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Abstract: 

Statistical spatial repeatability (SSR) is an extension to the well known concept of 

spatial repeatability. SSR states that the mean of many patterns of dynamic tyre force 

applied to a pavement surface is similar for a fleet of trucks of a given type. A model 

which can accurately predict patterns of SSR could subsequently be used in whole-life 

pavement deterioration models as a means of describing pavement loading due to a 

fleet of vehicles. This paper presents a method for predicting patterns of SSR, through 

the use of a truck fleet model inferred from measurements of dynamic tyre forces. A 

Bayesian statistical inference algorithm is used to determine the distributions of 

multiple parameters of a fleet of quarter-car heavy vehicle ride models, based on prior 

assumed distributions and the set of observed dynamic tyre force from a ‘true’ fleet of 

100 simulated models. Simulated forces are noted at 16 equidistant pavement 

locations, similar to data from a multiple sensor weigh-in-motion site. It is shown that 

the fitted model provides excellent agreement in the mean pattern of dynamic force 

with the originally generated truck fleet. It is shown that good predictions are possible 

for patterns of SSR on a given section of road for a fleet of similar vehicles. The 
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sensitivity of the model to errors in parameter estimation is discussed, as is the 

potential for implementation of the method. 
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NOMENCLATURE 

cb  = Vehicle damping coefficient 

Gd  = Pavement spectral density 

g  =  Acceleration due to gravity 

IF  = Impact Factor 

IF
o

nm  = Observed Impact Factor for truck n at location m 

K  = Mean suspension stiffness of fleet 

Kt  = Mean tyre stiffness of fleet 

k  = Suspension stiffness 

kn  = Suspension stiffness of truck n 

kt  = Tyre stiffness 

ktn  = Tyre stiffness of truck n 

M  = Number of sensors 

m1  = Unsprung mass 

m2  = Sprung mass 

m2n  = Sprung mass of truck n 

N  = Number of vehicles 

P  = Static vehicle weight 

R(t)  = Vehicle tyre force 

r(t)  = Road profile height at time t 

t  = Time 

v  = Vehicle velocity 

y1  =  Displacement of unsprung mass 

y2  =  Displacement of sprung mass 

Z  = Mean lateral approach position of fleet 
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z  = Lateral approach position 

zn  = Lateral approach position of truck n 

σIF
2
  = Unknown error in IF 

σk
2
  = Variance in suspension stiffness 

σkt
2
  = Variance in tyre stiffness 

σz
2
  = Variance in lateral approach position 
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1. INTRODUCTION   

 

Spatial repeatability is the phenomenon that the pattern of dynamic force applied by a 

truck axle to a road pavement is similar in repeated runs at the same speed. This effect 

results in a concentration of high dynamic tyre forces at specific locations on a 

pavement surface and has been observed by several authors both experimentally [1,2] 

and in numerical studies [3]. This opposes the traditional assumption that applied 

dynamic tyre loads are randomly distributed along a pavement length, suggesting that 

the pavement is uniformly susceptible to damage along its length.  

 

Cole & Cebon [4] performed a numerical investigation of spatial repeatability using 

an experimentally validated two-dimensional articulated vehicle model. They 

generated a fleet of thirty-seven leaf sprung vehicle models with similar geometry and 

eight varying parameters relating to the ride characteristics, identifying repeatable 

patterns of dynamic tyre forces. The relationship between vehicle velocity and level 

of repeatability was highlighted. A further experimental study, involving 

measurement of heavy vehicle tyre forces on a major national route in the UK, was 

conducted [5] which confirmed theoretical predictions of the influence of speed on 

spatial repeatability of tyre forces. 

 

O'Connor et al. [6] proposed the concept of 'statistical spatial repeatability' (SSR). 

Using data from a Multiple Sensor Weigh-in-Motion (MS-WIM) site in France, they 

showed that the mean pattern of impact factors is similar for many trucks of the same 

type. This is illustrated in Figure 1. Similar patterns were found for different types of 

truck and even for trucks with different numbers of axles.  
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SSR has great implications for pavement deterioration. Pavement deformation and 

damage is directly related to impact force and the pattern of SSR is related to the road 

profile. It seems likely therefore that the process of road pavement deterioration is 

integrally linked with SSR. Following some initial imperfections, road surface 

deformations are generated which result in a pattern of SSR. The repeatable forces 

cause further deformation which may reinforce the existing pattern of SSR or change 

it.  

