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search Centre, School of Mechanical and Materials Engineering, University College Dublin, E-

mail: alojz.ivankovic@ucd.ie

This paper describes the development of a hierarchical multiscale procedure within the finite volume OpenFOAM

framework for modelling the mechanical response of non-linear heterogeneous solid materials. This is a first develop-

ment of hierarchical multiscale model for solid mechanics using the finite volume discretisation method. In this compu-

tational procedure the information is passed between the macro and micro scales using representative volume elements

(RVE), allowing for general, non-periodic microstructures to be considered. An RVE with the prescribed microstruc-

tural features is assigned to each computational point. The overall macro response accounts for the microstructural

effects through the coupling of macro and micro scales, i.e., the macro deformation gradient is passed to the RVE and in

turn, the homogenised micro stress-strain response is passed back to the macro scale. The incremental total Lagrangian

formulation is used to represent the equilibrium state of the solid domain at both scales and its integral equilibrium

equation is discretised using the cell-centred (colocated) finite volume (FV) method in OpenFOAM. The verification

of the model is demonstrated using both 2D and 3D simulations of perforated elastic-plastic plates subjected to tensile

loading.
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1. INTRODUCTION

Multiscale computational modelling allows for bridging a wide ranges of spatial and temporal scales; it is becoming

increasingly popular in many scientific domains where multiscale phenomena and interactions across the scales have

pronounced effects on the macro response (Horstemeyer, 2009; Matouš et al., 2017; Salciccioli et al., 2011). These

range from the study of protein conformational dynamics to multiphase processes in, for example, granular media

or haemodynamics, from nuclear reactor physics to astrophysics (Karabasov et al., 2014), or more recently to mod-

elling of membranes used for parachutes in (Avery et al., 2021). Of course, one can attempt to avoid using multiscale

modelling by simply averaging microstructural effects over the entire macro scale, which is the most common ap-

proach, or by discretising the entire macro domain with microstructural details. However, in many cases these could

be either oversimplification or prohibitively expensive, hence the necessity for multiscale modelling. The decision to

pursue a multiscale approach involves a trade-off between increased model fidelity with the added complexity, and

the corresponding reduction in precision and increase in uncertainty.

The current work, although developed for general applications, is motivated by Additive Manufacturing (AM), a

promising advanced manufacturing technology to directly build up objects layer by layer from 3D virtual prototypes.

The increasing importance of multiscale modelling has been demonstrated in AM (Markl and Krner, 2016; Perić et al.,

2010; Yashchuk, 2018). Numerous past reviews (Fish, 2006, 2013) have discussed the advantages that can be achieved

by multiscale approaches. It is believed that multiscale computations will play a critical role in future nano-technology

and materials genome research. Additionally, any computational platform able to encompass numerical procedures

for AM modelling also requires efficient, advanced multi-physics and multi-CPU capabilities. OpenFOAM, an open-

source computational library, has therefore been chosen in the current work.

The development of many multiscale models begins with recognition that a given assumption, such as the use

of a particular constitutive equation, is inadequate for some important range of material response. The mathematical

description of material behaviour consists of two types of equations: those that directly reflect physical laws, and

those that do not. In general, spatial multiscale modelling is classified into two categories: information passing and

concurrent or embedded (de Borst and Ramm, 2011). In the concurrent approach involving the direct simulation of

fine-scale behaviour, multiple scales are solved simultaneously or concurrently within a single spatial domain where

microstructural details are directly meshed in. This approach is attractive for multiscale material systems either when

scale separation does not exist or when the quantities of interest are at a fine scale, for example a crack propagation.

This method assumes that the fine-scale model including its geometry is known either from direct measurements or

from reconstruction in a portion of the problem domain. The latter one is a promising strategy for reducing the cost
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of a fine-scale simulation (such as a molecular dynamics computation) by limiting the fine-scale representation to a

small subregion of the full domain while using a less computationally demanding coarse-scale representation for the

remaining material. The most well-known of such approaches is the quasi-continuum (QC) method (Tadmor et al.,

1996), which couples a molecular dynamics region with a surrounding finite-element representation through a one-

to-one match between atoms and finite-element nodes at the interface. Related techniques (Badia et al., 2007; Wagner

and Liu, 2003; Xiao and Belytschko, 2004) vary the form of the interface, but most appeal either to a partitioning

of the total system energy between the two domains or matching of forces across the boundary to formally derive

the coupled system equations. On the other hand, the information passing methods are based on scale infusion where

the response of a resolved fine scale is infused into a coarse scale. Information passing methods, which link discrete

scales (electronic structure, atomistic, coarse-grained atomistic) and continuum scales (material constituents and com-

ponents) (Fish et al., 2021) have been proven effective when considering materials whose structure can be divided into

multiple scales with each scale having its unique characteristics, which collectively define the macro behaviour (Zeng

and Qin, 2018). This approach is widely used, and selected examples from the literature include the prediction of the

evolution of interfaces during welding (Tong et al., 2012a,b), the analysis of vapour pressure and void volume frac-

tion evolution in porous polymers (Guo et al., 2015), and the bridging between molecular dynamics and continuum

mechanics (Lee et al., 2017). For nonlinear history-dependent problems, information passing methods for atomistic

or continuum media would have had little practical impact due to the enormous computational complexity involved.

