
Noname manuscript No.
(will be inserted by the editor)

An Empirical Evaluation of Kernels for Time Series
Classification

Mourtadha Badiane · Pádraig
Cunningham

December 18, 2021

Abstract Time-series classification is a particular challenge for Machine Learn-
ing (ML) because the most powerful ML classification methods require data
in a feature vector format. Whereas e↵ective time-series classification depends
on flexible similarity measures that can match sub-sections of signals. In this
paper we address the challenge of incorporating five such similarity measures
in Support Vector Machines (SVMs). This is a challenge because SVMs re-
quire kernel functions that are positive semi-definite (PSD). In order for a
kernel to be PSD the underlying distance/similarity measure must be a met-
ric and most time-series similarity measures do not meet this requirement. Of
the five similarity measures we consider Time Warp Edit Distance (TWED)
is the only one that does meet this requirement and it does deliver good SVM
performance. Somewhat surprisingly, Dynamic Time Warping (DTW) which
is not a proper metric slightly outperforms TWED when incorporated in a
Gaussian SVM – an example where something works in practice but not in
theory. In all our evaluations we use k Nearest Neighbour (kNN) as a baseline
and it performs very well with all distance measures. Whereas some of the dis-
tance measures deliver poor SVM performance. We also discuss the reduction
in computational cost achieved by using an SVM, finding that the negative
kernel paired with the DTW distance produces the greatest reduction in com-
putational cost. We find that a significant saving can be made when using an
SVM on large datasets that is not attained by regular kNN.

Keywords Support Vector Machines · Dynamic Time Warping · Time Series
Classification · Time Warp Edit Distance

Mourtahda Badiane
University College Dublin
E-mail: mourtadha.badiane@ucdconnect.com

Pádraig Cunnighamm
University College Dublin
E-mail: padraig.cunningham@ucd.com

Pádraig Cunningham

2 Mourtadha Badiane, Pádraig Cunningham

1 Introduction

In this paper we aim to determine the best kernel for time series classification
through experiments on a large collection of publicly available datasets1. Time
series classfication can be challenging for kNN and SVMs since data is not in
a feature or spatial vector format, however kNN and SVMs can adapt to
the task if their undelying distance measures are also adapted for the task.
This means that the distance measure used must take into account the time
axis in a manner that is elastic. We re-farmiliarize the reader with five time
series distance measures: DTW, Edit Distance on Real Sequences (EDR), Time
Warp Edit Distance (TWED), Symbolic Aggregate Approximation (SAX), and
Symbolic Fourier Approximation (SFA). Then we present the results of a kNN
and SVM classifier paired with each distance measure and evaluated on each
dataset. We find that the Gaussian SVM paired with DTW distance is the
most accurate time series classifier. We also find that a significant reduction in
computational cost can be found by using the negative SVM paired with the
DTW distance. This is due to the fact that once the SVM model is compiled,
all training samples not lieing on the SVM margin may be discarded. In static
problems, where the dimensionality is low relative to the size of the training
set, the reduction in the computational cost of computing a decision on test
samples is significant, and we find later that a similar principle applies to time
series data also.

Now, we will move on to a recapitulation of time series and the SVM. SVMs
have a well deserved reputation as one of the best classifier methods available.
SVMs became popular in the 1990s and many powerful implementations have
come available in recent years (Boser et al., 1992; Cortes and Vapnik, 1995).

SVMs can classify data where the classes are not linearly separable by
mapping the data into a higher dimension feature space where the classes are
linearly separable. This mapping is achieved using a kernel function that is
applied to each pair of data points in turn to produce a kernel matrix. If the
kernel matrix is positive semi-definite (PSD) then training the SVM is a convex
optimization problem and an optimum solution can be found. However, if this
kernel matrix is not PSD then the optimality of the SVM training process is
not guaranteed.

If the data follows a standard feature vector representation then there are
standard kernels available that are PSD and will produce e↵ective classifiers.
For a kernel to truly be a kernel in the strictest sense it most correspond to
an inner product in it’s Hilbert reproducing space, this highly mathematical
criterion simplifies to a condition known as positive semi-definiteness. This
means that the Gaussian kernel must be paired with a distance measure that
is a metric i.e. it must satisfy positive definiteness, symmetry, and the triangle
inequality. It is known that the distance measure derived from the following
three algorithms do not satisfy the triangle inequality:

– Dynamic Time Warping (DTW) (Keogh and Pazzani, 2001),

1 http://www.timeseriesclassification.com

An Empirical Evaluation of Kernels for Time Series Classification 3

– Symbolic Aggregate Approximation (SAX) (with edit distance) (Lin et al.,
2003)

– Symbolic Fourier Approximation (SFA) (with edit distance) (Schäfer and
Högqvist, 2012b).

It is perhaps worth noting that it is trivial to recognise the latter two cannot
be metrics since they are built upon edit distance which is not a metric.

