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ABSTRACT 

Accurate determination of shear wave arrival time using bender elements may be severely 

affected by a combination of near field effects and reflected waves. These may mask the first 

arrival of the shear wave, making its detection difficult in the time domain. This paper 

describes an approach for measuring the shear wave arrival time through analysis of the output 

signal in the time-scale domain using a multi-scale wavelet transform. The local maxima lines 

of the wavelet transform modulus are observed at different scales and all singularities are 

mathematically characterised, allowing subsequent detection of the singularity relating to the 

first arrival. Examples of the use of the approach on typical synthetic and experimental bender 

element signals are also supplied, and these results are compared to those from other time and 

frequency domain approaches. The wavelet approach is not affected by near field effects and 

instead is characterised by a relatively consistent singularity related to the shear wave arrival 

time, across a range of frequencies and noise levels. 
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INTRODUCTION 

The measurement of shear stiffness at small strain (Gmax) is useful for predicting deformation 

of soil, as strains associated with most soil-structure interaction problems are generally less 

than 0.1% (Jardine et al. 1986). It has been shown by Stokoe et al. (2004) that stiffness-strain 

curves for a range of materials may result in poor estimates of deformation if small strain 

stiffness values have not been considered. There are several techniques available for 

measuring this parameter, both in-situ and in the laboratory, a number of which involve 

measurements of the velocity of a seismic shear wave, and corresponding calculation of Gmax 

from: 

2

max sVG ρ=        (1) 

where Vs is the shear wave velocity and ρ is the density of the soil. One such popular 

approach, initially developed by Shirley & Hampton (1978) and later by Dyvik & Madshus 

(1985), involves using bender elements, piezoelectric transducers capable of generating and 

detecting shear or compressional (Lings & Greening. 2001) motion. Bender elements are 

relatively cheap, can be wired quite simply (Santamarina et al. 2001) and they may easily be 

incorporated into a range of laboratory geotechnical testing apparatus (Dyvik & Olsen 1989; 

Viggiani & Atkinson 1995a; Jovicic & Coop 1997; Zeng & Ni 1998), in addition to being 

useful in the field on soil samples extracted from the ground (Donohue & Long 2010). Bender 

elements are now more popular than ever and their use has now extended beyond the 

academic field, and into industry. Despite this popularity there is, however, no definitive 

methodology for using bender elements, and interpretive procedure may vary considerably 

from one user to the next. 

In order to determine Vs using bender elements only two measurements are required, 

the travel distance between source and receiver, and the travel time. Travel distance is 
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relatively easy to determine and involves measuring the distance between transmitter and 

receiver tips (Viggiani & Atkinson 1995b). Measurement of the travel time is, however, much 

more problematic as the received signal is usually significantly altered from the input 

transmitted signal. By far the most commonly used approach is to estimate the first arrival of 

the shear wave from a visual inspection of the received signal (Fig. 1). However, due to near 

field effects and wave reflections from sample boundaries, this approach may result in 

significant error in travel time interpretation. The significance of near field effects in bender 

element testing has been discussed by at length by Brignoli et al. (1996), Viggiani & Atkinson 

(1995b), Jovicic et al. (1996), Arroyo et al. (2003) and Lee & Santamarina 2005. Sanchez-

Salinero et al. (1986), with a multiple aligned receiver, field cross hole geophysical survey in 

mind, produced numerical evidence that near field effects may mask the shear wave first 

arrival and proposed the following limit for interpretation of bender element signals: 

42 <<
λ

d
        (2) 

where d is the distance between elements and λ is the wavelength. The lower limit was 

proposed to take into account near field effects, whereas the upper limit was proposed to 

minimize signal attenuation. Taking into account these recommendations, Kawaguchi et al. 

(2001) suggested selecting point 3 in Fig. 1 as the correct first arrival. Even with strong 

receiver signals, however, Donohue (2005) showed that each of these points may remain 

frequency dependent significantly above the upper limit of Sanchez-Salinero et al. (1986). 

After consideration of Stokes’s fundamental solution for an isolated source, Arroyo et al. 

(2003) suggested that measurements in the far field may not be sufficient to ensure adequate 

measurement precision.  

