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Abstract  

The costs associated with the provision and maintenance of drinking water and wastewater 

infrastructure represents a significant financial demand worldwide. Maintenance costs are 

disproportionately high, indicating a lack of adequate durability. There remains a lack of 

consensus on degradation mechanisms, the performance of various cement types, the role of 

bacteria in the corrosion process associated with wastewater applications and testing 

methodologies. This paper presents a review of the literature, outlining the various research 

approaches undertaken in an effort to address this problem. The findings of these varying 

approaches are compared, and the different strategies employed are compiled and discussed. It is 

proposed that a key step in advancing the understanding of the associated deterioration 

mechanism is a combined approach that considers the interaction between biological and 

chemical processes. If this can be achieved then steps can be taken to establishing a 

performance-based approach for specifying concrete in these harsh service conditions. 
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1. Introduction  

The provision of high quality water and wastewater infrastructure requires significant 

international expenditure on concrete with consequent expectations of lengthy service lives. For 

example in the US alone, it is estimated that annual investments of up to $20 billion and $21 

billion is required to provide adequate infrastructure for drinking water and wastewater 

respectively [1] It is also estimated that the annual operation and maintenance costs associated 

with drinking water and wastewater infrastructure to be in excess of $31 billion and $25 billion 

respectively. Against this backdrop, it is surprising to note that the corrosion of water and 

wastewater infrastructure has been a topic of debate for decades, with little consensus on the 

methods for designing and specifying this infrastructure to optimally meet the harsh 

environmental demands it will meet in service [2, 3, 4, 5, 6, 7]. The majority of studies to date 

have focused on the deterioration of concrete in sewer systems and pipelines [5, 8, 9]. However 

little detailed research has been conducted into the effect of corrosion on the vital treatment 

facilities that are processing our wastewater. Concrete pipes in sewer systems tend to be an “off-

the-shelf” product with little input by the specifier into specification of mix design. As a result 

the performance of the product is largely dependent on the manufacturer’s mix design which is 

influenced by local factors. In treatment plants the concrete may be specified by the engineer, but 

a lack of in-depth research into the deterioration of these structures has meant little change in 

professional practice concerning concrete mix design. 

Existing evidence has shown that corrosion is present in many concrete structures associated 

with water and wastewater treatment. The alarming fact is that some of these facilities are 

deteriorating significantly after less than a decade in service [Fig. 1]. In this context it is clear 

that current design practices based on prescriptive approaches to concrete specification may not 

be appropriate to deal with the aggressive nature of wastewater, and in some cases, the treatment 

processes involved in drinking water purification [10]. Existing research findings are not yet 

influencing current construction practice. The lack of widely quoted durability design formulae 

illustrates that the deterioration mechanisms associated with this critical infrastructural 

application are not yet widely accepted or understood. This paper will assist in bridging this gap 

by considering the role of key parameters such as environmental conditions, the nature of the 

attack and the physical results of the attack on the concrete. This will promote increased 
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understanding of the deterioration mechanism and facilitate the introduction of a performance-

based design approach.  

2. Characterising the Wastewater Environment 

The deterioration of sewer systems has long been a topic under considerable scrutiny and in the 

mid 1940’s a comprehensive scientific evaluation was undertaken in an attempt to understand the 

corrosion process [11]. Current research has continued to focus on the deterioration of concrete 

sewer pipes and case studies have taken place throughout the world, including comprehensive 

reviews on current infrastructure [8]. In the latter, the condition of the sewer system in four cities 

in the Lebanon was evaluated whereby certain contributory factors in corrosion were outlined: 

Biological Oxygen Demand (BOD) levels, high sulfate and dissolved sulfide concentration, high 

temperatures, high H2S gas concentration, high turbulence and long detention times, low 

dissolved oxygen levels, low water velocity and low wastewater pH. These and other criteria 

have been outlined in several publications, all of which detail the conditions leading to corrosion 

in sewer environments [4, 5, 12, 13, 14]. 