DTW with 1 Nearest Neighbour (1NN) is considered an excellent base-
line classifier for time-series (Bagnall et al., 2017), this paragraph acts as a
brief digression to explain this before we continue with our analysis of kernel
methods below. With SVM classification we must chose a kernel which should
act like an inner product in a feature space. Distinct kernels which preserve
order i.e. k1(x, y)  k1(w, z) () k2(x, y)  k2(w, z) will lead to completely
di↵erent SVM classifiers, the same cannot be said about kNN. For example the
Gaussian kernel e�x and the negative kernel �x both reverse and then preserve
the order. In other words if e�a  e

�b () �a  �b. One possible reason
why kNN performs better than SVMs in time series classification is that kNN
has fewer parameters to tune, and every function of the distance will produce
identical results in kNN so long as it is order preserving. This is not true
for SVMs, if we have some distance ordering then we can form two distinct
similarity measures: the negative kernel and the Guassian kernel. This added
parameter: the choice of kernels means that kNN is simpler than SVMs and
is perhaps one reason for its dominance in time series analysis.

Another possible reason which these authors intend to explore in later
publications is that kNN is superior to SVM because all the time series studied
are univariate. Upon careful consideration one can clearly imagine that this
is most definitely the case, since kNN is always going to be superior in a one
dimension space for datasets that are not composed of time series provided
the noise is insignificant.

2 Time Series Classification with Support Vector Machines

2.1 Problem Setting

Time series classification involves training a classifier on time series and us-
ing that classifier to predict the target of a novel sample. Firstly, to allow
for brevity in explanation we make the definition [k] = {1, ..., k}. We are
given N training samples {x(i)}Ni=1 where each xi is an ordered set of vectors,

called a time series, of (perhaps varying) length mi, i.e. x(i) = {x(i)
j }mi

j=1 =

{x(i)
1 , ..., x

(i)
mi} where x

(i)
j 2 RD 8i 2 [N] 8j 2 [mi]. D is the spatial dimen-

sionality of the problem setting and is the same for all sample time series.
Lastly, associated with each sample x

(i) is a target class either +1 or �1. The
problem is then: given the training data, a collection of time series {x(i)}Ni=1

and class labels y1, ..., yN build a function which maps novel time series to ±1
that best approximates the true hypothesis function which maps the data to

4 Mourtadha Badiane, Pádraig Cunningham

their correct classes. For multi-class classification we have an identical problem
setting except that the class labels of the variables are not constrained to ±1,
they can take on any number of discrete class labels.

2.2 Support Vector Machines

The SVM is a state-of-the-art classifier that works by constructing a hyper-
plane that best fits the data. Without using a non-linear mapping, the algo-
rithm works by solving a quadratic programming problem which maximizes
the margin between the two classes where the margin is the space between
the two class borders. Unfortunately this simple approach cannot be used to
correctly classify data that is not linearly separable. To overcome this flaw
SVMs make use of a map which sends the data to a higher dimensional fea-
ture space where the data is linearly separable. The separator is a hyperplane
in the feature space but not necessarily in the input space. When using SVMs
we do not actually need to know the feature map instead it is enough to know
only the inner product between feature vectors. This inner product on feature
vectors is called the kernel of an SVM. An SVM is only as good as the kernel
it uses. The criterion for a function to be a kernel is that it must define an
inner product in some feature space.

For a detailed and thorough explanation of training and prediction us-
ing SVMs written by the discoverer Vladimir Vapnik please see (Cortes and
Vapnik, 1995).

2.3 Positive semi-definiteness

As stated earlier we require the function we are using as a kernel to behave like
an inner product in the feature space. It has been shown that for a function
to behave like an inner product in a feature space it is necessary and su�cient
that it be positive semi-definite (PSD)(Badiane et al., 2018). A function which
is not PSD is known as indefinite. A function K 2 RD⇥D is PSD if x ·Kx �
0 8x 2 RD. It is trivial to show (and it’s in the paper last cited) that a
kernel matrix is PSD if all its eigenvalues are non-negative. It is known that
the SVM optimization process is a convex cone problem with a global optimal
solution when the kernel is PSD, however when the kernel is not PSD then
the SVM optimization process may terminate at a local optimum distinct from
the global optimum. This sub-optimal performance has led many to attempt
to tackle the problem of indefinite kernels.

3 Distance Measures for Time Series

This section provides some detail on the five measures (DTW, TWED, EDR,
SAX and SFA). It explains how they work and illustrates the problem that

An Empirical Evaluation of Kernels for Time Series Classification 5

Fig. 1 Misalignment correction by DTW (see (Mahato et al., 2018))

they do not readily produce PSD kernels. Once we posses a distance measure
d on time series x and y we can form the kernel in one of two obvious ways:

– The negative kernel: K(x, y) = �d(x, y).
– The Gaussian kernel: K(x, y) = e

��d(x,y).

� is a parameter to be optimized.

3.1 Dynamic Time Warping

We will re-introduce the DTW algorithm presented by Shimodaira et al. (2002)
as well as Cuturi (2011) and Cuturi et al. (2007). We begin this section by
the definition of an alignment between two time series. We then define the
DTW kernel in terms of those alignments. Both these definitions were made
in (Shimodaira et al., 2002).

