ± 2.3 1.2 ± 2.2 1.5 ± 2.4 1.8 ± 2.9 0.188 

Eggs and Egg Dishes 1.5 ± 1.9 1.1 ± 1.7 1.5 ± 2.5 1.6 ± 2.5 0.179 

Butter, Fat Spreads and Hard Cooking Fats 4.0 ± 4.7 3.0 ± 3.8 3.3 ± 5.1 3.2 ± 4.2 0.316 

Low Fat Spreads and Oils 0.8 ± 1.6 0.9 ± 1.7 1.3 ± 2.4 1.1 ± 2.0 0.103 

Potatoes 2.6 ± 2.7a 2.7 ± 2.8a,b 3.1 ± 3.2a,b 3.7 ± 3.0b 0.012 

Chips and Processed Potatoes 4.7 ± 4.9a 5.5 ± 5.5a 4.2 ± 5.1a 2.7 ± 3.0b <0.001 

Vegetables and Vegetable Dishes 3.3 ± 2.5a,c 2.7 ± 2.2a 4.3 ± 3.6b 3.8 ± 3.1b,c <0.001 

Fruit Juices and Smoothies 1.0 ± 1.5 1.0 ± 1.8 0.9 ± 1.7 1.2 ± 1.9 0.224 

Fruit 3.3 ± 3.8a 2.0 ± 2.9b 3.5 ± 3.6a 3.4 ± 3.2a 0.002 

Savoury Snacks 1.9 ± 3.4 2.9 ± 4.8 1.7 ± 2.9 2.2 ± 4.4 0.090 

Fish, Fish Dishes and Products 2.2 ± 3.3a,b 2.0 ± 3.1a 3.3 ± 4.3b 3.1 ± 3.6a,b 0.004 

Unprocessed White Meat 3.4 ± 3.9 3.7 ± 4.3 3.9 ± 4.4 3.7 ± 4.9 0.827 

Processed White Meat 2.1 ± 4.6a 1.7 ± 2.7a,b 1.1 ±  2.4b 1.4 ± 3.2a,b 0.050 

Unprocessed Red Meat 7.4 ± 6.2 7.5 ± 6.7 7.4 ± 6.2 7.2 ± 6.2 0.982 

Processed Red Meat 5.6 ± 5.9a,c 6.2 ± 6.2a 4.0 ± 4.3b 4.0 ± 4.7b,c <0.001 

Alcoholic Beverages 6.1 ± 8.1 5.4 ± 7.9 5.3 ± 6.7 4.7 ± 5.9 0.463 

Sugars, Syrups, Preserves and Sweeteners 1.7 ± 2.4 1.4 ± 2,3 1.7 ± 2.4 1.9 ± 2.7 0.455 
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Confectionary 2.6 ± 3.6 3.3 ± 4.6 2.2 ± 3.4 2.5 ± 3,8 0.113 

Soups, Sauces and Condiments 2.9 ± 3.3 2.8 ± 3.1 2.3 ± 2.3 2.3 ± 2.6 0.180 

Low Energy Beverages 0.2 ± 0.5 0.1 ± 0.4 0.2 ± .06 0.1 ± 0.3 0.317 

High Energy Beverages 1.4 ± 2.7a 2.6 ± 3.5b 1.1 ± 2.3a 1.0 ± 2.3a <0.001 

Data is mean ± SD of percentage energy contribution to total energy intakes (%TE), n; number of participants, AHEI; Alternative Healthy Eating Index, AMDS; Alternative 

Mediterranean Dietary Score, P-value determined using a one-way ANOVA; P-value <0.05 was considered significant. Bold values describe the clusters with the highest 

energy contribution to significant food groups. Underlined values describe the clusters with the lowest energy contribution to significant food groups. a,b,c Mean values with 

unlike superscript letters are significantly different between clusters (P <0·05). Cluster 1 = Moderately Unhealthy dietary pattern; Cluster 2 = Convenience dietary pattern; 