Thus, reduced-order models have been actively studied. Some important reduced-order methods include the Voronoi

cell method (Ghosh and Moorthy, 1995), spectral method (Aboudi, 1982), network approximation method (Berlyand

and Kolpakov, 2001), fast Fourier transforms (Moulinec and Suquet, 1998), mesh-free reproducing kernel particle

method (Chen et al., 1996), finite-volume direct-averaging micromechanics (Cavalcante et al., 2011), transformation

field analysis (Dvorak, 1990), methods of cells (Paley and Aboudi, 1992), methods based on control theory including

balanced truncation (Moore, 1981), optimal Hankel norm approximation (Glover, 1984), proper orthogonal decom-

position (Krysl et al., 2001; Yvonnet and He, 2007), data-driven-based reduced-order methods (Bhattacharjee and

Matouš, 2016; Fish et al., 2018; Le et al., 2015), and non-uniform transformation field methods (Fritzen and Böhlke,

2011; Michel and Suquet, 2004). Principally, the multiscale simulations could be based on a combination of these

two categories, using concurrent and information passing methods in a hybrid way. This rarely studied approach may

include information passing methods for weakly coupled scales while the concurrent method is applied to strongly

coupled scales where loss of localisation (such as formation of cracks, voids, and shear bands) and smearing due to

homogenisation becomes inadequate.
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As customary in stress analysis, the finite element (FE) method has been applied in most of the multiscale mod-

elling of heterogeneous materials (including aforementioned multiscale references). For example, FE2, a multilevel

finite element approach is proposed to account for heterogeneities in the behaviour between a fibre and a matrix (Feyel

and Chaboche, 2000), whose constitutive equations are obtained by solving boundary value problems on the micro

scale and homogenising the computed properties. An improved version was developed to address the limitations re-

lated to discontinuities in the analysis domain (Kouznetsova et al., 2002). Another example includes modelling of

cracks where the extended finite element method (XFEM) is used to incorporate discontinuities at the macro-scale

(Belytschko and Black, 1999; Moes et al., 1999). Many other examples of the application of multiscale finite element

methods can be found in the literature, for example, as reviewed in (Fish, 2013).

The application of the finite volume method has largely been limited to modelling of microstructure type prob-

lems using RVEs and unit cell approaches. A recent review paper titled Thirty Years of the Finite Volume Method for

Solid Mechanics (Cardiff and Demirdžić, 2021), lists over seventy references in the field, mainly from research group

led by Ivankovic (Alveen et al., 2014; Carolan et al., 2015; Leonard et al., 2012; McNamara et al., 2014, 2015) and

Aboudi & Pindera (Aboudi, 1982, 2004; Aboudi et al., 1999; Cavalcante et al., 2011, 2012). The only true multiscale

development in FV using the concurrent or embedded approach is reported in (Alveen et al., 2014, 2015). The current

hierarchical multiscale FV approach follows from the initial FV work (Tuković et al., 2019) and is based on princi-

ples presented in (Fish, 2013). The Representative Volume Element (RVE) is used at the micro scale to statistically

represent the microstructure of the material at each computational point of the macro scale. The coupling between the

scales is achieved by passing deformation gradients from the computational points to the corresponding RVEs. The

resulting homogenised micro stress-strain fields are passed back to the computational points at the macro scale. For

the material model, a hyper-elasto-plastic model has been adopted from (Cardiff et al., 2016) for validation purposes,

but any material model can be used.

2. MULTISCALE APPROACH – INFORMATION PASSING

The information passing method, also known as the hierarchical approach, has been employed in this work. This

method, which is an alternative to concurrent or embedded methods, requires the use of an RVE to represent micro-

structural features on smaller scales. The RVE should accommodate enough information about the microstructure,

while its dimensions should be smaller than the macroscopic dimensions in order to satisfy the concept of scale

separation (Mirkhalaf et al., 2016). The first step in this approach is to approximate the problem with a coarse repre-

sentation of the underlying macroscale domain. Then, a pre-specified RVE is assigned to each material point on the
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macroscale. In this work, the microstructural features are represented as voids for simplicity, following the previous

FEA work (Fish, 2013). In Fig. 1, the characteristic length lµ of the RVE is much smaller than the characteristic

length l of the macro continuum. The domain Ωµ of the RVE consists of two components: solid part Ωs
µ and void

part Ωv
µ. The following gives a short overview of the multiscale modelling and homogenisation methods for nonlinear

problems based on (Geers et al., 2017) but adjusted to be applied with the FV method.

