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Abstract 

A wealth of in silico tools is available for protein motif discovery and structural analysis. 

The aim of this chapter is to collect some of the most common and useful tools and to 

guide the biologist in their use. A detailed explanation is provided for the use of Distill, a 

suite of web-servers for the prediction of protein structural features and the prediction of 

full-atom 3D models from a protein sequence. Besides this, we also provide pointers to 

many other tools available for motif discovery and secondary and tertiary structure 

prediction from a primary amino acid sequence. The prediction of protein intrinsic disorder,

and the prediction of functional sites and SLiMs are also briefly discussed. Given that user 

queries vary greatly in size, scope and character, the trade-offs in speed, accuracy and 

scale need to be considered when choosing which methods to adopt. 

Key words: protein structure prediction; secondary structure; disorder; functional 

sites; SLiMs. 

1. Introduction 

Compared with over 10 million known protein sequences (UniProtKB/TrEMBL (1)), as of June 

2010 there are only in the region of 60,000 proteins of known structure deposited in the 

Protein Data Bank (PDB) (2). As experimental determination of a protein's structure is difficult,

expensive and time consuming, the gap between sequence-known and structure-known 

proteins is continuing to grow rapidly. Currently the only feasible way to bridge this gap is 

computational modelling. This is especially important for analysis at a genomic or inter-

genomic level, where informative structural models need to be generated for thousands of 

gene products (or portions of them) in a reasonable amount of time.

Computational modelling methods can be divided into two groups: those that use similarity to 



proteins of known structure to model all or part of the query protein (comparative or template-

based modelling) and ab initio or de novo prediction methods where no similarity to a protein 

of known structure can be found. If a close homologue is found (e.g. a protein of known 

structure with a sequence identity greater than approximately 30% to the query) then a model 

can be produced with a high degree of confidence in its accuracy (3). However, many proteins 

share similar structures even though their sequences may share less than 15% sequence 

identity (4). Finding these remote homologues is a much more difficult task. As structural 

genomic (SG) projects worldwide gather momentum the hope is to populate the protein fold 

space with a useful 3D model for all protein families using high throughput protein structure 

determination methods (5). Providing more accurate templates for more proteins should lead 

to an increase in protein structure prediction accuracy for many proteins and move them out of

the ab initio/de novo prediction category into the comparative/homology modelling category. 

As the accuracy of predicted 3D protein models improves they are becoming increasingly 

more useful in biomolecular and biomedical research. In the absence of an experimental 

structure there are many applications for which a predicted structure may be of use to 

biologists. Moult (6) describes the uses of models at three levels of resolution. At the lowest 

level of resolution are models which have typically been produced by remote fold recognition 

relationships and are likely to have many errors, however, they may 

still be useful for domain boundary, super-family and approximate function identification. 

Medium resolution models, built using less remote homologues, for instance obtained 

from a carefully designed PSI-BLAST (7) search, may be used to identify possible 

protein-protein interaction sites, the likely role of disease-associated substitutions or the 

consequences of alternative splicing in protein function. Higher resolution models, where

there is a known structure showing at least 30% sequence identity to the query 

sequence may be useful for molecular replacement in solving a crystal structure, give 

insight into the impact of mutations in disease, the consequences of missense or 



nonsense mutations for protein structure and function, identification of orthologous 

functional relationships and aspects of molecular function which may not be possible 

from an experimental structure. 

Due to space limitations, we cannot cover all web-servers available for protein structural 

motif discovery and structure prediction, but provide a useful overview of the area. Although 

we will provide a detailed description of our Distill suite of servers, we will also point the 

reader to other publicly available, up-to-date, accurate and easy to use in silico tools which 

have the potential to predict structures, structural features or motifs on a genomic scale. 

2. Materials

There are many freely available in silico tools to aid the active researcher which can not 

only save time but as many are constantly updated and improved upon, ensure that one’s 

research is in keeping with or at the state-of-the-art (See Note 4).  Below we have listed 

those we have found to be most useful in our experience. 