A number of authors have suggested alternative approaches for travel time 

interpretation, based in both the time and frequency domains (e.g. Viggiani & Atkinson 
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1995b; Brocanelli & Rinaldi 1998; Blewett et al. 1999; Mohsin et al 2004). Arulnathan et al. 

(1998) suggested using multiple reflections to overcome both travel distance and travel time 

uncertainties, with Lee & Santamarina (2005) recommending cross correlation of the first and 

second arrival events to provide accurate travel times. Multiple reflections are, however, not 

always apparent, and their presence may be dependent on the degree of attenuation that 

occurs as the wave travels through the soil sample. Cross correlation was also suggested by 

Viggiani & Atkinson (1995b), Mohsin et al. (2004) and Wang et al. (2007). Mohsin et al. 

(2004) developed an automated system for measuring travel time based on cross correlation. 

This approach required measurements of all cross correlation peaks over a range of confining 

stresses. Wang et al. (2007) recommended the cross correlation approach only if the near-field 

effect is not pronounced and the two receivers possess very similar transfer functions. 

Another frequency domain approach to have gained popularity over recent years is the 

phase-delay method, which was first used by Viggiani & Atkinson (1995b) for bender 

element testing and discussed more recently by Arroyo et al. (2003) and Greening & Nash 

(2004). Using this technique, Arroyo et al. (2003) developed a criterion for ensuring that 

velocity measurements are made outside the influence of the near field. Greening et al. 

(2003), however, reported that this approach consistently produces lower estimates of Vs 

when compared to time domain measurements. Brandenberg at al. (2008), made use of 

wavelets, although in a different manner to that demonstrated in this paper, to measure shear 

wave travel times. They observed that travel times measured by wavelet correlation are less 

sensitive to noise and near field effects than manual travel time picks. Arroyo (2007) also 

tested wavelets on bender element signals and developed a means of interpreting the output 

signal using transform ridges. 

This paper will discuss the use of a wavelet based approach for arrival time 

determination. The background theory is outlined and examples, both numerical and 
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experimental, are provided illustrating the use and practical application of the approach for 

bender element testing. 

 

WAVELETS FOR SIGNAL ANALYSIS 

A signal may be observed through two main domains: time domain and frequency domain, as 

illustrated in Fig. 2. The Fourier Transform and its inverse connect these domains and are the 

main mathematical tools for signal analysis. The Fourier Transform is perfectly adequate for 

stationary and periodic (or quasi-periodic) signals and provides a global description of 

frequency distribution, energy and overall regularity. However, it involves the complete loss 

of local time information such as the location of singularities (corresponding to local 

variations in the smoothness of the signal). Keeping local time information makes non-

stationary signal analysis possible. The Windowed (or Short Time) Fourier Transform is a 

time-frequency tool. However the resolution of this tool is limited by Heisenberg's principle: 

as the accuracy in the time domain increases, the accuracy in the frequency domain decreases. 

A wavelet is a mathematical function used to divide a given function or continuous 

time signal into different frequency components and study each component with a resolution 

that matches its scale. A wavelet transform is the representation of a function by wavelets. 

The wavelets are scaled and translated copies (known as "daughter wavelets") of a finite 

length or fast-decaying oscillating waveform (known as the "mother wavelet"). Wavelet 

transforms have advantages over traditional Fourier transforms for representing functions that 

have discontinuities and sharp peaks, and for accurately deconstructing and reconstructing 

finite, non-periodic and/or non-stationary signals. 

The Wavelet Transform is motivated by the possibility of finding a singularity, it 

decomposes a signal into elementary building blocks that are well localized both in time and 
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frequency (Mallat & Hwang, 1992). The local detail is matched to the scale of the wavelet, so 

it can characterize coarse (low frequency) features on large scales and fine (high frequency) 

features in small scales. This mathematical tool is a time-scale and multi-resolution analysis 

that allows the user to overcome the uncertainty issues described by Heisenberg’s principle by 

applying the wavelet at several scales. 

 

Continuous Wavelet Transform (CWT) 

The CWT is a mathematical tool which was first introduced by Grossmann & Morlet (1984). 