The contributory factors outlined above are not only limited to sewer piping - they are also found 

in wastewater treatment plants. Occurrences of concrete degradation in these structures have 

been recorded in a limited fashion in aeration tanks [15], in septic tanks and pumping stations 

[16] and the underside of concrete slabs and in primary influent channels [17]. The latter two 

sources both make reference to the fact that corrosion has been observed just above the 

waterline. This is significant in that prior experimental research [5, 18] into understanding 

degradation of concrete in sewer pipes has proven that optimum corrosion levels also occur just 

above the waterline. Work carried out into determining depth profiles of sulfate ingress into 

concrete noted that core samples were taken from the walls surrounding the spiral pump of a 

sewage treatment plant as well as the concrete walls of a clarifier which has been damaged by 

sulfates originating from the sewage waters [19]. 

Evidence thus far has identified bacterial manifestation of the genus ‘Thiobacillus’ as a major 

contributor to the deterioration process of concrete sewer pipelines [5, 11]. The product of their 

metabolism results in sulfuric acid being formed which attacks the cementitious matrix of the 

concrete causing loss of strength and cohesion. Thiobacillus however, plays only a part of a 
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much broader and complicated corrosion process. In the often anaerobic conditions which 

develop in raw sewage influent, sulfate reducing bacteria convert sulfates into sulfides such as 

hydrogen sulfide (H2S) gas. In favourable conditions this diffuses into the atmosphere and, in the 

presence of oxygen, is further reduced to elemental sulfur or partially reduced sulfur compounds. 

In turn, they provide the catalyst necessary for the aerobic Thiobacillus bacteria to begin 

producing sulfuric acid; a more detailed explanation of the corrosion process is presented in a 

subsequent section. 

Sulfuric acid has been identified as a corrosive agent not only in corroding sewers but also in 

wastewater treatment plants [20, 21]. An attack by sulfuric acid however is a combined acid-

sulfate reaction with the hydrogen ion causing a dissolution effect, coupled with corrosive role 

played by the sulfate ion [2, 22]. When sulfuric acid reacts with a cement matrix, the first step 

involves a reaction between the acid and the calcium hydroxide (Ca(OH)2) forming calcium 

sulfate according to the following equation: 

Ca(OH)2 + H2SO4 � CaSO4 + 2H2O      (1) 

This is subsequently hydrated to form gypsum (CaSO4·2H2O), the appearance of which on the 

surface of concrete pipes takes the form of a white, mushy substance which has no cohesive 

properties and has, “the consistency of cottage cheese” [23]. In the continuing attack, the gypsum 

would react with the calcium aluminate hydrate (C3A) to form ettringite, an expansive product: 

3CaSO4·2H2O + 3CaO·Al2O3 + 26H2O  � (CaO)3·(Al2O3)·(CaSO4)3·32 H2O (2) 

According to Skalny et al. [22], the ettringite can be located in deeper sections of concrete as 

long as the pH is high enough for it to form and the gypsum can migrate into these regions. The 

evidence gathered by Davis et al. [23] in their analysis of piping, however, showed that little 

ettringite was discovered in the corroding front and that the thermodynamics of the conversion to 

gypsum may be so fast that ettringite is a short-lived intermediate.  

From the evidence discussed above there seems to be a distinct relationship between the 

corrosion occurring in concrete sewers and that in wastewater treatment facilities. Common 

variables include environmental conditions, the nature of the attack and the physical results of 

the attack on the concrete. Mehta and Burrows [24] have discussed how a paradigm shift is 
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required in concrete design, moving away from the traditional prescriptive approach to one that 

promotes a performance-based design. However for such an approach to succeed, it is imperative 

that the deterioration mechanism is fully understood. In this light it is necessary to account for 

the severe environments that wastewater infrastructures will encounter in service, and to take an 

in-depth look at the current state of research into sulfate and sulfuric acid corrosion in a 

wastewater environment. 