2.1 Macroscale problem

At the macroscopic scale, the deformation is governed by the momentum conservation law, which in the absence of

inertia and body forces can be expressed in term of the Cauchy stress tensor σ as:

∮
Γ

n · σ dΓ = 0, (1)

./fig-1.png

FIG. 1: Macro-continuum with a locally assigned RVE.
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or in terms of the first Piola–Kirchhoff stress tensor P as:

∮
Γ0

n0 · PT dΓ0 = 0, (2)

where Γ is the boundary surface of the macro body in the current configuration, n is the unit normal to Γ, Γ0 is the

boundary surface of the macro body in the initial configuration and n0 is the unit normal to Γ0. To close this boundary

value problem, a constitutive relation between the stress and kinematic quantities needs to be defined. Instead of

assuming a constitutive equation in a closed form, the computational homogenisation (CH) technique extracts the

constitutive response numerically from the detailed computational analysis of a microstructural RVE.

./fig-2.png

FIG. 2: Computational homogenization scheme.
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Deformation of the macro-continuum is described by the macroscopic deformation gradient tensor

F = (∇0x)
T

=

(
∂x

∂X

)T

= I +

(
∂u

∂X

)T

= I + (∇0u)
T
, (3)

where ∇0 is the gradient operator with respect to the reference configuration, I is the second-order unit tensor, x

and X denote the position vectors in the current and reference configurations, respectively, and u = x −X is the

macro-scale displacement vector.

The CH framework is schematically illustrated in Fig. 2. The macroscopic deformation gradient tensor F is

calculated for every material point of the macroscale structure (e.g., the cell-centres of the macroscopic mesh within

a collocated finite volume environment). Next, F is used to formulate the boundary conditions imposed on the RVE

assigned to the considered point. Upon the solution of the boundary value problem for the RVE, the macroscopic

stress tensor P is obtained, thus providing the numerical stress-deformation relationship at the macroscopic point.

2.2 Microscale problem

The physical and geometrical properties of the microstructure are identified by an RVE. Here, it is assumed that an

appropriate RVE, capable of capturing relevant microscale physics and fluctuations, has been selected. In accordance

with the separation of scales principle, the RVE should be much smaller than the characteristic length of the relevant

macroscopic field variation, but sufficiently larger than micro fluctuations. If this condition holds, then any change

in the macroscopic field variables will immediately be accommodated at the RVE scale, and the RVE problem is

quasi-static even though the macroscopic problem can be transient (Geers et al., 2017).

Deformation of the microscale continuum (RVE) is linked with the deformation of the macroscale continuum by

decomposing the full displacement of the RVE into homogenous and micro-fluctuation part as follows

uµ = ūµ + ũµ, (4)

where the microfluctuation displacement ũµ represents the local fine scale contribution superimposed on to the

macroscale homogenous deformation determined by macroscopic deformation gradient F ,

ūµ = (F − I) ·Xµ. (5)
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From (4), the microscale deformation gradient tensor is defined as

Fµ = I + (∇0µu)T = F + (∇0µũµ)T. (6)

Relations (4) and (6) are valid for every point at the microscale, with the first terms known for a given macro-scale

deformation tensor F . The microfluctuation ũµ will be obtained from the solution of the micro-scale boundary value

problem.

The equilibrium equation for the RVE in the absence of inertia and body force can be expressed in integral or

differential form as follows: ∫
Γ0µ

n0µ · PT
µ dΓ0µ = 0 or ∇0µ · PT

µ = 0, (7)

where Pµ is the microscale first Piola–Kirchhoff stress tensor, Γ0µ is the boundary surface of the RVE in the initial

configuration and n0µ is the unit normal to Γ0µ. The material behaviour of each microstructural constituent is assumed

to be known and described by constitutive laws that specify a stress-strain relation. In this study, a hyper-elasto-plastic

deformation of the matrix material of the RVE has been defined by the hyper-elasto-plastic material model, where

the Kröner-Lee multiplicative decomposition of the deformation gradient together with a rate-independent isotropic

hyperelastoplastic constitutive relation (Simo and Hughes, 2006) is employed. The Kirchhoff stress τµ = Jµσµ is

given in terms of an uncoupled volumetric-deviatoric relation (Cardiff et al., 2016):

τµ = Jµσµ =
Kµ

2
(J2

µ − 1)I + Gµ dev[b̄eµ], (8)

where Kµ is the bulk modulus, Gµ is the shear modulus, Jµ is the Jacobian (determinant of the deformation gradient)

and b̄eµ is the volume-preserving component of the left Cauchy-Green deformation tensor. The classical Mises-Huber

J2 yield condition, formulated in terms of Kirchhoff stress tensor, is employed (Simo and Hughes, 2006):

f(τµ, ε
p,eq) = ||dev[τµ]|| −

√
2
3

[σY (εp,eq)] 6 0, (9)

where the yield stress σY is a function of equivalent plastic strain εp,eq. More details related to the implementation of

the hyperelastoplastic constitutive relation in the context of the finite volume method can be found in (Cardiff et al.,

2016).
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The microscopic equilibrium equation (7) requires boundary conditions. The essential step in the CH methodol-

ogy is the derivation of RVE boundary conditions from the scale transition relations, as is discussed in the following

section.