To compare two time series that do not line up on the x-axis we may use
the DTW distance. As you can see in Figure 1 when comparing two time
series X and Y that are similar in shape except that the crest of one is shifted
along the x-axis, the DTW kernel will reflect this similarity by warping the
time axis so that the two time series align. In contrast the Euclidean distance
completely ignores the inherent similarity between the two series as a result of
the misalignment. In summary DTW is elastic, and Euclidean distance is not.

The DTW distance is not a metric since it does not satisfy the triangle
inequality2 If the distance underlying a kernel fails this test, the kernel will
fail to be PSD. A kernel that is not PSD is known as indefinite, and in the-
ory the SVM optimization process involved when using an indefinite kernel
need not be a convex quadratic programming problem, as a result the training
algorithm is not guaranteed to terminate at a global optimum. This theoret-
ical problem turns out to be of little consequence in experimentation, as we
find in the experiments section that very often there is only a tiny margin in

2 The triangle inequality which is a necessary condition for the distance measure d on
a vector space � to be a metric states: d(u, v)  d(u,w) + d(w, u) 8u, v, w 2 � i.e. the
shortest distance between two points is the straight line (direct route) connecting them.

6 Mourtadha Badiane, Pádraig Cunningham

di↵erence between the Gaussian and negative kernel even though the former
nearly always produces PSD kernels while the latter does not. For example
with DTW there is no (statistically significant) di↵erence in mean accuracy
between the Gaussian and the negative kernels.

To calculate the DTW distance we must first define what is meant by a
good alignment. An alignment ⇡ is a pair of functions ⇡1 and ⇡

2 which satisfy
the following properties: ([v] = {1, ..., v})

⇡
1 : [m] ! [l] (1)

⇡
2 : [n] ! [l] (2)

where l is known as the length of the alignment.

⇡
k
1 = 1, for k 2 [2] (3)

and
⇡
1
l = m (4)

⇡
2
l = n (5)

⇡
k
i � ⇡

k
i�1 2 {0, 1} 8k 2 [2] 8i 2 {2, ..., l} (6)

⇡
a
i = ⇡

a
i�1 =) ⇡

b
i � ⇡

b
i�1 = 1, 8a, b 2 [2], a 6= b, 8i 2 {2, ..., l} (7)

We may summarize the criteria as both ⇡
1 and ⇡

2 must be monotonic functions
from [m] and [n] onto [l] such that they contain no simultaneous repetitions
(11).

Once we have the alignment ⇡ we may define the DTWdistance between
two time series x of length m and y of length n.

d(x,y) = min
⇡2A(x,y)

(
lX

k=1

kx(t⇡1
k
)� y(t⇡2

k
)k) (8)

where A(x,y) is the set of all possible alignments and k.k is the regular Eu-
clidean distance.

We may calculate the DTWdistance in O(mn) via the recurrence relation:

Mi,j = min(Mi�1,j ,Mi�1,j�1,Mi,j�1) + kxi � yjk (9)

The resultant Mm,n is the DTWdistance between x and y. Note it is often
customary to use a warping window, this limits the maximum warping that
may occur between the two time series. This is trivial to implement since if
TOL is our tolerance (maximum warping) then we must simply ensure that
when |i � j| > TOL: Mi,j = 1. By doing this we are ensuring there is an
upper bound on the warping. A warping window of 0 is equivalent to Euclidean
distance and this means that by considering all warping windows we are also
considering Euclidean distance.

DTW is an elastic distance measure in that it measures two time series as
similar even when there is misalignment along the time axis.

An Empirical Evaluation of Kernels for Time Series Classification 7

3.2 Time Warp Edit Distance

Time Warp Edit Distance (TWED) is metric that operates on time series.
It was first proposed by Marteau (2008) as an elastic time series measure
which unlike DTW serves as a proper metric, satisfying all the axioms of a
metric function. The algorithm is both similar to DTW and to EDR. The
similarity between two time series is measured as the minimum cost sequence
of “edit operations” needed to transform one time series into another. These
edit operations are defined in a way which makes sense graphically. To define
the “edit operations” they use the paradigm of a graphical editing process to
end up with a dynamic programming algorithm that can e�ciently compute
TWED in roughly the same complexity as DTW.

3.3 Edit Distance on real sequences

The Edit Distance on Real sequences (EDR) distance was first published by
Chen et al. (2005). The authors describe an algorithm that is an adaptation
of edit on strings of letters to provide a distance measure that works on time
series.

The idea is to count the number of edit operations (insert, delete, replace)
that are necessary to transform one series into the other. Of course our time
series are numerical functions and therefore will almost never likely match up
exactly. Therefore we use a parameter ✏, and if two time series at a particular
point in time are within ✏ of each other, we count that as a match otherwise,
we don’t.

3.4 Symbolic Aggregate Approximation

The approach to time series analysis above is numerical. Here we introduce a
symbolic approach to time series analysis: Symbolic Aggregate Approximation
(SAX). One possible motivation for moving towards a symbolic approach is
that we could then utilize the wealth of data-mining techniques pertaining to
string representations, one example would be edit distance. Another source of
motivation is that a symbolic approach may yield significant dimensionality
reductions. For further explanation see (Lin et al., 2007).