Cluster 3 = Moderately Healthy dietary pattern; Cluster 4 = Prudent dietary pattern. 
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Table 3. Nutrient intake across the four clusters in the National Adult Nutrition Survey (n=563) 

Nutrient Cluster 1 (n=131) Cluster 2 (n=112) Cluster 3 (n=167) Cluster 4 (n=153) P-value 

Energy (kcal) 2023 ± 616 2137 ± 643 2047 ± 611 1942 ± 591 0.086 

Macronutrients      

     Protein (%TE) 16.6 ± 3.2a 16.8 ± 4.4a,b 17.3 ± 3.4a,b 17.9 ± 3.7b 0.013 

     Carbohydrates (%TE) 45.2 ± 7.2 45.6 ± 7.3 45.7 ± 6.4 46.4 ± 7.2 0.557 

     Total Sugars (%TE) 18.1 ± 5.9 17.8 ± 6.0 17.9 ± 5.7 18.9 ± 5.8 0.422 

     Total Fat (%TE) 34.4 ± 6.4 33.8 ± 6.2 34.1 ± 7.3 33.0 ± 5.7 0.283 

     Saturated Fat (%TE) 13.4 ± 3.5 13.3 ± 3.1 13.3 ± 4.4 12.9 ± 3.3 0.648 

     Monounsaturated Fat (%TE) 12.6 ± 2.9 12.3 ± 2.5 12.2 ± 2.7 11.8 ± 2.6 0.085 

     Polyunsaturated Fat (%TE) 6.6 ± 2.4 6.1 ± 2.6 6.5 ± 2.7 6.0 ± 2.1 0.378 

     Dietary Fibre (g/day) 19.4 ± 7.5 18.8 ± 8.7 21.2 ± 8.5 20.0 ± 7.4 0.069 

Micronutrients      

     Vitamin A (µg) 1079 ± 695a,b 985 ± 909a 1192 ± 856a,b 1351 ± 1125b 0.008 

     Vitamin C (mg) 125 ± 190 113 ± 170 127 ± 195 154 ± 248 0.393 

     Vitamin D (µg) 3.82 ± 3.47 5.53 ± 13.32 4.90 ± 4.69 6.00 ± 5.62 0.077 

     Vitamin E (mg) 12.4 ± 19.6 11.5 ± 10.0 16.6 ± 45.3 17.7 ± 44.8 0.396 

     Vitamin B6 (mg) 2.98± 1.86a 3.71 ± 5.08a,b 5.29 ± 11.76b 3.91 ± 4.70a,b 0.047 
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     Vitamin B12 (µg) 6.58 ± 22.09 5.95 ± 7.09 7.22 ± 11.73 6.33 ± 6.72 0.877 