2.3 Macro-to-micro coupling

A commonly used scale transition procedure for establishing the macro-to-micro coupling is based on kinematic

averaging, where the volume average of the micro-scale deformation gradient tensor Fµ has to be equal to the corre-

sponding macro-scale deformation gradient tensor F ,

F =
1

Ω0µ

∫
Ω0µ

Fµ dΩµ, (10)

where Ωµ is the RVE volume in the reference configuration. Insertion of equation (6) into the right-hand side of the

scale transition relation (10) yields

1
Ωµ

∫
Ωµ

FµdΩµ = F +
1

Ω0µ

∫
Ω0µ

(∇0µũµ)TdΩ0µ

= F +
1

Ω0µ

∮
Γ0µ

ũµn0µdΓ0µ,

(11)

where the divergence theorem has been used to transform the volume integral to the integral over the undeformed

boundary of the RVE, Γ0µ, with outward normal n0µ.

It is clear that the boundary conditions on the RVE must be chosen in such a way that the contribution of the

microfluctuation field ũµ in equation (11) vanishes in order to satisfy the scale transition relation (10). This can be

achieved in many ways. Some of the possibilities proposed and used in the literature are listed below:

1. Suppress the micro-fluctuation at the RVE boundary

ũµ = 0, ∀Xµ ∈ Γ0µ, (12)

while leaving the microstructural fluctuations inside the volume yet undetermined. Using equation (4), the

above relation can equivalently be written as

uµ = (F − I) ·Xµ. (13)
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With this condition, the displacements of the RVE boundary are fully prescribed according to the given F .

These are often termed as uniform displacement boundary conditions.

2. For an RVE with geometrically periodic boundary, the boundary can be split in ”+” and ”-” parts defined by

the opposite outward normal vectors at the corresponding points, n+
0µ = n−

0µ, and so-called periodic boundary

conditions can be imposed by requiring the periodicity of the micro-fluctuation field

ũ+
µ = ũ−

µ . (14)

3. Prescribe traction on the RVE boundary according to a given macroscopic stress P

pµ = P · n0µ, ∀Xµ ∈ Γ0µ, (15)

These are usually called uniform traction boundary conditions.

For a given microstructural RVE size, the periodic boundary conditions are known to provide a better estimation

of the overall properties than the mentioned alternatives. The periodic boundary conditions are most frequently used

in practice, although the uniform displacement boundary conditions are also often used due to the simplicity of

implementation.

2.4 Micro-to-macro transition: Hill–Mandel condition

The micro-to-macro scale transition relation is usually established based on the so-called Hill–Mandel condition or

macro-homogeneity condition. This condition requires the volume average of the increment (or variation) of work

performed on the RVE to be equal to the increment (or variation) of local work on the macroscale. Formulated in

terms of a work conjugated set, that is, the deformation gradient tensor and the first PiolaKirchhoff stress tensor, the

Hill–Mandel condition reads,
1

Ω0µ

∫
Ω0µ

Pµ : δFT
µ dΩ0µ = P : δFT. (16)

Based on the Hill–Mandel condition (16), it is shown in (Geers et al., 2017) that if the RVE boundary conditions (12)

and (13) are used, the macroscale first Piola–Kirchhoff stress tensor can be identified as the volume average of the
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microscale first Piola–Kirchhoff stress tensor,

P =
1

Ω0µ

∫
Ω0µ

PµdΩ0µ, (17)

and the macroscale Cauchy stress tensor can be calculated using standard continuum mechanics relation,

σ =
1
J
P · FT, (18)

where J = det(F ) is the Jacobian of the deformation gradient tensor.

The actual choice of the averaging measures: the deformation gradient tensor F and the first Piola-Kirchhoff

stress tensor P has been proposed by Hill (1984). This choice is motivated by the fact that these two measures

are work conjugated, combined with the observation that their volume averages can be defined in terms of the mi-

crostructural quantities on the RVE boundary only. For example, average first Piola–Kirchhoff stress can be calculated

as follows:

P =
1

Ω0µ

∮
Γ0µ

pµXµ dΓ0µ. (19)

where pµ = Pµ · n0µ is the first Piola-Kirchhoff traction vector.