 

Some research has focused on integrated pavement deterioration models for the 

calculation of pavement life [7], dividing the procedure into four main areas: dynamic 

vehicle simulation, pavement primary response calculation, pavement damage 

calculation and profile change and damage feedback mechanisms. Within this context, 

it is clear that the accurate prediction of applied dynamic forces is necessary for the 

calculation of long-term pavement performance. 

 

This paper describes a method to predict the pattern of SSR. A quarter-car model 

(Figure 2) is used to calculate the force applied to a pavement as it travels at a given 

speed. The pavement surface is modelled as a three-dimensional ‘carpet’ to provide a 

varied but correlated series of road profiles for the vehicle model. The profile chosen 

from the 3-D surface depends on the lateral approach position of the vehicle model.  

 

A range of properties related to the vehicle, its lateral approach position and its speed 

are assumed to be random variables. Variations in these properties will lead to 

variations in the applied impact forces. For a given fleet of vehicles, the statistical 
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distributions for the properties, if known, can be used to predict the pattern of SSR. 

Using Bayesian updating [8], these distributions can be updated through comparisons 

between calculated and measured impact forces. In this study, the approach is tested 

using Monte Carlo simulation to generate distributions of impact forces corresponding 

to a vehicle fleet whose properties have known statistical distributions. With Bayesian 

Updating, a heavy vehicle fleet model is determined which can be used to predict 

patterns of SSR. 

 

 

2. VEHICLE MODEL 

 

The Bayesian approach is tested using the quarter-car model of Figure 2 which 

represents an individual heavy vehicle axle. The model, which travels at constant 

velocity, v, has two degrees-of-freedom, corresponding to body bounce, y2(t), and axle 

hop, y1(t), vertical motions. The vehicle is excited by pavement roughness, r(t). This 

modelling approach clearly neglects certain characteristics of heavy vehicle ride, such 

as the load sharing effect between heavy vehicle axle groups (tandems, tridems, etc.) 

as well as vehicle pitching and rocking motions. However, it was judged to be 

sufficient to detect the basic pattern of SSR which was found by to be substantially 

independent of the number of axles in the vehicle (see Figure 1) [6].  

 

There are six variables in the quarter-car pavement interaction model: 

 m2 = sprung mass 

 m1  = unsprung mass 

 k    = suspension spring stiffness 
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 kt   = tyre stiffness 

 cb    = suspension damping 

 z = lateral approach position 

 

The effect of tyre damping is assumed to be negligible, and thus is not considered. 

The system is further simplified by assuming constant values for vehicle unsprung 

mass and suspension damping coefficient.  

 

It is implicitly assumed that impact force data will be collected from a multiple-sensor 

weigh-in-motion system such as that being developed in the WIM-HAND project [9, 

10]. Hence, high accuracy estimates of the sprung mass, m2, will be available by 

averaging the measurements from the many sensors or using a more elaborate 

algorithm to process the multiple force measurements [11]. 

 

This reduces the number of variables to four, one of which, m2, is known and three, k, 

kt and z whose distributions are sought. The three unknown variables are assumed to 

be Gaussian distributed with unknown mean and variance, and values observed for 

each truck are also assumed unknown. 

 

The quarter-car model is used to simulate the motion of the fleet of vehicle axles and 

hence to reproduce the pattern of SSR. The distributions of its three unknown 

parameters are found by Bayesian updating. 

 

The equations of motion governing the quarter-car vehicle are: 
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where R(t) is the tyre force imparted to the pavement, given by: 

 

  [ ]= - ³1( ) ( ) ( ) 0tR t k y t r t       

 (3) 

 

The impact factor, IF, is then given by normalising the dynamic tyre force by the 

corresponding static vehicle weight: 

 

1 2

( )
( )

( )

R t
IF t

g m m
=

+
        (4) 

  

 

2.1 Road Profile Generation and Filtering 

A three-dimensional road-surface ‘carpet’ is generated for use in the study. Use of a 

three-dimensional surface allows for the lateral approach position of the vehicle 

model to be varied for successive runs, hence providing a varied but correlated 

excitation to the vehicle model. It is assumed that the lateral position on the pavement 

is constant for each individual vehicle run and does not vary between sensors. The 
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spectral densities of the profile, Gd(n), are generated using British Standard 

classifications for road roughness [12], given by: 