2.1 Protein Structural Feature Prediction 

 Distill (http://distill.ucd.ie/distill/) 

 PROTEUS (http://wks16338.biology.ualberta.ca/proteus/) 

 Scratch (SSpro and ACCpro) (http://scratch.proteomics.ics.uci.edu/) 

 Jpred 3 (http://www.compbio.dundee.ac.uk/www-jpred/)

 PSIPRED (http://bioinf4.cs.ucl.ac.uk:3000/psipred/) 

 SABLE (http://sable.cchmc.org/) 

2.2 Protein 3D Structure Prediction 

 3Distill (http://distill.ucd.ie/distill/) 

 I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) 

 HHpred (http://toolkit.tuebingen.mpg.de/hhpred/) 

 Robetta (http://robetta.bakerlab.org/) 



2.3 Functional Site Prediction for Structured Proteins  

 SDPsite (http://bioinf.fbb.msu.ru/SDPsite/index.jsp) 

 ConSurf (http://consurf.tau.ac.il) 

 Evolutionary Trace (http://mammoth.bcm.tmc.edu/reportmaker) 

 SITEHOUND (http://bsbbsinai.org/SHserver/SiteHound/) 

2.4 Disorder Prediction  

 Spritz (http://distill.ucd.ie/spritz) 

 IUPred server (http://iupred.enzim.hu/) 

2.5 SLiM Discovery, Rediscovery and Post-Processing  

 The ELM Server (http://elm.eu.org/) 

 Minimotif Miner (http://mnm.engr.uconn.edu/MNM/) 

 SIRW (http://sirw.embl.de/) 

 SLiMSearch, SLiMfinder and CompariMotif (http://bioware.ucd.ie/) 

 Dilimot (http://dilimot.embl.de/) 

 ANCHOR (http://anchor.enzim.hu/) 

 Conscore (http://conscore.embl.de)

 PepSite (http://pepsite.embl.de/)

3. Methods

3.1 Prediction of Protein Structural Features

3.1.1 Distill: Protein Structure and Structural Feature Prediction Server 

Distill (8) is a suite of web servers available to the public for protein structure and 

structural feature prediction. The Distill suite of servers currently contains nine 

predictors: six predictors of 1D features (i.e. properties which may be represented as a 

string of the same length as the amino acid sequence - secondary structure (9), contact 



density (10), local structural motifs (11),  relative solvent accessibility (12), protein 

disorder (13) and protein domain boundary prediction (14)), a coarse contact map and 

protein topology predictor, a predictor of protein residue contact maps (15) and the 

predictor of full-atom 3D models and Cα traces (3Distill). The servers are based on 

large-scale ensembles of machine learning systems that include recursive neural 

networks, support vector machines and monte carlo simulations. They are trained on 

large, up-to-date, non-redundant subsets of the PDB (2). 

Structural motifs (11) are identified by applying multidimensional scaling and clustering to 

pair-wise angular distances between quadruplets of ϕ - ψ dihedral angle pairs collected 

from high-resolution protein structures (16). Structural motif predictions are highly 

informative and provide a finer-resolution picture of a protein backbone and may be used 

to improve traditional three class secondary structure, and for the identification of remote 

homologues (17). The definition and one-letter code for the fourteen structural motifs are 

provided on the Distill help page. 

Each of the servers take as input a profile obtained from multiple sequence alignments 

of the protein sequence to its homologues in the UniRef90 database (18) to leverage 

evolutionary information. Until recently predictors of 1D structural properties have 

generally been ab initio. However it has been shown that evolutionary information from 

proteins of known structure can contribute to more accurate 1D prediction (12, 17, 19, 

20). When available, this information, in the form of homologous structures from the 

PDB, is provided as a further input to all the servers, resulting in greatly improved 

reliability. For more information on the use of homology during the predictive process 

see references (12) and (17). 

In addition, 1D predictions augment the 2D and 3D predictions as follows: secondary 

structure and solvent accessibility are provided as additional input to the residue contact

maps and coarse protein topology predictors; secondary structure, solvent accessibility 



and contact density are provided as additional input to the residue contact maps 

predictor; secondary structure, solvent accessibility, structural motif, contact density, 

coarse and residue contact maps are provided as additional input to 3Distill (3D).  For a 

more detailed description of the models and training algorithms see (8-17). 

All predictions are freely available through a simple joint web interface and the results 

are returned by email. In a single submission a user can send protein sequences for 

over 32,000 residues to all or a selection of the servers. If a template is found in the 

PDB the sequence identity between the query sequence and the best template is 

provided (See Note 3).

3.1.2 Other 1D Structural Feature Prediction Servers 

Some other popular secondary structure (SS) and relative solvent accessibility (RSA) 

prediction servers are PROTEUS (19) and Scratch (SSpro and ACCpro) (20) which 

include homology to proteins of known structure in the PDB, if available, during the 

prediction process. Jpred 3 (21) will notify the user if there is a homologous sequence 

available in the PDB prior to prediction, but does not include this information in the 

prediction process. PSIPRED (22) and SABLE (23) are ab initio predictors (See Note 

2). Methods of searching for and incorporating homology information into the prediction 

process vary between the different servers, see (17) for further discussion of some of 

the different methods for homology search and inclusion.