The fist step with SAX is to discretize the input space. First we set the
alphabet size (a > 2) for the problem. Next for every time series C = c1, ..., cn

we must assign each ci to a corresponding variable in the alphabet. So if a = 3
and our alphabet is {a,b, c} then for the time series c1, ..., cn we must map
each ci to a letter in the alphabet. Our approach to discretization is to first
transform the data into the Piecewise Aggregate Approximation (PAA) rep-
resentation and then symbolize the PAA representation into a discrete string.
The two main benefits of this process are the well documented dimensionality
reduction of PAA (Keogh et al., 2001a; Yi and Faloutsos, 2000) and lower

8 Mourtadha Badiane, Pádraig Cunningham

Fig. 2 SAX works on a version of the time-series that has been discretised via PAA (see
(Mahato et al., 2018))

bounding: our distance measure between two symbolic string lower bounds
the true distance between the original time series (Keogh et al., 2001b; Yi and
Faloutsos, 2000).

We can represent a time series C of length n in a w-dimensional space by
a vector X̄ = x̄1, ..., x̄n. As in (Lin et al., 2007), we can calculate x̄i by

x̄i =
w

n

n
w iX

j= n
w (i�1)+1

xj (10)

We have reduced the time series from n (temporal) dimensions to w dimen-
sions by dividing the data into w equally sized frames and then x̄i is simply
the mean value of the time series for that frame. We may think of this process
as attempting to approximate our time series with a linear combination of
box functions. It is worth noting that it is important to z-normalise each time
series. We then appropriately define breakpoints which determine the letter in
our alphabet to which each c̄i will be mapped. Usually we do this by analyzing
the statistics of our time series and choosing breakpoints so that each letter
in the alphabet is as likely to appear as each other letter. In other words we
choose breakpoints to spread out the data evenly. For a more thorough expla-
nation see (Lin et al., 2007). Once we have the breakpoints determined it is
straightforward to map our PAA representation to a string consisting of letters
from our alphabet. The PAA coe�cient controls the proportion of examples
that will be placed in each bin. Whereas the alphabet size regulates the dis-
cretization of the x-axis, the PAA coe�cient regulates the discretization of the
y-axis. When we have a large time series our approach is to first discretize the
time series into a long string and then extract a bag of words. We determine
a sliding window, usually found by parameter optimization, and this sliding
window length becomes the length of each word in our bag of words. So we
turn one long string of letters representing our original time series into a series
of words, each word is the length of the sliding window. The first word starts

An Empirical Evaluation of Kernels for Time Series Classification 9

from the first index in the original long string, the second word starts from
the second index in the original long string. We proceed until all the words
have been extracted.

As a distance measure between the time series we could use Euclidean
distance, however to make our time series analysis more elastic we use edit
distance. Now time series that are similar but not aligned will be marked as
similar by our distance measure.

3.5 Symbolic Fourier Approximation

Symbolic Fourier Approximation (SFA) was introduced by Schafer et al. in
2012 as an alternative method to SAX built upon the idea of dimensionality
reduction by symbolic representation. Unlike SAX which works on the time
domain, SFA works on the frequency domain. The algorithm is discussed and
developed in (Schäfer and Högqvist, 2012a).

SFA uses the Discrete Fourier Transform (DFT) to represent a time-series
as a linear combination of sines and cosines. Recall that {sin(kx), cos(kx)}1k=1
forms an orthogonal basis for real (and indeed complex) valued continuous
functions. For each time series we perform what is known as an orthogonal
projection onto basis functions. Let V be an inner product space over the field
F. Let v 2 V \ {0}. We want to decompose an arbitrary vector y 2 V into the
form:

y = ↵v + z (11)

where z 2 {x|hx,vi = 0} and ↵ 2 F. Since z?v we have:

hv,yi = hv,↵v + zi = hv,↵vi+ hv, zi = ↵hv,vi (12)

=)
↵ =

hv,yi
hv,vi (13)

Whence we define the orthogonal projection of y onto v:

Projv(y) =
hv,yi
hv,viv (14)

.
In this case our inner product is defined as:

hf, gi =
1Z

�1

f(x)g(x)dx (15)

and our basis vectors are µk = {e i2⇡kn
N |n 2 {0, ..., N � 1}}. If k were infinity

it would be possible to approximate any real value continuous function to
arbitrary precision in much the same was as the Taylor series can be used.
However for SFA we use the discrete transformation i.e. k < 1.

10 Mourtadha Badiane, Pádraig Cunningham

The DFT Approximation is a part of the preprocessing step of the SFA
algorithm, where all time series data are approximated by computing DFT co-
e�cients. When all these DFT coe�cients are calculated, Multiple Coe�cient
Binning (MCB) is used to turn the approximated time series represented as a
series of coe�cients into a string representation. Next we use the very simple
sliding window technique to extract a bag of features. Our first feature will be
the string cut from the first letter to the length of the sliding window. Then
we simply slide the window along one letter, starting from the second letter
instead of the first this time. Each time we extract a feature from the string
and then slide up the window by one and extract the next feature until we
have exhausted the string. Once we have mapped each time series to a list of
strings of length sliding window, we use edit distance to compare the string
representations.