3. DISCRETISATION OF GOVERNING EQUATION USING THE CELL-CENTRED FV METHOD

As is previously shown, both macro- and micro-scale problems are mathematically described by the equilibrium

equations of the equal form: ∮
Γ0

n0 · PT dΓ0 = 0, (20)

∮
Γ0

n0µ · PT
µ dΓ0µ = 0. (21)

In this study, the equilibrium equation of the macroscale problem (20) is solved for displacement increment:

∆um = um − um−1, (22)

while the equilibrium equation of the microscale problem (21) is solved for the increment of displacement fluctuation:

∆ũm
µ = ũm

µ − ũm−1
µ , (23)
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where superscripts m and m−1 represent current and previous loading steps respectively. Finite volume discretisation

of the equilibrium equations is described in the continuation only for the macroscale problem.

The second-order accurate cell-centred finite volume method is applied to discretise the solution domain and the

governing equations. The spatial computational domain in the initial configuration is divided into a finite number of

unstructured control volumes (CV) or cells bounded by convex polygons. Figure 3 shows a typical general convex

polyhedral cell with the computational point P located in its centroid and cell volume is Ω0P ; N is the centroid of

a neighbouring control volume, which shares face f with the current control volume; Γ0f is the area of face f , n0f

is the unit normal vector of face f , vector df joins P to N , and XP is the position vector of the cell centre point

P . The quasi-time (loading) interval is split into a finite number of loading steps and the equations are solved in a

quasi-time-marching manner.

According to the FV discretisation method, the surface integral of Eq. (20) is transformed into a sum of face

integrals which are, together with the volume integral, approximated to second-order accuracy using the mid-point

rule. The resulting nonlinear discretised counterpart of the equilibrium equation (20) for the control volume Ω0,P

reads (Tuković et al., 2018): ∑
f

n0f · PT
f Γ0f = 0, (24)

where subscript f represents a face-centred values. The face-centre first Piola-Kirchhoff stress tensor Pf is calculated

explicitly by linear interpolation of the corresponding cell-centre values. In order to enhance the implicit part of the

./fig-3.png

FIG. 3: General convex polyhedral control volume (CV) as an element of the computational mesh representing discretised spatial
domain in its initial configuration.
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discretised model, the linear Laplace term, which represents a linearisation of the divergence of stress, is introduced

to the left and right-hand side of Eq. (24) as follow (Cardiff et al., 2016):

∑
f

(Ki)f
∆um

N −∆um
P

d0f
Γ0f︸ ︷︷ ︸

linear part (implicit)

=
∑
f

(Ki)f
d0f

d0f
· (∇0∆u)mf Γ0f +

∑
f

n0f ·
(
Pm

f

)T
Γ0f ,︸ ︷︷ ︸

nonlinear part (explicit)

(25)

where the Laplace term on the left-hand side is treated implicitly while the Laplace term on the right-hand side is

explicit. Addition of these terms do not affect the solution, moreover, due to the different computational stencil used

for discretisation of implicit and explicit Laplacian terms, the difference between them results in additional numerical

diffusion which tends to reduce oscillations of the solution. The diffusion coefficient represented by Ki in the Laplace

terms does not influence the final result, but it can have an impact on the stability of the solution procedure; it is given

in this study as:

Ki =
3
4
G + K, (26)

where K is the bulk modulus, G is the shear modulus of macro-scale continuum. The cell-centred gradient of dis-

placement increment required for evaluation of deformation gradient and explicit Laplacian term is calculated using

least–square method (Jasak and Weller, 2000).

Finally, the discretised counterpart of the equilibrium equation (20) for each control volume P in the mesh can

be represented in the following form of a linear algebraic equation:

aP ∆um
P +

∑
N

aN∆um
N = bP , (27)

where aP is the central (diagonal) coefficient, aN are the neighbour coefficients representing interactions with neigh-

bour cell-centred unknowns and bP is the source vector contribution.

The resulting system of equations for the entire computational domain takes the form:

[A][∆u] = [b], (28)

where [A] is the sparse n×n matrix with weak diagonal dominance, with n being the total number of control volumes.

The coefficients aP are on the diagonal of matrix [A], and coefficients aN form the matrix off-diagonals. The solution

vector [∆u] contains the unknown cell-centred displacement increments ∆u, and [b] is the source vector containing

the explicitly discretised terms of equilibrium equation and boundary condition contributions. The above system is

Volume x, Issue x, 2021
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solved based on an implicit integration in quasi-time using a segregated solution procedure, which is common in

FV Computational Fluid Dynamics (CFD)/Computational Solid Mechanics (CSM), and components of displacement

increment are solved in a decoupled manner. The linear system for each displacement increment component is solved

by a preconditioned conjugate gradient solver.

As already mentioned, the discretised equilibrium equation (25) is solved iteratively using the fixed-point (Gauss–

Seidel) iterative solution procedure, where explicit terms are evaluated using displacement increments from the pre-

vious iteration. Specifically, after the new displacement increment field is obtained, new total displacement and de-

formation gradient are calculated and used to update the first Piola-Kirchoff stress field by solving RVE problem.