3.2 Three-Dimensional Protein Structure Prediction

3.2.1 3D Prediction by Distill 

3Distill (8) is a server for the prediction of full-atom 3D models of protein structures which 

accepts queries of up to 250 amino acids in length. 3Distill relies on a fast optimization algorithm

guided by a potential based on secondary structure, solvent accessibility, structural motif, 



contact density, coarse contact maps and residue contact maps, all predicted by Distill. Note 

that, when available, homology information is provided to 3Distill which results in substantially 

improved predictions. 3Distill and the underlying servers have been tuned and generally 

improved in the lead-up to CASP9. Input into the servers is handled by the same two simple 

HTML forms for the submission of single and multiple queries as for 1D prediction. 3Distill's 

outputs come as attachments in PDB format. Five ranked models are returned in PDB file 

format, each one containing all atoms in the protein except hydrogen. When the query is longer 

than 250 residues fold predictions by XStout are returned instead of full atom models by 3Distill. 

An average sized protein takes less than an hour to predict and no user expertise or intervention

is required. 3Distill is free for academic use.  

3.2.2 Other 3D Structure Prediction Servers  

The Critical Assessment of Techniques for Protein Structure Prediction experiment 

(CASP) evaluates the current state of the art in protein structure prediction (24). There 

have been eight experiments to date taking place every two years since 1994. 

Participants predict the 3D structure, and other structural features, of a set of soon to be

known structures, these predictions are then assessed by a panel of experts when the 

structures are known. Fully automated prediction, by servers, has played an 

increasingly important role at CASP. Although most protein structure predictions are 

automated in some way many still require human intervention by experts to get the 

most accurate results. Fully automated processes have the advantage of being 

available to the non-expert user and, in general being faster than human approaches, 

may be used on a genomic scale, something that is more of a requirement these days 

than just being desirable (See Note 1). The accuracy of server predictions has 

significantly increased over the last number of years with servers being ranked in the 

top five overall in CASP7 and CASP8. Some of the servers that have performed best at 



CASP are described below. For a detailed comparison and in-depth discussion of all 

methods that participated in CASP8 see the special edition of the journal "Proteins: 

Structure, Function, and Bioinformatics" (24) and look out for the results of CASP9 

which took place in 2010.  

I-TASSER (25) was ranked first in the server category of the CASP8 experiment. It is free for 

academic use, no expert knowledge is required and prediction from a protein sequence takes in 

the region of 24-48 hours for full 3D structure and function prediction. The I-TASSER pipeline 

includes four general steps: template identification; structure reassembly; atomic model 

construction; and final model selection. In cases where no appropriate template is identified the 

whole structure is predicted by ab initio. The success of I-TASSER is primarily due to the use of 

information from multiple templates.  

HHpred (26) is primarily an interactive function and structure prediction server. For example, the

user can search various databases, manually select templates or correct errors in the proposed 

target-template alignment. The prediction pipeline is as follows: build a multiple sequence 

alignment for the target sequence; search for homologous templates; re-rank the potential 

templates with a neural network; generate sets of multiple alignments with successively lower 

sequence diversities for the target sequence and the templates; rank target-template alignments

of various alignment diversities with neural network; choose template(s); and run MODELLER 

(27). Some user expertise in the area of alignment/template selection is useful as users have the

option to intervene at this step before the 3D model is built. Predictions are fast, talking less than

an hour for a protein of average size.   

David Baker's Robetta (28) is one of the best known, consistently most accurate and most 

popular of all protein structure prediction servers. The server parses protein chains into putative 

domains and predicts these domains either ab initio or by homology modelling. However, the 

popularity of the server and computational requirements result in long waiting times before the 

prediction process even starts, and public users are restricted to submitting one protein 



sequence at a time. 

3.3 Functional Site Prediction for Structured Proteins  

Predicting functionally important amino acids or active sites of proteins is a good starting point 

for structure-based function prediction. Most predictors use sequence conservation as an 

indication of functional importance with some newer predictors incorporating structural 

information.  SDPsite (29) predicts functional sites using conserved positions and specificity-

determining positions (SDP residues which are conserved within sub-groups of a protein family 

but differ between groups). The server takes as input a multiple sequence alignment and a 

phylogenetic tree of the proteins in the alignment.  