3. Biodegradation Aspects 

3.1  Providing Resistance to Biochemical Attack   

When assessing the available scientific research, it is important to consider sulfate attack, 

sulfuric acid attack and how they are both relevant in determining the resistance of current 

concrete design specifications to such attacks as biogenic sulfuric acid (BSA) corrosion. As 

expected there is much conflicting data available on the subject, a scenario which is eloquently 

detailed in one practicing engineer’s publication on the topic [6]. Also of interest is the 

performance of cements containing additions of GGBS (ground granulated blast-furnace slag) 

which, when mixed with Portland cement, has been proven to possess an inherent sulfate 

resisting capability [25, 26]. GGBS is being used in increasing quantities in concrete practice 

today along with other secondary cementitious materials (SCMs) such as PFA (pulverised fuel 

ash). With the high CO2 emissions associated with the production of Portland cement, these 

SCMs have the advantage of being by-products from other industrial processes and as such can 

help reduce the CO2 footprint of a construction project. While concretes produced using these 

binders are more dense and durable in the long term, they are also prone to reduced early age 

strengths and require particular attention when curing [27, 28, 29]. 

In assessing experimental test methods previously used by researchers many contrasting opinions 

exist [4, 30], including the proposed inadequacy of sulfate testing as a method to analyse 

biological corrosion in a wastewater environment while others stipulate simultaneous biological 

and chemical sulfuric acid testing as the only true methodology [4]. The participation of the 

sulfate ion in sulfuric acid (H2SO4) corrosion and that of residual sulfates present in wastewater 

(found in effluent from food and beverage industries [31]) cannot be ignored however. 

Reviewing in-situ and simulated experimental test methods also provides a valuable insight into 
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the aggressive nature of the environment that sewers and wastewater treatment plants are 

exposed to. This also helps to characterise the environmental conditions favourable to the 

initiation of biogenic sulfuric acid corrosion, allowing scope for investigating the role played by 

both sulfate-reducing and sulfur-oxidising bacteria. 

 

3.2 Sulfate Reducing Bacteria 

Initiating the bacterial processes, sulfates present in the raw sewage in sewer system are 

converted into sulfides by sulfate reducing anaerobic bacteria such as Desulfovibrio [4]. In 

partially filled sewers, anaerobic conditions can only occur in the slime layer on the walls of the 

pipe above the water line. Some of the essential environmental conditions necessary in the 

wastewater environment for these bacteria to function and grow are dissolved oxygen levels 

approaching zero and sufficient carbon and sulfate concentrations in the wastewater itself [32]. 

When this occurs they utilise the sulfates present in the wastewater to obtain the oxygen they 

require and in turn release sulfur ions [33].  According to research aimed at quantifying 

microbial-induced deterioration of concrete, the bacteria derive the energy required for the 

reduction of sulfate by the oxidation of organic compounds and H2 [14]. In their assessment of 

Lebanon’s sewer network, Ayoub et al. [8] claim that sulfate to sulfide reduction takes place 

when the bacteria derive their oxygen from dissolved oxygen and nitrates in the wastewater. 

They state however, that corrosion in Lebanon’s sewers was not observed to have occurred in 

areas where dissolved oxygen levels were greater than zero. If sulfate reducing bacteria require 

dissolved oxygen to induce the corrosion cycle, as they suggest, one must ask why is it that no 

corrosion was found where dissolved oxygen exists. Their own search of existing literature 

suggested that sulfide build-up could not occur with dissolved oxygen levels greater than 0.5mg/l 

whereas Hewayde et al. [33] set a level of 0.1mg/l above which corrosion will not occur.  

The final process in the initial stage of concrete deterioration involves the sulfur ions released by 

the bacteria. These in turn react with dissolved hydrogen in the wastewater to form an essential 

contributory product in the corrosion process, hydrogen sulfide (H2S) [33]. The hydrogen sulfide 

initially formed is found in its dissolved liquid form but for this poorly soluble compound to 

contribute to the concrete deterioration process it must leave the wastewater and enter a gaseous 

phase. The normal pH of sewage is slightly acidic and in the range pH 5-6 but when this begins 
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to lower in conjunction with turbulent water (often found in sewer pipes or associated with some 

wastewater treatment processes), the H2S escapes and collects in the atmosphere above the water 

level [4, 16, 33]. A thin layer of moisture exists on the surface of the concrete pipe exposed to 

the atmosphere and it is into here the hydrogen sulfide is gas is dissolved. The condensate layer 

has a high pH attributed to the alkalinity of the concrete (which can have a pH of between 11 and 