 

 

-
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0

0

( ) ( )

w
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n
G n G n

n
       (5) 

 

where n is the wavenumber in cycles/m, n0 = 0.1 cycles/m and Gd(n0) and w are 

constants related to the surface roughness of the pavement. The spectral density is 

subjected to a two-dimensional inverse Fourier transform to produce a discrete set of 

points representing the profile height, r(t), at regular finite longitudinal and lateral 

intervals [13]. Three profile surfaces are generated for use in this study, the first two 

(AS1, AS2) having a roughness coefficient of 6

0
( ) 20 10

d
G n

-= ´  m
3
/cycle, 

corresponding to a class ‘B’ road (good quality highway). The third profile (AS3) is a 

class ‘C’ pavement (national road) with a roughness coefficient of 6

0
( ) 64 10

d
G n

-= ´  

m
3
/cycle. Each section of road generated measures 100 m in length and 5.0 m in 

width (Figure 3). The sections of randomly generated road profile are then subjected 

to a moving average filter to simulate the envelopment of short wavelength 

disturbances by the tyre contact patch [14]. A base wavelength of 0.3 m is chosen for 

this purpose. 

 

 

3. BAYESIAN STATISTICAL INFERENCE 

 

Given data on impact factors for a truck at different points on the road surface, it is 

possible, by effectively inverting numerically the model of Section 2, to infer the 
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variables of the quarter-car that are most consistent with these data. Such fitting can 

be attempted through a wide variety of numerical methods, for example, minimizing 

least squares using gradient descent or other optimization approaches. 

 

For data on several trucks, the procedure could be applied independently to each. 

However this ignores important information in such data about the overall distribution 

of variable values across the total population of trucks. Extracting this information 

then allows hypotheses to be tested and predictions made about the fleet, rather than 

being restricted to statements about the observed trucks only. This information is in 

the form of the probability distribution of the values of the quarter car model 

variables, k, kt and z. 

 

The approach adopted is to use Bayesian statistical inference, consisting of a three-

stage process: model definition, inference and then prediction and model checking. A 

probability model is defined for the data in terms of the quarter-car model variables, 

and subsequently distributions for the variable values over the truck population are 

specified. For the inference, the parameters of the variable distributions are inferred 

given the data via Bayes' law. This inference takes the form of a probability 

distribution on the parameters that represents the possible parameter values and their 

likelihood given the data; this distribution is called the posterior distribution. Finally, 

the posterior distribution is used to plot other quantities of interest, such as the 

distribution of variable values in the fleet, and to check that the fitted model is 

consistent with the data. 
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The following notation is adopted. Impact factor from N trucks measured at M 

locations on the road surface is acquired, where IF
o

nm is the observed impact factor 

from truck n at location m. The quarter car variables for truck n are subscripted: kn, 

ktn, m2n, zn.   

 

3.1 A Fleet Model for Impact Factors 

An allowance is made for the possibility that the observed impact factor for truck n at 

location m, IF
o

nm may be subject to some error from that given by the quarter car 

model. This error is composed of deviations in the real system from the model and 

measurement error of the sensor. Gaussian distributed error is appropriate in this case 

with a mean given by the quarter car model. Thus the observed impact factor of truck 

n at location m is described by: 

 

 
2

2~ N( ( ; , , , ), )
o

nm n m n tn n n IFIF IF t k k m z s   (6) 

 

where X ~ N(µ,σ
2
) means that X is a variable that is Gaussian distributed random 

variable with mean µ and variance σ
2
. IFn(tm; kn, ktn, m2n, zn) is the impact factor 

according to the model of Section 2 for truck n at location m with given quarter-car 

parameters kn, ktn, m2n and zn.  σIF
2
 is the unknown error at the time at which the truck 

impacts on the m
th

 sensor location. 

 

The expected value of the observed impact factor, IFn(tm; kn, ktn, m2n, zn), given by 

equation (4), is a deterministic function of the variables defined in Section 2, of which 

all are assumed known except k, kt and z, for which it is necessary to infer the 
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population distribution. The distributions of these variables are considered to be 

Gaussian with unknown means and variances: 

 

 

2

2

2
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tn t kt

n z
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  (7) 

 

for n = 1,...,N.    