The ConSurf Server (30) takes as input a protein sequence, multiple sequence alignment or 

PDB file. The PDB file can be uploaded, in which case the functional site of a predicted protein 

model can be predicted, or if the structure is known the PDB ID can be entered. If the input is a 

protein sequence or multiple sequence alignment the output includes a sequence/multiple 

sequence alignment coloured according to the conservation scores and a phylogenetic tree. If a 

PDB structure is provided the output is a PDB file with the predicted functionally important 

residues highlighted. ConSurf is free for academic use, easy to use, fast and requires no expert 

knowledge.  

Evolutionary Trace (31) captures the extent of evolutionary pressure at a given position in a 

protein sequence and ranks the amino acids by their relative evolutionary importance. There are 

two tools available: the ET Viewer which takes a PDB ID as input and displays a colour map of 

the structure showing the ranked residues; and the ET Report Maker which takes either a PDB 

ID or UniProt accession number as input and returns a detailed report which includes 

information about protein sequence, structure, suggested mutations and substitutions for 

selective functional site knock out. The Evolutionary Trace Server is free for academic use.  

SITEHOUND (32) takes as input a protein structure in PDB format and identifies regions 



corresponding to putative ligand binding sites. These sites are characterised by favourable 

noncovalent interactions with a chemical probe. The selection of different chemical probes 

results in the identification of different types of binding site. Currently, carbon and phosphate 

probes are available to identify binding sites for drug like molecules and phosphorylated ligands 

respectively. The output is a list of residues which correspond to the putative binding sites. 

3.4 Disorder Prediction  

Many proteins or protein regions fail to fold into fixed tertiary structures. Over the last ten years 

these Intrinsically Unstructured (IU)/Disordered proteins have been shown to be important 

functionally leading to an alternative view of protein function to the traditional sequence-

structure-function paradigm (33).  Spritz (13) is a web server for the prediction of intrinsically 

disordered regions in protein sequences. Spritz is available as part of the Distill suite of servers 

described above and predicts ordered/disordered residues using two specialised binary 

classifiers both implemented with probabilistic soft-margin support vector machines or C-SVM. 

The SVM-LD (LD: long disorder) classifier is trained on a subset of non redundant sequences 

known to contain only long disordered protein fragments (>=30AA). The SVM-SD (SD: short 

disorder) classifier is trained instead on a subset of non redundant sequences with only short 

disordered fragments. 

The IUPred server (34) predicts disorder based on the difference between estimates of the 

pairwise energy content for globular proteins which have the potential to form a large number of 

favourable interactions compared with disordered proteins which do not form sufficiently 

favourable interactions to adopt a stable structure due to their amino acid composition. For a 

comprehensive list of other disorder predictors see: http://www.disprot.org/predictors.php.

 3.5 Short Linear Motifs (SLiMs)  

Short linear motifs (SLiMs) are abundant protein microdomains that play a central role in cell 



regulation. SLiMs, also referred to as linear motifs, minimotifs or Eukaryotic Linear Motifs (ELMs,

in eukaryotes) typically act as protein ligands and mediate many biological processes including 

cell signalling, post-translational modification (PTM) and trafficking target proteins to specific 

subcellular localisations (numerous excellent reviews of motif biology are available (35-37)). 

Several organizations, such as the Eukaryotic Linear Motif resource (ELM) (38, 39) and 

Minimotif Miner (MnM) (40, 41) are actively curating the available SLiM literature and currently 

200 classes of motifs are known, yet without a doubt many more remain to be discovered. SLiMs

are defined by a conduciveness to convergently evolve, their preferential occurrence in 

disordered regions and their short length. Each of these attributes contributes to the difficulty of 

motif discovery, both experimentally and computationally, however despite the challenges 

several useful motif discovery tools are available.  

3.5.1 Motif Rediscovery  

The ELM Server (38, 39) searches the ELM database for regular expression matches and 

discover putatively functional novel instances of known SLiMs. Returned motifs are filtered to 

exclude motifs occurring in globular regions of proteins using information from Pfam (42, 43), 

SMART (44) and the PDB when available. Minimotif Miner (40, 41) searches an input protein 

for matches to the MnM dataset, scoring motifs based on surface accessibility, conservation and 

fold enrichment (based on the ratio of observed motifs to expected motifs). SIRW is a web-

server that calculates motif enrichment, using the Fisher's exact test, in a set of proteins with a 

particular keyword or Gene Ontology (GO) (45) terms. Similarly, SLiMSearch uses the masking 

and statistical methods of the SLiMfinder tool (46) to search for motifs in an input dataset.    