13). It also serves as the driving force behind the gas’ dissolution. At high pH levels the 

hydrogen sulfide is separated into HS- or S2- ions which attract more H2S into the moisture layer 

[14]. Research has also shown that the concentration of H2S in the moisture film increases as the 

pH of the mortar lining of the concrete pipe decreases [13]. In the presence of oxygen the H2S 

reacts to form elemental sulfur or partially oxidised sulfur species [4, 9, 14, 21], which can 

sometimes be seen in the corrosion products deposited on the concrete surface [18].  

 

3.3 Sulfur-oxidising Bacteria  

The formation of sulfur is perhaps the critical link in the chain of events leading to the corrosion 

of concrete in a wastewater environment. In microbiological experiments carried out in 1945 to 

investigate why sewer pipes were corroding, Parker [11] discovered five strains of the species 

Thiobacillus on the surface of concrete which oxidise sulfur, or some partially reduced form of 

sulfur, to form sulfuric acid. More recent research suggests some of the Thiobacillus strains 

involved in concrete corrosion as being T. thiooxidans, T. intermedius, T. perometabolis, T. 

novellus, T. thioparus, T. neapolitanus and T. versutus all of which are known to oxidize and 

grow with reduced inorganic sulfur compounds [14, 34]. Research has also identified iron-

oxidising bacteria, such as Thiobacillus ferrooxidans, as being involved in the production of 

sulfuric acid in pyritic ground and in sewage treatment plants [35, 36]. 

Bacteria of the genus Thiobacillus do not attach themselves to the surface of concrete under any 

conditions. Roberts et al. [14] state that the pH of the concrete has to be reduced to 9 and 

assuming sufficient moisture, nutrients and oxygen are present only then will the Thiobacillus 

bacteria colonise. Several theories for the lowering of the pH of the concrete to around 9 have 

been put forward, including the involvement of the dissociation process of hydrogen sulfide as 

discussed above. However the most widely assumed theory is that the pH will be lowered due to 

the effects of carbonation [13, 14, 23]. As a result of in-situ tests conducted in a sewage system 
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with high concentrations of hydrogen sulfide (>600ppm) an alternative theory has been put 

forward into determining the conditions necessary for bacterial colonisation [7]. The authors 

claim that the generally accepted role of carbonation in lowering the pH of a concrete’s surface 

does not hold for their experiments. Instead they theorise that in the thin moisture layer itself, the 

bacteria oxidise the hydrogen sulfide gas to form sulfuric acid, thereby reducing its pH. They 

further claim that the bacteria will grow in the layer even when the pH of the concrete itself 

ranges from pH 11-13. Parker [37] noted in his experimental observations however, that 

Thiobacillus concretivorus (as he termed the strain of Thiobacillus found to attack concrete) did 

not convert the hydrogen sulfide directly into sulfuric acid but only free sulfur or other forms of 

utilisable sulfur compounds including thiosulfate [38]. In characterising the strain Thiobacillus 

thiooxidans, Waksman & Joffe [39] and Nica et al. [38] also stated that hydrogen sulfide and 

other sulfides are not used directly by the sulfur-oxidising organism. 

In recognising the wide range of Thiobacillus strains that take part in sulfuric acid production, it 

must be noted that not all thrive in an identical environment. Some of these strains are 

categorised into ‘acid-preferring’ acidophilic sulfur-oxidising microorganisms (ASOM), such as 

T. thiooxidans and ‘neutral-preferring’ neutrophilic sulfur-oxidising microorganisms (NSOM), 

such as T. intermedius [14, 38]. It is proposed that different strains of neutrophilic bacteria 

colonise the surface of the concrete as its pH depresses from approximately a value of 8 to 

around a value of 6 through their production of sulfuric acid [23]. It was also found that 

microbial succession is a surface phenomenon and that the ASOM move into the corroding 

concrete with the corroding layer whereas NSOM do not.   