     Thiamin (mg) 2.02 ± 2.06 2.49 ± 4.98 4.14 ± 11.57 3.24 ± 6.23 0.083 

     Riboflavin (mg) 2.22 ± 1.86 2.65 ± 4.90 4.35 ± 12.10 3.18 ± 4.62 0.074 

     Total Folate (µg) 428 ± 635 353 ± 185 376 ± 207 395 ± 283 0.436 

     Total Niacin (mg) 28.7 ± 34.8 27.7 ± 13.6 29.0 ± 18.1 30.4 ± 25.5 0.848 

     Sodium (mg) 2512 ± 820a,b 2777 ± 958a 2555 ± 900a,b 2389 ± 765b 0.004 

     Potassium (mg) 3096 ± 980 3033 ± 1014 3215 ± 928 3194 ± 1214 0.444 

     Calcium (mg) 899 ± 350 931 ± 338 941 ± 369 1018 ± 521 0.084 

     Magnesium (mg) 293 ± 113 287 ± 109 307 ± 107 310 ± 121 0.296 

     Phosphorus (mg) 1384 ± 447 1401 ± 450 1432 ± 437 1409 ± 432 0.819 

     Iron (mg) 14.56 ± 13.45 14.92 ± 16.44 13.17 ± 5.13 16.02 ± 18.00 0.329 

     Zinc (mg) 10.82 ± 6.69 10.99 ± 5.08 11.62 ±9.43 11.75 ± 7.12 0.662 

     Iodine (µg) 149 ± 76 144 ± 72 154 ± 85 170 ± 91 0.046 

Data is mean ± SD of nutrient intakes, n; number of participants, kcal; kilocalories, %TE; percentage of total energy, g/day; grams per day, µg; micrograms, mg; milligrams, 

P-value determined using a one-way ANOVA; P-value <0.05 was considered significant. Bold values describe the clusters with the highest intake of significant nutrients. 

Underlined values describe the clusters with the lowest intake of significant nutrients. a,b,c Mean values with unlike superscript letters are significantly different between 

clusters (P< 0·05). Cluster 1 = Moderately Unhealthy dietary pattern; Cluster 2 = Convenience dietary pattern; Cluster 3 = Moderately Healthy dietary pattern; Cluster 4 = 

Prudent dietary pattern.  
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Table 4. Biochemical and Nutrient Status across the four clusters in the National Adult Nutrition Survey (n=563) 

Biomarker Cluster 1 (n=131) Cluster 2 (n=112) Cluster 3 (n=167) Cluster 4 (n=153) P-value 

Serum Glucose (mmol/l) 5.3 ± 0.9 5.3 ± 0.7 5.3 ± 0.8 5.3 ± 1.0 0.910 

Serum Calcium (mmol/l) 2.4 ± 0.1 2.4 ± 0.2 2.5 ± 0.2 2.4 ± 0.2 0.254 

TIBC (mmol/l) 61.7 ± 9.0 60.9 ± 8.9 60.0 ± 7.9 59.9 ± 8.1 0.236 

Serum Ferritin (ng/ml) 145 ± 148 136 ± 126 113 ± 82 119 ± 115 0.082 

Haemoglobin (g/dl) 14.2 ± 1.4a,b 14.5 ± 1.5a 14.2 ± 1.4a,b 14.0 ± 1.3b 0.037 

Serum Folate (mmol/l) 33.8 ± 37.9a,b 28.5 ± 17.4a 31.0 ± 18.9a,b 38.4 ± 25.0b 0.012 

Red Cell Folate (nmol/l) 1004 ± 492 985 ± 436 972 ± 396 1096 ± 492 0.079 

Serum Vitamin B12 (pmol/l) 313 ± 204 347 ± 293 327 ± 171 328 ± 169 0.663 

EGRac 1.35 ± 0.16a,b 1.39 ± 0.17a 1.37 ± 0.17a,b 1.33 ± 0.15b 0.026 

PLP (nmol/l) 85.7 ± 68.2 111.1 ± 108.0 108.6 ± 92.3 107.7 ± 95.8 0.091 

Serum 25-Hydroxyvitamin D (nmol/l) 59.0 ± 21.6 61.9 ± 25.8 59.9 ± 23.7 65.7 ± 27.0 0.088 

Osteocalcin (ng/ml) 11.0 ± 3.7a,b 11.6 ± 3.6a 10.2 ± 3.2b 11.1 ± 3.6a,b 0.005 

Cross-linked C-telopeptide (mg/ml) 0.40 ± 0.22a 0.52 ± 0.27b 0.40 ± 0.21a 0.39 ± 0.20a <0.001 

α-Tocopherol mmol/ml 26.3 ± 7.4 25.3 ± 7.7 27.4 ± 7.4 26.9 ± 6.9 0.114 

γ-Tocopherol mmol/ml 1.81 ± 0.90a,b 1.94 ± 0.90a 1.79 ± 0.98a,b 1.59 ± 0.83b 0.017 