 

The unknown variables in the problem are then kn, ktn, zn, n = 1...N, and K, σk
2
, Kt, σkt

2
, 

Z, σz
2
 and σIF

2
 which will be found. As previously stated in section 2, the remaining 

variables of the quarter-car model, unsprung mass, m1, and suspension damping, cb, 

are assumed constant for all trucks and known. Sprung mass, m2, which varies 

between vehicles, is estimated here by taking the mean impact force for each quarter 

car, and subtracting the constant unsprung mass, m1. Additionally, truck velocity is 

assumed to be constant and is easily determined from the time interval between 

simulated sensor measurements. The road surface profile at the site and the immediate 

approach is assumed measurable and known. 

 

3.2 Bayesian Inference 

Applying Bayesian inference, a probability distribution is computed over the 

unknown variables given the data (the posterior distribution): 

 

 2 2 2 2p( , , , 1, ..., ; , , , , , ,  | ; 1, ..., , 1, ..., )o

n tn n k t kt z IF nm
k k z n N K K Z IF n N m Ms s s s= = =   (8) 
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where p(x | y) represents the probability distribution of the vector of variables x 

conditional on observing the vector of values y.  By Bayes law, this can be written as 

(Lee 2004): 

 

 

2 2 2 2
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s
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= 2

2 2 2 2
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            p( , , , , , , )

z

k t kt z IF

Z

K K Z

s

s s s s´

  (9) 

 

The first and second terms on the right hand side of the above expression are the 

product over n and m of the Gaussian probability functions of Equation 6 and 

Equation 7. The prior distribution must be defined in addition to the model and 

describes the state of knowledge of the parameters before the experiment is conducted 

(i.e., the posterior distribution from similar experiments that have been conducted 

previously).  For this paper it is assumed that no prior knowledge of these parameters 

exists, which is modelled by assuming the prior to be uniform distributions over a 

very large range (much larger than the range of values for the parameters that is 

believed possible). 

 

The functional form of the posterior distribution is not evaluated, as it is of a rather 

complex form. Fortunately, it can be simulated by Monte Carlo simulation. The 

specific technique used is Markov chain Monte Carlo, suitable for simulating from 

complex and high dimensional distributions [15, 16]. Note that the dimension of the 

unknowns in this case is 3N + 7. This will generate a set of values for each unknown 

parameter, generated according to the probabilities specified by the posterior 

distribution. Once these have been generated, standard techniques of Monte Carlo 
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simulation, such as Monte Carlo integration, allow for the construction of 

approximations to the posterior distribution or functions of it, such as means [17]. 

 

3.3 Predictions and Assessment 

Once the posterior distribution is approximated, it is used for two purposes: 

 

1. Construction of the distribution of values of quarter car variables in the fleet. This 

distribution describes the probability that a randomly selected truck from the fleet has 

a certain combination of values of the variables used in the quarter-car model. 

 

2. Model checking. Using this distribution, it becomes possible to infer the probability 

distribution of impact factors that would be observed given this distribution on the 

quarter-car variables. Usually this is done by simulation; values of the quarter-car 

parameters are simulated from the distribution and impact factors are then computed 

through the deterministic model of Section 2. An observed impact factor is then 

simulated from the Gaussian distribution with the mean impact factor and variance 

that is simulated from the posterior distribution. The distribution is then compared 

with the observed data (see section 4). This procedure checks that the fitted model, 

with all its assumptions, is consistent with observed data. 

 

4.  THEORETICAL TESTING 

 

The Bayesian statistical inference technique described above is tested using a 

theoretical model. A fleet of 100 vehicles is generated with normal distributions for k, 
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kt, z, v and m2 and constant values for cb and m1. This fleet size was chosen to 

minimise computation time as well as to test the robustness of the algorithm for a 

relatively small data set. Using normally distributed velocities and lateral approach 

positions, the theoretical vehicle fleet is then subjected to the disturbance input from 

the road profile surface described in section 2.1 and time histories of vehicle tyre 

force are output. For each vehicle in the fleet, the dynamic tyre forces at sixteen WIM 

locations, assumed to be equally spaced 1.5 m apart from 76 m to 98.5 m 

longitudinally on the road surface, are recorded and input to the Bayesian inference 

algorithm described in section 3, which is initiated using assumed distributions for k, 

kt and z. The preceding 76 m of approach pavement is used to allow the vehicle model 

to attain dynamic equilibrium. As previously stated, it is assumed that the velocities of 

each individual vehicle, the local road profile and the GVW of each vehicle may be 

reasonably determined in practice and as such, are considered known quantities to the 

Bayesian inference algorithm.  