Parker [11] observed that the bacteria which he was cultivating survived to a pH of 

approximately 6.5 above which none was capable of growth. At these slightly acidic pH values 

the acidophilic sulfur-oxidising bacteria colonise and further depress the pH of the concrete 

surface to as low as 2 at which level the strain T. thioxidans can be found thriving [18, 40]. The 

optimum temperature at which the acid was produced in its highest quantities after fifty days was 

found to be 30 ˚C while Barbosa et al [15] noted in their research that ‘sulfide oxidation’ by the 

strain T. dentrificans decreased at low temperature and was inhibited at 15.6˚C. Parker [11] also 

discovered that the rate of acid production in his bacteria increased with increasing nitrogen 

levels up to a concentration of 50ppm, above which there appeared to be a slight inhibition.  
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3.4 Other Acids and Organisms  

In a departure from the accepted role of the species Thiobacillus in lowering the surface pH of 

concrete from approximately 8 to 4, some authors have also attributed the initial reduction to that 

of fungus growth [5, 41]. Mori et al [5] found an unidentified green fungus which grew at high 

pH levels and was capable of reducing the pH to levels suitable for colonisation and growth of T. 

thiooxidans. Gu et al [41] go further in their explanation and identified the fungus they observed 

as Fusarium. They claim that this has a more detrimental effect on the concrete that that of the 

neutrophilic bacteria T. intermedius. In their research they described the latter as being able to 

etch the surface of the concrete while the fungus Fusarium was able to penetrate the material. 

They also state that a wide range of acids are produced by fungi including acetic, oxalic and 

glucuronic acids. A further set of experiments [42] using mortar inoculated with bacteria 

including T. intermedius was conducted independently of Mori et al. [5]. In these experiments 

the deterioration of concrete was thought to be caused by the sulfuric acid produced by the 

bacteria; however the authors noted little gypsum and limited change in the sulfate ion 

concentration of the culture medium. They concluded that primary deterioration of the concrete 

was caused by carbonic and organic acids, which include acetic acid which are all metabolites 

produced by bacteria. 

4. The Role of Biogenic Sulfuric Acid Corrosion 

4.1  Attack Mechanisms  

Only limited work has been carried out in assessing the performance of concrete mixes in a 

biological environment [4] a surprising fact considering several researchers have claimed that 

biogenic sulfuric acid corrosion found in wastewater systems is more severe than chemical 

sulfuric acid and sulfate attack [43, 44]. This represents a key knowledge gap in the development 

of a material based performance specification. While research has identified gypsum, ettringite 

and even thaumasite as the end-product of the corrosion product the debate centres on the order 

of their formation, their quantities and specific effects on the cement matrix. 

The corrosive nature of a sulfuric acid attack has been well documented from both in-situ 

observations and chemical testing on concrete [4, 5, 22, 30, 45, 46, 47]. The dissolution effect of 

the hydrogen ion and the separate effect of the sulfate ion combine to create an aggressive set of 
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chemical reactions, threatening the stability of a cement matrix. Debate exists however regarding 

the mechanisms behind chemical and biological sulfuric acid attacks, and resistance to the 

former does not necessarily result in resistance to the latter [4, 9, 48]. Explanations centre on the 

involvement of the sulfuric acid producing bacteria Thiobacillus where Monteny et al. [4] claim 

that it is the moist conditions in the gypsum corrosion front that constitute an excellent breeding 

ground for the bacteria to thrive. They then migrate into the concrete producing acid much closer 

to the corrosion front although Yamanka et al. [7] dispute this claiming it is the acid itself 

moving inward. In a chemical attack however, the poor penetration of sulfuric acid limits the 

effects of corrosion to the surface [49]. The acid must negotiate its way through this corrosion 

layer in order for the attack to continue. It is generally assumed that this results in less severe 

consequences relative to a biological attack, as the corroded surface acts as a barrier for further 

penetration. Hence regular brushing of loosely adhering particles may be important in any 

attempt to mimic biological activity with chemical testing [4, 50].  