Fig. 3 SFA uses DFT to discretize the time-series (see (Mahato et al., 2018))

4 Experiments

Thirty seven datasets were selected from the UEA & UCR time series reposi-
tory. We will henceforth present the results of this extensive evaluation: every
distance measure presented in this paper (DTW, TWED, SAX, SFA, and
EDR) paired with the negative SVM classifier, the Gaussian SVM classifier,
and the well-known kNN classifier.

Each dataset comes with a prescribed train:test split. A four-fold cross
validation strategy was used and the validation set was used to optimize the
parameters of the the 15 classifier-distance models via grid search. In order

An Empirical Evaluation of Kernels for Time Series Classification 11

to ensure fairness in the parameter selection process each of the 15 classifier-
distance model combinations was restricted to a grid search budget of 50 states.
For each combination 50, distance matrices were constructed to represent 50
parameter combinations. In the case where the parameter space exceeds 50, the
parameter combinations where selected from a uniform distribution. Once the
optimal parameters where found, the model was built using those parameters
together with the full training set and then evaluated on the held-out test set.
Accuracy was calculated as expected, the ratio of correct predictions to test
set size.

We have three tables (Tables 4, 5 and 6) detailing the results of the three
classifiers, respectively kNN, Gaussian SVM and negative SVM. Table 1 sum-
marises the results in these three tables. The main findings are as follows:

– Across all classifier methods DTW is the most e↵ective similarity measure
with TWED a close second.

– The best classifier - similarity measure combination is Gaussian DTW.
– It is worth noting that kNN performs well across all similarity measures.
– In contrast, EDR and SFA do no produce good kernels.

Classifier DTW TWED EDR SAX SFA Average
kNN 0.76 0.76 0.68 0.62 0.68 0.70
Gaussian SVM 0.78 0.76 0.41 0.6 0.44 0.60
Negative SVM 0.77 0.76 0.39 0.55 0.44 0.59
Average 0.77 0.76 0.50 0.59 0.52

Table 1: Summary Table

It is clear that DTW and TWED are the best distance measures across
all datasets and across all classifiers. This is perhaps a surprising result as
TWED tends to be underrated. This study finds otherwise: TWED is a very
good distance measure, of almost equal e�cacy to that of DTW. It is perhaps
worth noting that the two distance measures are very similar.

Next, we ask which is the most successful classifier-distance pairing (model).
There are two ways of approaching this question, first we could construct a
league table, where for each dataset we would award 1 point for the least ac-
curate model and full points (at most 15) to the best performing model. This
league table is shown in Table 2. We could also simply compute the mean
accuracy of each model across all the datasets – this is shown in Table 3.

12 Mourtadha Badiane, Pádraig Cunningham

Model Points
Gaussian-DTW 372
Negative-DTW 361
kNN-DTW 357
kNN-TWED 353
Negative-TWED 344
Gaussian-TWED 330
kNN-SFA 263
kNN-EDR 257
kNN-SAX 199
Gaussian-SAX 197
Negative-SAX 168
Gaussian-SFA 84
Negative-SFA 83
Gaussian-EDR 62
Negative-EDR 49

Table 2: Classifier-distance pair league table

Classifier Distance Mean Accuracy
Gaussian DTW 0.78
Negative DTW 0.77
Negative TWED 0.77

kNN DTW 0.76
kNN TWED 0.76

Gaussian TWED 0.76
kNN EDR 0.68
kNN SFA 0.68
kNN SAX 0.62

Gaussian SAX 0.60
Negative SAX 0.55
Negative SFA 0.44
Gaussian SFA 0.44
Gaussian EDR 0.41
Negative EDR 0.39

Table 3: Mean Accuracy of all models

Both tables agree that the best model for time series classification is the
Gaussian-SVM paired with the DTW distance measure. You can think of
the latter table as a goal di↵erence score, whereas the former table is the
league points, two di↵erent measures of performance which both agree that
Gaussian-DTW is the superior model amongst all here studied. Finally, we
have three tables (Tables 4, 5 and 6) detailing the results of the three classifiers,
respectively kNN, Gaussian SVM and negative SVM.