To define the CWT, consider Ψ(t) be a complex valued function. The function is said to be a 

wavelet if and only if its Fourier transform ˆ ψ (ω) satisfies: 
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This condition for zero mean implies that: 

∫
+∞
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= 0)( dttψ        (4) 

Let Ψ be the mother wavelet that generates a large family by dilation. Therefore 

)(1)( ststS ψψ ×=  is the dilation of Ψ(t) by the factor scale s. This factor changes the local 

frequency by dilation or compression of the wavelet. The CWT of a function f, in Hilbert 

space L
2
( R ), is the convolution of f and ΨS as defined by : 
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In practical applications, the computation of CWT may consume a significant amount of time 

and resources. Also, waveforms are recorded as discrete time signals and can be analysed by 

numerical algorithms using the Discrete Wavelet Transform (DWT), as an approach proposed 

by Mallat (1999). The signal S can be represented as a series of signals {Wf(2
1
,t), Wf(2

2
,t),..., 

Wf(2
N
,t), d

N
} where N is the maximum scale factor. {Wf(2

1
,t), Wf(2

2
,t),..., Wf(2

N
,t)} 

characterise the fine structure of the main signal along power of two scales {2
1
, 2

2
,…, 2

J
}. 

Daubechies (1992) showed that the original signal can be reconstructed completely and 

analysed at different resolutions using the inverse DWT. 

 

SINGULARITY DETECTION IN OUTPUT SIGNAL 

The fundamental reason for applying wavelets to bender element tests is to allow detection of 

the point of first arrival of the shear wave, represented by a singularity in the signal. This may 

be, however, disguised by the presence of a near field effect due to the compressive wave and 

noise. To resolve these complications, the approach of Mallat & Hwang (1992) is utilised, 

whereby they characterised the local smoothness of a signal by its local Lipschitz exponent.  

In practical terms, the shear wave generated for bender element testing follows a sine 

wave and may be defined by: 
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Although S is a continuous function, it does have two singular points at ts (first arrival time) 

and (ts+Ti) as its first derivative is discontinuous at ts and (ts+Ti). The theory presented by 

Arroyo et al. (2003) offers the possibility to directly calculate the displacement at the receiver 

probe induced by the wave from the input probe. The direct shear wave is the perpendicular 
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movement of Stokes’ fundamental solution describing the movements generated by a unit 

impulsive force isolated in an infinite elastic medium. 
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where   
r 
r  is the direction of propagation,   

r 
b  is the forcing, k =1 4πρr , r is the distance from 

the source, t is the time, vS is the shear wave velocity, vP is the compressive wave velocity, H 

is the Heaviside step function and δ  is the Dirac function. 

Using Equation 8, and after several operations, the displacement generated by a unit direct 

shear wave at the tip of the receiver probe u(Ltt,t)  is composed of two parts : the far-field 

component uF and the near-field component uN. The expression of uF is exactly the same as 

the input and translated into the time domain. However, the expression of uN is more 

complicated. 

 

uF (Ltt ,t) =
k

vS

2
sin(ω i(t − tS )) [H(t − tS ) − H(t − tS − ti)]

uN (Ltt ,t) = −
k ti

4vS

2
tS

2 π
{2π t[H(tP − t) − H(tS + ti − t) − H(tS − t) + H(tP + ti − t)]

+ 2π ti [H(tP + ti − t) − H(tS + ti − t)]

+ [2π tP cos(ω i(t − tP )) + ti sin(ω i(t − tP ))] [−H(tP − t) + H(tP + ti − t)]

+ [2π tS cos(ω i(t − tS )) + ti sin(ω i(t − tS ))] [H(tS − t) + H(tS + ti − t)]

 

where tp is the arrival time of the compressive wave and ts is the arrival time of the share wave 

and ωi  is the input pulsation. Therefore, one can show by calculation that the near-field 

component uN is a continuous function and its first derivative can always be prolonged by 

continuity everywhere. 