3.5.2 De-Novo Motif Discovery  

Dilimot (47) and SLiMfinder (46), using motif over-representation, attempt de novo 

computational discovery of SLiMs in datasets of proteins. Dilimot masks globular regions and 



enriches for convergently evolved motifs by removing all but one representative homologous 

region. Returned motifs are scored using a binomial scoring scheme. Finally, conservation of the

motif in several species is incorporated into a final combined score. SLiMfinder excludes under-

conserved residues, non-disordered regions predicted using IUPred (34) and UniProt (1) 

annotated features such as domains. Motifs are scored using an extension of binomial statistics 

allowing the consideration of homologous motif instances and correction for multiple testing. 

ANCHOR (48) attempts the difficult task of de novo motif discovery from primary sequence by 

predicting disordered binding regions. These are regions that undergo a disorder-to-order 

transition on binding to a structured partner. ANCHOR uses the same pairwise energy estimation

approach as IUPred to identify protein segments that reside in disordered regions but are unable

to form enough favourable intra-chain interactions to fold on their own and therefore are likely to 

require an interaction with a globular protein partner to gain stabilizing energy.  

3.5.3 Post-Processing  

After discovery of a novel motif there are multiple steps that that can help increase confidence of

functionality. CompariMotif (49) searches for matches to known functional motifs. Novel motifs 

are compared against motif databases using shared Information Content, allowing the best 

matches to be easily identified in large comparisons. Currently, the ELM (38, 39) and MnM (40, 

41) databases, as well as several other specialized datasets are available to search. 

Conservation is one of the strongest classifiers of novel motif functionality and several tools are 

available to score the conservation of motif occurrences. For example, Conscore (50) uses an 

information content based scoring scheme which incorporates phylogeny information to weight 

sequences and Dinkel et al (51) introduced an Average Conservation Score. PepSite (52) can 

be used to scan known interactors for binding sites for a discovered motif. Using spatial position-

specific scoring matrices (PSSMs) created from known 3D structures of motif/protein complexes 

Pepsite scores the surface of target and suggests potential binding site and rough orientation of 



the motif.   

3.5.3 Biological Uses  

Several examples of experimentally validated motifs discovered by in silico methods are 

available. Neduva et al (47) applied Dilimot to discover and verify a protein phosphatase 1 

binding motif (DxxDxxxD) and a motif that binds Translin (VxxxRxYS). Keyword enrichment has 

been used to discover novel KEN box (53), KEPE (54) and EH1 motifs (55). Two 14-3-3 motifs in

EFF-1 were discovered using MnM and subsequently experimentally validated (40, 41). For 

more on SLiM discovery see the review by Davey et al (56).  

4. Notes

1.  The number of protein sequences is growing at an ever increasing pace and many in silico 

methods are available for the efficient annotation of these sequences. Given that user queries 

vary greatly in size, scope and character, when choosing which methods to adopt the speed, 

accuracy and scale of the method need to be considered. As a first approximation, especially in 

the case of structure prediction, the greater the accuracy, the slower the processing time will be. 

The larger the scale of a query (e.g. when genomic-scale predictions are necessary), the harder 

it will be to obtain the most accurate answers available, unless one has access to a large 

amount of computational resources and has the time to download and set up one of the 

methods that are available for local installation. 

2. When deciding which prediction method to use, the main consideration to make is whether 

there is a homologue for the query in the PDB. If so, normally, methods incorporating homology 

are significantly more accurate. Another consideration is the scale of predictions to be 

performed. All servers handle predictions on a small scale (tens of queries), some (e.g. Distill) 

facilitate predictions on a larger scale (hundreds of queries). If genomic or especially multi-

genomic scale predictions are needed it may be necessary to resort to one of the methods that 



can be downloaded and run locally. In all cases, when possible, consensus predictions are 

desirable, that is, polling multiple methods for the same query and comparing the results. Where

methods agree, generally predictions are to be considered more reliable.  

3. Greater confidence can be placed in the accuracy of structure predictions if there is high 

sequence similarity between the query sequence and a protein of known structure which can act

as a template. However, it is worth remembering that even with little or no sequence similarity, 

proteins may share the same structure and therefore a low sequence identity template does not 

imply that the prediction is inaccurate. In Distill we find templates via the SAMD program (17), 

which may yield informative templates even for very low sequence identity.

4. During our research experiences we have often encountered resistance from some 

experimental researchers in exploiting all the computational tools that are available to simplify 

their jobs. Even in the absence of resistance, countless times we have observed ageing, 

outdated tools being adopted when far better ones were freely available and ready to use. 

Within the limits of this chapter, we hope we have made a small step towards solving this 

problem and bringing the power of novel predicting methods to its full fruition.  
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