Urinary Sodium (mmol/l) 95.9 ± 45.1a,b 105.7 ± 45.0a 96.5 ± 38.3a,b 90.1 ± 39.1b 0.030 

Formatted: Polish
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Urinary Potassium (mmol/l) 41.6 ± 27.2 46.6 ± 27.2 50.1 ± 28.5 47.3 ± 26.5 0.069 

Urinary Iodine (ng/ml) 128.0 ± 96.0 114.8 ± 69.7 129.5 ± 102.7 127.0 ± 80.1 0.763 

Urinary Creatinine (umol/l) 10877 ± 6512a 13753 ± 5429b 10161 ± 5457a 9913 ± 4880a <0.001 

Data is mean ± SD, n; number of participants, TIBC; total iron binding capacity, EGRac; erythrocyte glutathione reductase activity coefficient, PLP; pyridoxal-5’-phosphate, 

P-value determined using a one-way ANOVA; P-value <0.05 was considered significant. Bold values describe the clusters with the highest intake of significant nutrients. 

Underlined values describe the clusters with the lowest intake of significant nutrients. a,b,c Mean values with unlike superscript letters are significantly different between 

clusters (P< 0·05). Cluster 1 = Moderately Unhealthy dietary pattern; Cluster 2 = Convenience dietary pattern; Cluster 3 = Moderately Healthy dietary pattern; Cluster 4 = 

Prudent dietary pattern.  
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Table 5. Stability of A-DIET Confirm participants cluster membership across four 

visits (n=175) 

Visit 1 

Visit 2 Visit 3 Visit 4 Average  

Cluster 

Number of 

Participants 

1 30 33.3% 29.6% 25.0% 29.3% 

2 52 61.5% 41.7% 34.1% 45.8% 

3 43 27.9% 34.1% 34.1% 32.1% 

4 52 60.0% 50.0% 45.7% 51.9% 

      

Kappa 0.300* 0.192* 0.144*  

Gamma 0.381* 0.319* 0.293*  

Kendall’s tau-b 0.298* 0.240* 0.222*  

Number of Participants refers to the number classified in a cluster a visit 1. Percentage refers to the percentage 

of participants from visit 1 that stay within cluster 1, 2, 3 or 4 at visit 2, visit 3, visit 4. Average refers to the 

average percentage of stability across visit 2, visit 3, and visit 4. Cluster 1 = Moderately Unhealthy dietary 

pattern; Cluster 2 = Convenience dietary pattern; Cluster 3 = Moderately Healthy dietary pattern; Cluster 4 = 

Prudent dietary pattern. Kappa; Cohen’s kappa statistic, Gamma; Goodman and Kruskal’s gamma, Kendall’s 

tau-b; Kendall’s tau-b correlation coefficient. Kappa, Gamma and Kendall’s tau-b refer to the agreement 

between cluster membership at visit 1 and at visit 2, 3 and 4. * denotes statistical significance (P-value < 0.05). 
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Figures  

 

Figure 1. Plot of the log p-values obtained in a one-way ANOVA showing significant (red, 

n=351) and non-significant (green, n=199) NMR spectral bins (features) across the four 

clusters. The plot depicts the regions of interest in the metabolomic data that are key to defining 

the multivariate model. NMR analysis was performed on urine samples from the National 

Adult Nutrition Survey 
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Figure 2. Reproducibility of the metabolomic-based dietary patterns in A-DIET Confirm 

across four visits. Radar plots are of the food group percentage energy contribution across the 

four visits for A cluster 1; B cluster 2. Cluster 1 = Moderately Unhealthy dietary pattern; 

Cluster 2 = Convenience dietary pattern.  
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Figure 3. Reproducibility of the metabolomic-based dietary patterns in A-DIET Confirm 

across four visits. Radar plots are of the food group percentage energy contribution across the 

four visits for A cluster 3; B cluster 4. Cluster 3 = Moderately Healthy dietary pattern; Cluster 

4 = Prudent dietary pattern. 

 

 