 

4.2 Types of Sulfuric Acid Attack 

In 1945, C. D. Parker described a sulfuric acid attack on concrete sewers as producing a white 

putty-like deposit, moist, flaky and easily removed from the surface [11, 37]. The calcium sulfate 

(gypsum) formed was a result of a reaction between the hydration products in the cement matrix 

and the sulfuric acid [22], as previously described in Equation (1). Experimental and in-situ 

analysis of both mortar and concrete has confirmed that gypsum formation is one of the primary 

corrosion mechanisms involved in the deterioration of the cement matrix leading to a loss of 

cohesion in cementitious calcium compounds [5, 23, 33, 51]. The degradation of concrete 

foundations of an Italian building exposed to sewage waters however was attributed to the 

growth of gypsum crystals at the aggregate-paste interface causing a loss of strength [52]. The 

build-up of gypsum though can also act as a barrier to further penetration, slowing an attack [4, 

53] however it has also been claimed that the rougher surface area leads to a greater surface area 

to be attacked [18]. 

The relative resistance of various binder combinations to sulfuric acid attack has been discussed 

by some researchers. Experiments exposing 100mm Portland cement concrete cubes with a 

binder of 35% ordinary Portland cement (OPC) / 65% GGBS to an H2SO4 solution for five 
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months, as described in BRE Digest 363 [54], reported higher performance than for binders of 

100% sulfate resisting Portland cement (SRPC) or 75% OPC / 25% PFA [28]. This improved 

performance of concrete in acidic conditions has been attributed to either lower porosity, lower 

levels of calcium hydroxide or both [4, 45, 48] while Saricimen et al [54] determined that in a 

3% flowing H2SO4 solution neither SRPC nor OPC showed any difference in resisting attack, a 

conclusion supported by [7]. Monteny et al. [39] suggest that a refined pore structure will 

increase the capillary action of the cement matrix and act as a mechanism for the aggressive 

solution to find its way deeper into the concrete. 

In experiments to assess commercially available piping, De Belie et al. [9] prepared non-standard 

cylindrical specimens of concrete with CEM I and CEM III high sulfate resisting cement and 

exposed them to a 0.5% H2SO4 solution in alternating wet / dry cycles. They concluded the 

limestone aggregate, acting as a sacrificial medium to reduce the rate of acid attack, played a 

more crucial role against attack that the cement type. The sulfate resisting cements also 

performed better than the blast-furnace slag cements, an observation similarly supported by other 

experimental results [29] (conducting experiments with 60% GGBS cylinders in a 1% H2SO4 for 

168 days). This is however contradicted by research from Monteny et al. [4] who performed 

experiments in 1% - 5% H2SO4 solutions. However it is noteworthy that the significance of the 

role played by the limestone aggregate has been emphasised [25, 29]. 

Ettringite is a crystalline compound and its formation can be observed in the process of cement 

hydration (primary ettringite) and in the effects of an external sulfate attack (secondary 

ettringite). Some of the reactions associated with its formation involve calcium aluminates, such 

as C3A, and gyspum but may also incorporate an external sulfate attack on the calcium aluminate 

hydrates and monosulfate hydrate phases [4, 54]. According to Skalny et al. [22] under sulfuric 

acid attack only limited amounts of ettringite will form in deeper sections of the concrete as long 

as the pH is high enough to maintain its stability and enough of the gypsum formed in the initial 

stages of attack can move into the concrete. This assessment concurs with other researchers who 

have also stated ettringite’s inability to survive in an acidic environment [44] and even in 

alkaline environments with pH’s as high as 10.6 [49]. In contrast, Monteny et al. [4] stress in 

their assessments the importance of ettringite and its more devastating effect on concrete than 

gypsum, while its formation from a sulfuric acid attack was also documented by others assessing 
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the influence of fungi on concrete corrosion [42] and simulated biogenic sulfuric acid corrosion 

[5]. 

It is noteworthy that the presence of such key compounds such as gypsum and ettringite is 

accepted as being a function of mix design and the binder combinations used. However the 

notion of using this material design to control the presence of these expansive compounds is not 

at this stage well developed.  