All implementations have been performed in the open-source C++ toolbox OpenFOAM (Weller et al., 1998) (version

foam-extend-4.1) with a solution tolerance set to 10−6. In contrast to the Newton-Raphson methods commonly used

in the FE method, the fixed point (Gauss-Seidel) approach shows first order convergence in contrast to the second

order convergence of the Newton-Raphson method, however, this disadvantage is mitigated by the fact that the lin-

earised system in the paper is quick to assemble and iteratively solve. Theoretically, a Newton-Raphson method can

also be used, but it would require a block-coupled approach for the linearised problem.

The overall macro-micro information passing process depicted in Fig. 1 can be summarised as follows. First, the

deformation gradient is calculated at the macro-scale computational points under the specified macro loading con-

ditions and then applied uniformly over its corresponding RVEs. Following the solution of the equilibrium equation

(21) for the RVE, the volume-averaged first Piola-Kirchhoff stress tensor from the RVE is passed back to the macro

domain and this procedure is repeated within each quasi-time step until convergence. The overall multiscale solution

procedure is summarised in Algorithm 1 and Algorithm 2.

Algorithm 1: Solution procedure for the macro-problem
1: for all loading steps do

2: while explicit terms are not converged do

3: Momentum equation: assemble and solve in terms of ∆u

4: Calculate cell-centre total deformation gradient F

5: Calculate cell-centre first Piola–Kirchhoff stress P by solving RVE-problem {See Algorithm 2}

6: end while

7: end for
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Algorithm 2: Solution procedure for RVE-problem
1: Pass deformation gradient from a macro-cell-centre and use it as a specified average deformation gradient

for the RVE-problem

2: for all loading steps do

3: while explicit terms are not converged do

4: Momentum equation: assemble and solve in terms of ∆ũ

5: Calculate cell-centre deformation gradient Fµ

6: Calculate cell-centre Cauchy stress σµ using material model (8)

7: Transform cell-centre Cauchy stress to first Piola–Kirchhoff stress Pµ

8: end while

9: end for

4. NUMERICAL RESULTS

In this numerical section, three sets of examples are presented. The first set of examples focuses on 2D analyses of two

elasto-plastic perforated plates, one with a central hole and one without. A comparison with the corresponding single-

scale model in the concurrent approach is also included as a benchmark. The second example set is an extension of

the plate without a hole case to 3D, where 2D voids become cylinders in 3D. Finally, the third example is a true 3D

case where cylindrical voids are replaced by spherical voids. A plate with a thickness of 5 times the side length of the

RVE and with each RVE containing a spherical void is considered here. In each case, the plate is loaded in uniaxial

tension by applying uniform vertical displacement and the side length of the RVE is kept at 1 mm.

4.1 2D two-scale analysis of a stretching perforated elasto-plastic plate

The stretching of a perforated plate is a widely used benchmark example in computational plasticity and is analysed

in this section assuming plane strain conditions (Perić et al., 2010). Two different configurations of perforated plate

are selected to examine the accuracy of the newly developed RVE-based multiscale model (Figure 4). The first con-

figuration considers a uniform, perforated plate 10 mm in width, 18 mm in length, and containing 180 uniformly

distributed voids 0.5 mm in diameter. The second configuration is the same plate but with the addition of a central

hole, 5 mm in radius, and containing 161 voids. Due to the symmetry, only one-quarter of the plate is considered. The

material in all models is assumed to be composed of a von Mises elasto-plastic material with linear strain hardening.

Table 1 shows the material properties of an aluminium alloy used in the single-scale simulations and for the RVE in
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the two-scale simulations (taken from (Perić et al., 2010)). The material properties for the macro domain in two-scale

simulations are obtained from the stress-strain response of the single-scale uniform perforated plate simulations. In

the single-scale simulation, a time-dependent uniform displacement is imposed at the top boundary, symmetry bound-

ary conditions are applied at left and bottom boundaries. The right boundary as well as the edge of the central hole

are prescribed with traction-free boundary conditions. For the two-scale analysis, the same boundary conditions are

applied in the macro region while periodic boundary conditions are applied to the external boundaries of each RVE.

Quadrilateral meshes are generated in ANSYS/ICEM. In the single-scale analysis, the meshes for the perforated

plate without/with large central hole are composed of 20, 880 and 18, 676 hexahedral cells respectively (see Figure

5(a)). It should be noted that OpenFOAM uses 3-D meshes, with one cell extruded in the thickness direction, for 2-D

./fig-4a.png

(a)

./fig-4b.png

(b)

FIG. 4: Configurations of the elasto-plastic perforated plate: (a) uniform plate and (b) plate with central hole

TABLE 1: Material properties of the aluminium elasto-plastic perforated plate

Density (ρ) 7000 kg/m3

Young’s modulus (E) 70 GPa
Poisson ratio (ν) 0.2
Yield strength (σy) 243 MPa
Strength hardening (HP ) 443 MPa
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models, hence quadrilateral cells in ICEM are converted to hexahedral cells in OpenFOAM. In contrast to the single-

scale analysis, the macro level meshes contain only 180 and 154 hexahedral cells respectively and 116 hexahedral cells

for each RVE (see Figure 5(b)). In all cases, mesh density was selected as a compromise between low computational

cost and low mesh error.