 

The procedure is implemented using MATLAB and MATLAB/Simulink to obtain 

numerical results. The mean and standard deviations of the parameters used for the 

generation of the vehicle fleet and for the distribution of vehicle velocities [18] and 

approach positions are given in Table 1. Vehicle parameters were chosen to give a 

simple linear representation of an air-sprung heavy vehicle suspension. Figure 4 

shows the observed impact factors at the sixteen WIM locations for each of the 100 

vehicles in the generated truck fleet excited by pavement AS1, corresponding to a 

good quality highway surface. 
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For the Bayesian Updating approach to be successful, it is necessary that the impact 

factors used are sensitive to the vehicle parameter values. The root mean square 

(RMS) error in impact factors for some of the input parameters is shown in Figure 5. 

In each case, all other model parameters are fixed to the nominal values. It can be 

seen that the standard deviation of kt tends to have little effect on the overall RMS 

error, with similar behaviour exhibited for the standard deviations of k and z. The 

error due to variation in the parameter mean values is greater, particularly so for 

lateral approach. This is because the mean disturbance input to the vehicle model can 

vary significantly with lateral position, especially for rougher profiles.  

 

The effectiveness of the Bayesian statistical inference procedure is illustrated in figure 

6, which compares the fitted distribution of spring stiffness, k, and the histogram of 

the observed data. As can be seen, good agreement exists between inferred and true 

distributions, with similar results obtained for tyre stiffness, kt, and lateral approach 

position, z.  

 

Figure 7 shows the observed impact factors of the truck population from figure 4 

superimposed with the mean prediction from the inferred model and the 

corresponding 95% prediction limits. The inferred mean IF appears to pass through 

the central region of IF data. Further, the 95% limits encompass almost approximately 

97% of the true IF 'data'. Of course it would be expected that this would tend towards 

95% for large sets of measured IF’s. This figure clearly illustrates the potential of the 

Bayesian approach to determine the distributions of truck properties and lateral 

position which can be used to accurately reproduce patterns of SSR.  
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In figure 8, the truck fleet properties are determined from the first 10 points of the 

WIM array only and the fleet model is tested with the remaining 6 data points. The 

mean and 95% prediction limits illustrated for the last 6 points are based on a fleet 

model derived from IF data from the first 10 points. The limits are compared in the 

figure to data generated using the true properties. It can be seen that the fitted 

distribution is effective in predicting the range of observed impact factors at each 

location as well as the pattern of SSR, noting that the fitted model predicts correctly 

that sensors 12 and 13, at 92.5 m and 94m respectively, will be locations of high mean 

impact factor. 

 

Using the validated fitted model, it is also possible to predict patterns of SSR for 

alternative pavement surfaces. The mean and 95% limits for the second profile 

surface, AS2, are shown in figure 9. The observed impact factors for surface AS2 are 

generated for a new 100 truck fleet using parameters given by table 1, while the 

predicted impact factors are generated using the parameter distributions obtained by 

the Bayesian statistical inference algorithm. It can be seen that excellent agreement is 

exhibited between the fitted and true population models for both mean impact factors 

and 95% confidence limits. Similar agreement is yielded for the rougher surface, AS3. 

 

5. DISCUSSION  

 

The Bayesian statistical inference approach is shown to be capable of determining the 

distribution of multiple vehicle parameters for use in the construction of heavy vehicle 

population models. It is noted that while the inference of the distributions of k, kt and 

z are necessary to characterise the truck population, the determination of other 
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parameters, such as the error in observed impact factors, is not. This is a nuisance 

parameter, i.e., it does not form part of the population model itself, yet knowledge of 

it is necessary for the inference of the desired parameters. Since computation time is 

greatly affected by the number of variables sought by the algorithm, the importance of 

minimising nuisance parameters, as well as treating certain parameters as reasonably 

measurable (i.e., velocity, GVW, etc.), is clear.  