An Empirical Evaluation of Kernels for Time Series Classification 13

Dataset DTW TWED EDR SAX SFA
BirdChicken 0.6 0.6 0.7 0.45 0.8
BeetleFly 0.65 0.75 0.6 0.6 0.85
Co↵ee 0.96 0.93 0.96 0.89 0.75
Beef 0.63 0.4 0.4 0.27 0.53
OliveOil 0.77 0.8 0.17 0.8 0.9
Wine 0.65 0.59 0.43 0.65 0.5
FaceFour 0.9 0.94 0.91 0.3 0.59
Meat 0.93 0.92 0.67 0.83 0.72
Car 0.72 0.73 0.72 0.63 0.48
Lighting2 0.8 0.75 0.74 0.61 0.7
Herring 0.59 0.53 0.5 0.62 0.59
Lighting7 0.71 0.74 0.64 0.4 0.44
ToeSegmentation2 0.85 0.76 0.87 0.73 0.41
Trace 0.99 0.93 0.77 0.65 0.96
ECG200 0.89 0.9 0.89 0.8 0.82
ShapeletSim 0.71 0.82 0.48 0.46 0.46
Gun Point 0.96 0.99 0.97 0.97 0.85
Plane 1.0 0.99 0.98 0.99 0.94
ArrowHead 0.79 0.72 0.66 0.43 0.75
Ham 0.67 0.65 0.55 0.56 0.64
WormsTwoClass 0.68 0.63 0.61 0.44 0.62
Worms 0.5 0.47 0.36 0.4 0.46
ToeSegmentation1 0.79 0.81 0.59 0.55 0.62
DiatomSizeReduction 0.93 0.93 0.92 0.79 0.73
FISH 0.85 0.93 0.76 0.58 0.65
OSULeaf 0.58 0.72 0.48 0.37 0.6
Earthquakes 0.82 0.82 0.8 0.81 0.79
Haptics 0.41 0.41 0.41 0.24 0.3
Computers 0.62 0.72 0.68 0.64 0.68
DistalPhalanxOutlineAgeGroup 0.84 0.84 0.82 0.75 0.77
DistalPhalanxTW 0.79 0.74 0.74 0.68 0.76
MiddlePhalanxTW 0.61 0.63 0.61 0.58 0.61
MiddlePhalanxOutlineAgeGroup 0.79 0.79 0.79 0.66 0.71
Synthetic Control 0.97 0.96 0.83 0.68 0.79
ProximalPhalanxTW 0.81 0.8 0.8 0.76 0.78
ProximalPhalanxOutlineAgeGroup 0.84 0.84 0.83 0.85 0.81
SonyAIBORobotSurface 0.69 0.69 0.69 0.58 0.75
Mean 0.76 0.76 0.68 0.62 0.68

Table 4: The kNN classifier evaluated on all 37 datasets. For kNN, the most
accurate distance measures are DTW, and TWED.

14 Mourtadha Badiane, Pádraig Cunningham

Dataset DTW TWED EDR SAX SFA
BirdChicken 0.65 0.7 0.5 0.85 0.5
BeetleFly 0.7 0.65 0.5 0.45 0.45
Co↵ee 1.0 1.0 0.54 0.61 0.54
Beef 0.67 0.63 0.2 0.6 0.2
OliveOil 0.87 0.87 0.4 0.87 0.4
Wine 0.78 0.74 0.5 0.81 0.5
FaceFour 0.89 0.86 0.16 0.36 0.48
Meat 0.97 0.93 0.33 0.83 0.33
Car 0.63 0.68 0.22 0.38 0.22
Lighting2 0.72 0.75 0.54 0.56 0.54
Herring 0.53 0.59 0.59 0.59 0.59
Lighting7 0.84 0.73 0.26 0.26 0.26
ToeSegmentation2 0.81 0.85 0.82 0.53 0.82
Trace 0.99 0.89 0.19 0.62 0.19
ECG200 0.75 0.93 0.64 0.71 0.85
ShapeletSim 0.79 0.46 0.5 0.5 0.5
Gun Point 0.92 0.98 0.49 0.89 0.49
Plane 1.0 0.97 0.1 0.99 0.1
ArrowHead 0.74 0.76 0.39 0.46 0.39
Ham 0.71 0.71 0.51 0.63 0.51
WormsTwoClass 0.61 0.58 0.58 0.58 0.58
Worms 0.46 0.42 0.42 0.42 0.42
ToeSegmentation1 0.86 0.76 0.53 0.64 0.55
DiatomSizeReduction 0.93 0.92 0.3 0.3 0.3
FISH 0.87 0.83 0.13 0.55 0.13
OSULeaf 0.59 0.52 0.18 0.23 0.18
Earthquakes 0.82 0.82 0.82 0.82 0.82
Haptics 0.43 0.47 0.21 0.39 0.21
Computers 0.68 0.68 0.5 0.59 0.6
DistalPhalanxOutlineAgeGroup 0.86 0.81 0.64 0.81 0.64
DistalPhalanxTW 0.79 0.77 0.53 0.74 0.53
MiddlePhalanxTW 0.61 0.62 0.21 0.6 0.21
MiddlePhalanxOutlineAgeGroup 0.78 0.79 0.27 0.6 0.27
Synthetic Control 0.98 0.97 0.17 0.27 0.17
ProximalPhalanxTW 0.81 0.81 0.45 0.78 0.79
ProximalPhalanxOutlineAgeGroup 0.86 0.85 0.49 0.84 0.49
SonyAIBORobotSurface 0.79 0.74 0.43 0.63 0.43
Mean 0.78 0.76 0.41 0.6 0.44

Table 5: The Gaussian SVM evaluated on 37 datasets. For the Gaussian kernel,
DTW and TWED are the most accurate distance measures.