Figure 6 shows the distribution of the displacement component in the loading (vertical) direction for both 2D

configurations at the final loading step. At the macro level, the distribution of displacement resembles that from single-

scale analysis. The corresponding distributions of stress component in the loading direction are shown in Figure 7.

The stress distribution for the RVE near the bottom-left of the plate is periodic, and as expected, resembles the stress

distribution around the voids in the single scale. The stress distribution at the macro scale is the volume average of

RVEs or indeed the single scale and shows a close agreement in stress variation through the plate. The accuracy of

the stresses at the macro scale predicted from two-scale model depends on the heterogeneity of the microstructure.

At small strains, heterogeneity coincides with features in the initial microstructure (e.g., void in RVE) and additional

heterogeneity in the microstructure arises from gradients of the deformation at larger strain. It is expected that the

overall level of error grows substantially as plastic deformation accumulates spatially. The efforts to mitigate the error

can be made by increasing the mesh resolution to improve the stress prediction.

Figure 8 compares the results from the exact single-scale analysis with those from the newly developed two-

scale multi-scale analyses for both configurations of the perforated plate. The average top edge traction, calculated

as the total forces at the top edge divided by the total deformed surface area, is plotted against prescribed top edge

displacement for all cases considered. The two-scale predictions are in good agreement with the results obtained from

the single-scale analysis. A minor discrepancy (< 5%) develops near the onset of yielding and remains present in

the plastic region. This is caused by the boundary effect at the macro scale, where the traction boundary condition

is applied to the right boundary of the perforated plates as well as along the edge of the central hole. The periodic

conditions used to find the incremental fluctuation in the RVEs are strictly applicable only inside the body, and the

validity of periodic conditions is somewhat questionable in the region near to traction-free boundaries (Kanouté et al.,

2009). Overall, periodic boundary conditions applied to the RVEs result in good agreement with the results obtained

from the single-scale analysis.

4.2 Pseudo 3D two-scale analysis of a stretching perforated elasto-plastic plate

The 2D simulation of the perforated plate without a central hole from the previous section is extended into a pseudo-

3D case by extruding the plate in the out-of-plane direction. The plate is extruded to a thickness of 5 mm, which is
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5 times the side length of the RVE prescribed as 1 mm (Figure 9). By doing so, the voids in the single-scale analysis

became cylindrical holes with 0.5 mm diameter (Figure 9(a)), while the RVE in the two-scale simulations takes a

cubic shape with a cylindrical hole at its centroid (Figure 9(c)). Traction-free boundary condition is applied to the

back surface of the plate and its front surface is assigned with a symmetry boundary condition, resulting in the plane-

stress dominant conditions through the plate thickness. Material properties and loading conditions are identical to the

previous example. The mesh for single scale-case consists of 104,400 hexahedral cells, i.e. 5 times the corresponding

2D case. In the two-scale analysis, the mesh at the macro level is composed of 900 hexahedral cells, the number of

cells for the RVEs remains unchanged, but the quantity of RVEs is increased from 180 to 900.

Figure 10 presents predicted stress-displacement curves from 2D plane strain (blue and purple lines) and 3D

simulations (yellow and green lines). As expected, the 3D results show a lower modulus and lower average yielding

traction, as the cases are plane-stress in nature. As in 2D simulations, the 3D results obtained from single-scale

analysis and two-scale analysis are in good agreement. Due to the evenly periodic distribution of cylindrical voids

representing the actual heterogeneity, periodic boundary conditions applied to RVEs are appropriate.

4.3 3D two-scale analysis of a stretching perforated elasto-plastic plate

This final test case extends the previous pseudo-3D example into a full 3D case by considering a plate with 5 spherical

voids of 0.5 mm diameter, distance 1 mm apart, uniformly distributed across the thickness; the remaining dimensions

of the plate are the same as in the previous example. The plate contains a total of 900 uniformly distributed spherical

voids (18 vertically, 10 horizontally and 5 through thickness), as shown in Figures 11(a) and (b). The total thickness

of the plate, 5 mm, is taken as 5 times the side length of the RVE, hence each RVE shown in Figures 11 (c) and (d) has

a spherical void in its centroid. In this case, deformation in the thickness direction is allowed by applying symmetry

boundary condition on the plate front side and stress-free boundary condition on the plate back side while keeping

other boundary conditions the same as in the previous two examples. Material properties and loading conditions are

the same as in the previous examples. Due to the full 3D nature of the problem, the total number of hexahedral cells

in the single-scale analysis has increased to 842,400.

Figure 12 presents the stress-displacement curves from the single-scale and two-scale multi-scale analyses of the

3D perforated plate with spherical voids. The agreement between the predictions is good. Similar to 2D and pseudo

3D cases, the minor discrepancy (< 5%) also develops in the full 3D case near the onset of yielding and remains

present in the post-yield region.