 

4.3 Influence of the Sulfate Ion 

As an attack by sulfuric acid is a combined acid-sulfate reaction, many researchers have deemed 

it prudent to assess concrete susceptibility in standard sulfate testing solutions including sodium 

sulfate (Na2SO4), magnesium sulfate (MgSO4) or a combination of both. The validity of this 

method to assess attack in a wastewater environment has however drawn some uncertainty based 

on discrepancies in chemical and biological tests [4].  

Sodium and magnesium-based sulfate solutions have substantially different effects on concrete. 

With the former, calcium hydroxide primarily undergoes decomposition to gypsum and 

subsequently ettringite. When there is an insufficient source of calcium for the reaction to 

continue only then will the solution begin to attack the C-S-H phase [22, 51]. Magnesium 

solutions attack all phases simultaneously in the cement matrix preferring calcium hydroxide 

first followed by the calcium-silicate-hydrate (C-S-H) phase to obtain its reactive calcium. The 

products from a magnesium sulfate reaction include gypsum, ettringite, a magnesium-silicate-

hydrate (which lacks cohesive properties) and the mineral form of magnesium hydroxide, brucite 

[55].  

In sodium sulfate, ettringite can be associated mainly with the reaction between the AFm 

monosulfate phase and the sulfate ions migrating into the concrete. At low concentrations of 

sulfate solutions (<1000mg SO4
2-/l) ettringite will be the primary cause of deterioration [4] 

whereas at higher concentrations (>8000mg SO4
2-/l) gypsum will dominate in a sulfate attack 

[56].  It is important, therefore, to use a concentration of sulfates that accurately represents the 

corrosion mechanism in the desired environment.  
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In magnesium sulfate solutions the deterioration mechanism is primarily a result of the loss of 

cohesion and disintegration with the formation of gypsum and magnesium hydroxide [4, 22]. 

The saturated solution pH of magnesium hydroxide is approximately 10.5 and consequently this 

causes the destabilisation of ettringite. As a result the circumstances favourable in the formation 

of ettringite from a magnesium sulfate attack are significantly impeded [57]. Skalny et al. [22] do 

note however that a limited amount may form when the pH remains high enough in the concrete 

for a sufficient period of time while research on slag cements [58] attributed ettringite formation 

as substantially contributing to the damage produced by MgSO4 solutions.  

Gollop and Taylor [51, 59] concluded in their analysis that the resistance of GGBS concretes to 

attack by sulfates increases with decreasing levels of Al2O3. Lower levels of C3A were noted by 

other researchers [16, 29] in reducing the harmful effects of exposure to sodium sulfate. In using 

cement pastes in their analysis however, Gollop and Taylor neglected the effects of the 

aggregate-paste interface previously considered important in analysing a sulfate / sulfuric acid 

attack [49, 60, 61]. Their addition of increasing levels of GGBS up to a level of 92% increased 

resistance to attack by sodium sulfate solutions but had the opposite effect when exposed to 

magnesium sulfate. In an assessment of 150mm x 75mm reinforced concrete cylinder specimens 

exposed to a 2.1% SO4
2- sulfate solution, Al-Amoudi [57] indicated that for a 60% GGBS 

replacement level, deterioration in the mixed magnesium / sodium based solution was considered 

significant. It was concluded that GGBS mixes fared poorest when compared to other cement 

replacement materials including silica fume (10% replacement) and fly ash (20% replacement). 

In assessing results from a study by the BRE [25, 26], Osborne [29] also came to similar 

conclusions regarding the effects of magnesium and sodium sulfate solutions and the use of high 

percentages of GGBS as a cement replacement. The T.E.G. One-year Review [62] also noted the 

benefit of a 70% GGBS replacement level with limestone cement and good quality carbonate 

aggregate against conventional forms of sulfate attack. 