An Empirical Evaluation of Kernels for Time Series Classification 15

Dataset DTW TWED EDR SAX SFA
BirdChicken 0.8 0.7 0.5 0.6 0.5
BeetleFly 0.75 0.85 0.5 0.45 0.75
Co↵ee 1.0 1.0 0.46 0.43 0.46
Beef 0.67 0.73 0.2 0.67 0.2
OliveOil 0.87 0.87 0.4 0.4 0.4
Wine 0.76 0.87 0.5 0.57 0.5
FaceFour 0.89 0.86 0.3 0.32 0.41
Meat 0.97 0.93 0.33 0.8 0.33
Car 0.58 0.8 0.22 0.22 0.22
Lighting2 0.66 0.75 0.54 0.54 0.54
Herring 0.59 0.59 0.59 0.59 0.59
Lighting7 0.89 0.74 0.26 0.33 0.38
ToeSegmentation2 0.81 0.75 0.18 0.73 0.54
Trace 1.0 0.9 0.19 0.64 0.19
ECG200 0.72 0.92 0.64 0.64 0.82
ShapeletSim 0.82 0.48 0.5 0.49 0.5
Gun Point 0.85 0.97 0.49 0.87 0.49
Plane 1.0 0.98 0.1 0.89 0.1
ArrowHead 0.74 0.77 0.3 0.34 0.53
Ham 0.71 0.72 0.51 0.46 0.51
WormsTwoClass 0.61 0.58 0.58 0.64 0.58
Worms 0.44 0.42 0.42 0.45 0.42
ToeSegmentation1 0.84 0.6 0.47 0.55 0.47
DiatomSizeReduction 0.96 0.93 0.3 0.73 0.59
FISH 0.86 0.81 0.13 0.24 0.13
OSULeaf 0.51 0.5 0.18 0.31 0.18
Earthquakes 0.82 0.82 0.82 0.82 0.82
Haptics 0.29 0.45 0.21 0.33 0.21
Computers 0.57 0.68 0.5 0.61 0.54
DistalPhalanxOutlineAgeGroup 0.86 0.81 0.64 0.81 0.74
DistalPhalanxTW 0.79 0.77 0.53 0.74 0.53
MiddlePhalanxTW 0.6 0.64 0.21 0.61 0.21
MiddlePhalanxOutlineAgeGroup 0.8 0.77 0.27 0.27 0.27
Synthetic Control 0.98 0.96 0.17 0.19 0.17
ProximalPhalanxTW 0.81 0.82 0.45 0.78 0.45
ProximalPhalanxOutlineAgeGroup 0.86 0.85 0.49 0.87 0.49
SonyAIBORobotSurface 0.79 0.71 0.43 0.43 0.43
Mean 0.77 0.77 0.39 0.55 0.44

Table 6: The negative SVM evaluated on all 37 datasets. For the negative
kernel, DTW and TWED are e↵ectively tied as the best distance measure.

4.1 Computational Cost Reduction

When using an SVM, all training samples that are not support vectors may be
discarded. This produces a reduction in computational cost. We investigated
the mean support vector density (ratio of support vectors to training samples)
and display the results in the following table.

As you can see, the Negative-DTW model produces the greatest saving in
computational cost on average. However, upon further investigation we found
that for this model the saving tends to increase as samples are added and
decreases as time series length is decreased, a completely intuitive result. The

16 Mourtadha Badiane, Pádraig Cunningham

SVM Kernel Distance mean SV density standard deviation
Negative DTW 0.77 0.16
Gaussian DTW 0.83 0.16
Negative TWED 0.86 0.13
Gaussian TWED 0.89 0.12
Gaussian EDR 0.91 0.13
Negative EDR 0.91 0.13
Gaussian SAX 0.91 0.14
Gaussian SFA 0.91 0.13
Negative SAX 0.92 0.14
Negative SFA 0.93 0.11

Table 7: Support Vector Densities

Fig. 4 Support Vector density against subset size for the ItalyPowerDemand dataset..

correlation coe�cients between training set size and support vector density;
and training set size and time series length where -0.27 and 0.11 respectively,
confirming that deduction. Finally, to complete our reduction investigation
and to confirm this intuitive result, we computed a Negative-DTW kernel
matrix for a much larger dataset the ”ItalyPowerDemand” dataset which has
1029 training samples of length 24. The support vector density was very low
at only 42%. This means that only 430 of the 1029 training samples would be
needed in model prediction. A massive saving in computational cost seeming to
confirm the hypothesis that given many samples of relatively short length, the
reduction in computational cost derived from using a Support Vector Machine
will be substantial. To validate this theory, we selected random subsets of the
training set and plotted the support vector density of that subset against the
size of the subset in Figure 4.

An Empirical Evaluation of Kernels for Time Series Classification 17

We must state that techniques exist for kNN-DTW models to reduce com-
putational cost too, by bounding techniques. However, these work best on long
time series, and have little or no e↵ect at all on shorter time series. On the
other hand, the SVM does the opposite working well for shorter time series,
especially when there is a large training set size relative to the length of the
time series.

We also ran various weighted league tables, using time series length or
dataset size as weights, the results remained unchanged. Gaussian-DTW re-
mains the best model even after weighting.