Journal for Multiscale Computational Engineering



RVE-based multiscale modelling using finite volume method 19

5. CONCLUSIONS

A novel RVE-based information passing multiscale model has been developed using an FV discretisation method in

the OpenFOAM software. The model is applied to an elastic-plastic material within an incremental total Lagrangian

framework. This is the first development of an FV based hierarchical multiscale procedure for solid mechanics. The

RVE is introduced to allow for a smooth micro-to-macro transition resulting in a homogenisation-based constitutive

relation. Periodic boundary conditions have been used to solve the boundary value problem of the RVE. The de-

veloped procedures were verified against single-scale simulations on plate-like samples containing microstructural

details, i.e. voids, for both 2D and 3D cases. The RVE-based multiscale model predictions were found to be in

good agreement with single-scale results. The minor discrepancy (< 5%) between the benchmark and multi-scale

results were attributed to the use of periodic boundary conditions in the RVE which are not strictly appropriate near

the macro-scale traction boundaries. This discrepancy was found to be in the range of published values (e.g. [8])

and within the acceptable tolerance. Future work will be focused on adaptive hierarchical models where RVEs are

called at selected material points within the macro-scale based on predefined conditions and on developing hybrid

approaches which combine information passing and concurrent approaches. Of particular interest is the application

of the model to predicting process-structure-property relationships in additive manufacturing.
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APPENDIX A. COEFFICIENTS OF DISCRETISED MACRO-SCALE EQUILIBRIUM EQUATION

As is described in Section 3, equation (25) obtained by discretisation of the macroscale equilibrium equation (20)

for the control volume P of the macro-scale mesh using collocated FVM, can be represented by the linear algebraic

equation (27). The central (diagonal) coefficient of this equation is defined as follows:

aP = −
∑
f

(Ki)f
d0f

Γ0f , (A.1)
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while the off-diagonal (neighbour) coefficients read:

aN =
(Ki)f
d0f

Γ0f . (A.2)

Finally, right hand side of the linear equation contains explicitly discretised terms of the equilibrium equation:

bP =
∑
f

(Ki)f
d0f

d0f
· (∇0∆u)mf Γ0f +

∑
f

n0f ·
(
Pm

f

)T
Γ0f . (A.3)

REFERENCES

Aboudi, J., A continuum theory for fiber-reinforced elastic-viscoplastic composites, International Journal of Engineering Science,

vol. 20, no. 5, pp. 605–621, 1982.

Aboudi, J., The generalized method of cells and high-fidelity generalized method of cells micromechanical models—a review,

Mechanics of Advanced Materials and Structures, vol. 11, no. 4-5, pp. 329–366, 2004.

Aboudi, J., Pindera, M.J., and Arnold, S., Higher-order theory for functionally graded materials, Composites Part B: Engineering,

vol. 30, no. 8, pp. 777–832, 1999.

Alveen, P., McNamara, D., Carolan, D., Murphy, N., and Ivanković, A., Analysis of two-phase ceramic composites using mi-
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FIG. 5: Finite volume mesh for perforated plate without/with large central hole: (a) single-scale analysis; (b) macro domains and
RVE for two-scale analysis.
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26 K. Wu, Ž. Tuković, P. Cardiff & A. Ivanković
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FIG. 6: Distribution of displacement component in the loading direction in the single-scale analysis and two-scale analysis with
an RVE near to the bottom-left of the plate for: (a) uniform, perforated plate, (b) plate with large central hole.
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FIG. 7: Distribution of stress in the loading direction in the single-scale analysis and two-scale analysis with an RVE near to the
bottom-left of the plate for: (a) uniform, perforated plate, (b) plate with large central hole.
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28 K. Wu, Ž. Tuković, P. Cardiff & A. Ivanković
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FIG. 8: Comparison between stress-displacement curves from the single-scale and two-scale analyses for (a) the uniform perfo-
rated plate without a central hole and (b) the perforated plate with a central hole.
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fig-9a.png

(a)

fig-9b.png

(b)

FIG. 9: Finite volume meshes for 3D perforated plate without central hole: (a) single-scale analysis; (b) macro domain and RVE
(not to scale) for two-scale analysis.

fig-10.png

FIG. 10: Stress-displacement curves for single-scale analysis and two-scale analysis of the uniform, perforated plate from 2D and
3D simulations.
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fig-11a.png

(a)

fig-11b.png

(b)

fig-11c.png

(c)
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(d)

FIG. 11: 3D geometry in (a) single-scale analysis, (b) sectional view of 3D geometry, (c) 3D RVE in two-scale analysis, and (d)
sectional view of 3D RVE.

fig-12.png

FIG. 12: Stress-displacement curves for single-scale analysis and two-scale analysis of the perforated plate without large central
hole in 2D and full 3D.
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