 

The approach is seen to be effective for identifying a fleet model for a single axle 

which could be viewed as one simple class of truck, with Gaussian distributed 

parameters. The effect of several heavy vehicle classes (e.g., rigid trucks, tractor 

semi-trailers, etc.) has not been considered for this study. However, since it is 

inevitable that a set of impact factors measured from a regular flow of traffic would 

contain several classes of vehicle, it would be necessary to classify 

observed/measured impact factors by vehicle type. It is also noted that the number of 

parameters required of the Bayesian algorithm would increase, though it may be 

possible to again reduce the amount of parameters through reasonable assumptions, 

i.e., neglecting vehicle roll effects, assumption of rigid sprung masses, etc. 

 

It is anticipated that reliable and accurate data from a multiple-sensor Weigh-in-

Motion site will be available in the near future. Hence, for the first time, it will be 

possible to infer vehicle fleet properties and hence predict patterns of SSR for the 

more common vehicle classes. This will be very valuable for improving the accuracy 

of multiple-sensor Weigh-in-Motion systems as knowledge of SSR will allow this 

bias to be removed when estimating vehicle static weight.  For pavement 

deterioration, there are even more significant implications. The capability to predict 
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SSR makes it possible to determine if this phenomenon is self-reinforcing, i.e., if the 

pattern of SSR causes pavement deformation which reinforces that pattern. This will 

have profound implications in the development of accurate methods for the prediction 

of pavement deterioration in the long term. 

  

6. CONCLUSIONS 

 

A method has been presented for the determination of a heavy vehicle fleet model 

which can be used to predict patterns of statistical spatial repeatability and which can 

ultimately be used in an integrated pavement deterioration framework. Using a 

Bayesian statistical inference algorithm, the distributions of multiple parameters of a 

fleet of quarter-car heavy vehicle ride models are determined inversely based on prior 

assumed distributions and the set of observed impact factors from a ‘true’ fleet of 100 

simulated models. The impact factors are assumed to be measured at 16 equidistant 

pavement locations, similar to a multiple sensor Weigh-in-Motion site. 

 

 It is shown that the fitted distributions obtained from the Bayesian statistical 

inference yield excellent agreement with the true distributions, enabling the prediction 

of patterns of SSR for multiple vehicles of similar type. The sensitivity of each of the 

three inferred distributions is discussed and it is noted that for the study in question, 

the effect of variation in the predicted standard deviations on the RMS error in impact 

factors is minimal in comparison to error in the predicted means. It was shown that 

variations in the predicted mean lateral approach could cause notable RMS error in 

impact factors. 
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Figure 1 Statistical spatial repeatability of Impact Factor (IF) for gross vehicle 

weights of nine truck types (from O’Connor et al, 2000) 

Figure 2 Quarter car model 

Figure 3 Section of artificially generated pavement, AS2 

Figure 4 'Observed' impact factors for fleet of 100 trucks 

Figure 5 Sensitivity of various input parameters to the Bayesian statistical 

inference algorithm 

Figure 6 Distribution of spring stiffness, k: true (histogram) and fitted (
___

) 

Figure 7 Observed impact factors with predicted mean (
____

) and 95% prediction 

limits (----) for the fitted model 

Figure 8 Predicted impact factors for final 6 sensors with predicted mean (
____

) 

and 95% prediction limits (----) 

Figure 9 Mean (solid) and 95% limits (dashed) for vehicle impact factor for 

pavement surface AS2, predicted (
____

) and true (
____

) 
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Table 1 – Means and standard deviations of vehicle suspension parameters, velocities 

and lateral approach positions 

 Parameter  Unit Mean St. Dev. 

      

Suspension Parameters Sprung Mass m2 kg 4450 445 

 Unsprung Mass m1 kg 420 - 

 Suspension Stiffness k N/m 500 x 10
3 

50 x 10
3
 

 Tyre Stiffness kt N/m 1950 x 10
3
 195 x 10

3
 

 Suspension Damping cb Ns/m 20 x 10
3
 - 

      

Approach Parameters Velocity v m/s 23.43 2.08 

 Lateral Approach Position z m 1.50 0.5 

 

Gaussian noise in observed measurements of IF 

 2
0.2

IF
s =  

 