5 Conclusion

In this paper we have presented experiments with the hopes of identifying time
series distance-kernel pairs which provide the highest accuracy. We have found
two superior distance-kernel pairs: Gaussian-DTW and Negative-DTW, with
Gaussian-DTW having the slight edge over its primary rival. kNN is found
to be a robust classifier measure compatible with all distances studies, while
DTW and TWED are found to be robust distance measures compatible with
all classifiers studied. However, this paper identifies Gaussian-DTW as the
best model for time series classfication.

There is an advantage of using an SVM over using kNN and that is the
saving that results from discarding training samples. Every training sample
that is not a support vector is not used for model prediction. We have found
that the Negative-DTW on average retains 77% of samples whereas Gaussian-
DTW retains 83% of samples. This saving is marginal, however upon analysis
we identified that the support vector density tends to decrease as the size of
the training set increases and tends to increase as the length of the time series
in the dataset increases. The correlation coe�cient in both cases easily lead
us to this deduction, and so there is great merit in using an SVM.

While Gaussian DTW provides best accuracy on average over the 37 data-
sets, Gaussian TWED also performs very well. Given that TWED is a proper
metric, there is a case for selecting Gaussian TWED for novel time-series clas-
sification applications given that it has a sound theoretical foundation.

Finally, we reflect on the distance measures that do not perform well. While
EDR, SAX and SFA sometimes perform well with kNN, they rarely provide
good accuracy when paired with SVM. We can conclude that EDR is simply
poorly adjusted to time series classification. For SAX and SFA our parameter
tuning policy may have had an impact. Their parameter space is massive so the
restriction to fifty randomly selected parameter combination may significantly
interfere with their performance, and a relaxation of this restriction would
most likely improve their performance. However, the restriction is reasonable
in a fair competition.

Lastly in summation and conclusion, we have found that SVMs are a state-
of-the-art classifier for time series and are indeed very useful in the domain of
time series analysis. The Gaussian-DTW SVM outperforms kNN-DTW, the

18 Mourtadha Badiane, Pádraig Cunningham

assumed baseline for time series, and is a better classifier. Not only that, but
using an SVM instead of a kNN model results in a significant reduction in
computational cost when there are many training samples relative to time
series length. We can therefore recommend the Gaussian-DTW SVM for time
series classification.

Acknowledgements This publication has resulted from research supported in part by
a grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3872 and is
co-funded under the European Regional Development Fund.

References

M. Badiane, M. O’Reilly, and P. Cunningham. Kernel methods for time se-
ries classification and regression. In Proceedings for the 26th AIAI Irish

Conference on Artificial Intelligence and Cognitive Science Trinity College

Dublin, Dublin, Ireland, December 6-7th, 2018., pages 54–65, 2018. URL
http://ceur-ws.org/Vol-2259/aics 7.pdf.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time
series classification bake o↵: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–
660, 2017.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computa-

tional learning theory, pages 144–152. ACM, 1992.
L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving
object trajectories. In Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pages 491–502, 2005.
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

M. Cuturi. Fast global alignment kernels. In Proceedings of the 28th interna-

tional conference on machine learning (ICML-11), pages 929–936, 2011.
M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui. A kernel for time series
based on global alignments. In 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing-ICASSP’07, volume 2, pages II–
413. IEEE, 2007.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adaptive
dimensionality reduction for indexing large time series databases. ACM

Sigmod Record, 30(2):151–162, 2001a.
E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality
reduction for fast similarity search in large time series databases. Knowledge

and information Systems, 3(3):263–286, 2001b.
E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In Pro-

ceedings of the 2001 SIAM International Conference on Data Mining, pages
1–11. SIAM, 2001.

An Empirical Evaluation of Kernels for Time Series Classification 19

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. Proceedings of the 8th

ACM SIGMOD workshop on Research issues in data mining and knowledge

discovery - DMKD 03, 2003. doi: 10.1145/882082.882086.
J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic
representation of time series. Data Mining and knowledge discovery, 15(2):
107–144, 2007.

V. Mahato, M. O’Reilly, and P. Cunningham. A comparison of k-nn methods
for time series classification and regression. In AICS, pages 102–113, 2018.

P.-F. Marteau. Time warp edit distance with sti↵ness adjustment for time
series matching. IEEE transactions on pattern analysis and machine intel-

ligence, 31(2):306–318, 2008.
P. Schäfer and M. Högqvist. Sfa: a symbolic fourier approximation and index
for similarity search in high dimensional datasets. In Proceedings of the 15th

International Conference on Extending Database Technology, pages 516–527.
ACM, 2012a.

P. Schäfer and M. Högqvist. SFA: a symbolic fourier approximation and index
for similarity search in high dimensional datasets. In Proceedings of the 15th

International Conference on Extending Database Technology, pages 516–527.
ACM, 2012b.

H. Shimodaira, K.-i. Noma, M. Nakai, and S. Sagayama. Dynamic time-
alignment kernel in support vector machine. In Advances in neural infor-

mation processing systems, pages 921–928, 2002.
B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms.
In VLDB, volume 385, page 99. Citeseer, 2000.