 

4.4 Simulation of the Biological Corrosion Process 

In a simulated wet/dry seventeen-day attack cycle Vincke et al. [21] exposed 2 x 2 x 5cm 

specimens of concrete to a biological sulfur solution containing Thiobacili bacteria following an 

incubation period in an H2S environment. After a total of fifty one days and three cycles, the 
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specimens made with a CEM I Portland cement and CEM III blast-furnace slag cement were 

analysed in terms of weight loss. Results indicated that both mixes performed similarly. De Belie 

et al. [9] used an almost identical process to the above [21], using specimens that were 80mm 

diameter and 15mm deep, which were subjected to a fourth cycle of seventeen days. In their 

experiments they observed the sulfate ion concentration of their solution to increase from 2g/l to 

4g/l which the authors cite as evidence for the production of sulfuric acid by the sulfur-oxidising 

bacteria. The results of their experiments concluded that Portland cement performed better than 

CEM III blast-furnace slag cement. In this instance they theorise that owing to the greater surface 

area of CEM III the bacteria are able to colonise the surface of the cement more rapidly than the 

Portland cement. 

Further investigation has revealed other methods of modelling biological corrosion in the 

wastewater environment. A simulation chamber was developed by researchers in Hamburg, 

described by Monteny et al. [4], which allowed the corrosion process to be modelled at eight 

times the in-situ level could be reached through the optimisation of the corrosive environment. 

Test blocks of 60 x 11 x 7cm were immersed in 10cm of water at 30˚C and sprayed with 

Thiobacilli bacteria. H2S gas at 10ppmv was pumped into the chamber and acted as a substrate 

for the bacteria. The number of bacteria on the surface of the specimens was counted and it was 

found that the rate of corrosion was dependent on the levels of Thiobacillus thiooxidans detected.  

Experimental work was also carried out into the corrosion mechanism involved in the 

deterioration of concrete constructing a simulated sewer pipe 20m long and a diameter of 15cm 

[5]. Test specimens of mortar bars 4 x 4 x 16cm were made with the bottom half of these bars 

placed in sewage and exposed to H2S gas not exceeding 300ppm. Identical mortar bars were 

placed half submersed into a sewage medium, an autotrophic basal growth culture medium 

without thiosulfate and distilled water. These were inoculated every two weeks with Thiobacillus 

thiooxidans. Corrosion just above the waterline was observed on bars in the sewage and 

autotrophic basal media. Those in water remained unaffected while the sewage samples 

displayed the greatest corrosion rate. The authors concluded that based on these results the 

bacteria required a supply of moisture and nutrients to initiate the corrosion process while the 

corrosion products formed were determined to be gypsum and secondary ettringite. As with the 
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issue of sulfuric acid attack, the possibility of restricting the formation of corrosion products 

through appropriate mix design is not developed. 

 

5. Conclusions 

Three research foci were evident in the study of sulfate/sulfuric acid effects on concrete. These 

are: 

• Studies of the biological processes behind the corrosion of wastewater infrastructure, 

with particular reference to the role of sulfate-reducing and sulfur-oxidising bacteria. 

• Studies of the chemical effects of sulfates and sulfuric acid on concrete mixes 

• Laboratory-based research methodologies, especially those incorporating the biological 

effect on concrete. 

Chemical tests alone do not fully represent the microbial effects on concrete, although they may 

help in assessing the types of damage that can occur. Some researchers have carried out full-

scale laboratory analysis, but it is worth noting that the equipment necessary to adequately mimic 

in-situ conditions is invariably complicated, cumbersome and custom built [4, 63]. The 

realisation of resources required to undertake such research continues to be an obstacle to 

addressing this topic. The use of such complex research apparatus in routine performance-based 

specification is impractical. 

 

Although there exists significant quantities of data on the topics of sulfate, sulfuric acid and 

biogenic corrosion of concrete, little has been achieved in the way of formulating an accepted 

mathematical model of deterioration that incorporates agreed parameters of significance. This 

represents a significant knowledge gap and acts as a technical barrier towards using material 

design as a means of controlling corrosion due to biochemical attack. This continues to inhibit 

the design of durable concrete wastewater infrastructure and has significant implications for 

public expenditure in this area. The need to consider the interaction of biological and chemical 
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processes may hold the key to achieving greater progress and allow practitioners to use concrete 

mix design as a means of delivering intended service lives.  
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Captions 

Fig. 1 - Evidence of corrosion in grit removal tanks with gypsum and exposed aggregate visible 

above the water line in a wastewater treatment plant constructed in 2003. 