(9) 

 

 

 

 

(10) 
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Using the approach of Mallat & Hwang it is possible to measure the local regularity or 

smoothness of a function using the Lipschitz exponent, α. Consider a function f(t) to be 

locally analogised to a polynomial of order n, Pn(h), plus a non-integer exponent function, h
α
, 

where n ≤ α ≤ n+1. The function is said to be Lipschitz α at t0 if and only if there exists two 

constants, A and h0 > 0, and a polynomial of order n, Pn(t), such that for |h| < h0: 

( ) ( ) α
hAhPhtf n ≤−+0      (11) 

The function f(t) is uniformly Lipschitz α over the interval ]a,b[, if and only if there exists a 

constant A and for any t0 ∈ ]a,b[ there exists a polynomial of order n, Pn(h), such the Equation 

11 above is satisfied if (t0+h) ∈ ]a,b[. Lipschitz regularity of f(t) and t0 is called the superior 

bound of all values α such that f(t) is Lipschitz α at t0. A function is said to be singular at t0, if 

it is not Lipschitz 1 at t0. The calculation of Lipschitz exponents is discussed in detail by 

Mallat & Hwang (1992). For this study it suffices to summarise the following points: 

• As the scale goes to zero, all singularities of a function f(t) can be located by following 

the maxima lines of its CWT, defined as any connected curve in the scale (s, t), along 

which all points are modulus maxima. 

• It is possible to locally assess the Lipschitz exponent α when the scale s goes to zero. 

This allows the user to sort the singular points as a measure of local smoothness. 

• The Lipschitz exponent of the idealised bender element signal (a sine wave) will take a 

value of 1 at the first arrival and will be infinite almost everywhere. 

• The Lipschitz exponent of the theoretical near-field component will take a value of 2, 

allowing the user to differentiate from the 1
st
 arrival singularities (Eq. 10). 

• Noise in the signal can be considered to be Gaussian noise and will have a negative 

Lipschitz value, allowing the user to distinguish from other more relevant singularities 

which will have a positive Lipschitz exponent. 
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In practice, the regularity of a function at a point t0 is characterised by the behaviour of its 

wavelet transform along any line that belongs to a cone strictly smaller than the cone of 

influence (Mallat & Hwang, 1992), where the width of this smaller cone is unknown. When 

analysing a signal, a huge number of maxima lines are obtained since the Gaussian noise 

creates singularities at any time. To distinguish noise from singularities of interest, the 

Lipschitz exponent is calculated using Mallat & Hwangs methodology. 

Let f(t) be a tempered distribution whose wavelet transform is well defined over ]a,b[ 

and let t0 be an element of ]a,b[. We suppose that there exists a scale s0 > 0, and a constant C, 

such that for t ∈]a,b[ and s < s0, all the modulus maxima of Wf(s, t) belong to a cone defined 

by: 

Cs  t-t ≤0        (12) 

Then, at all points t1 ∈ ]a,b[ and t1 ≠ t0, f(t) is uniformly Lipschitz n in a neighbourhood of t1. 

Let α < n be a non-integer. The function f(t) is Lipschitz α at t0, if and only if there exists a 

constant A such that at each modulus maxima (s,t) in the cone defined above 

( ) αsts,Wf A≤        (13) 

This inequality is rewritten in a log2 to produce the following equation, which can be used to 

sort singularities into ranges of similar smoothness: 

log2 Wf s,t( ) ≤ log2 A( )+ α log2 2 j( ) = log2 A( )+ αj  (14) 

 

Wavelet Selection 

Selection of a mother wavelet is driven by the need to match its features to our objectives. 

The mother wavelet is characterised by its support K, its number of vanishing moments and 
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its regularity; these considerations are discussed in detail by Mallat & Hwang (1992). Using 

these criteria a number of potential mother wavelets are compared in Table 1. For the purpose 

of this study the Symlet 7 wavelet was found to be the most suitable as it respects all of the 

key parameters. 

 

ALGORITHM EMPLOYED 

Using the principles outlined above, an algorithm was developed to identify singularities in 

bender element signals associated with the point of first arrival. The steps included are: 

1) Extract relevant information from the data, such as sampling frequency (fr) and input 

frequency (fi) 

2) Reshape the signal so that its length is the nearest 2
n
 just greater than the original 

signal length (this makes the wavelet decomposition more efficient). 

3) Decompose the signal at the scales {2
1
, 2

2
, 2

3
, …}. This step will lead to the 

production of a DWT using the chosen wavelet at each scale. For example, consider 

the sample signal shown in Fig. 4. This signal is then decomposed using the Symlet 7 

wavelet at different scales as shown in Fig. 5. 

4) Maxima lines are detected across all discrete scales and each local Lipschitz exponents 

is estimated by linear regression on the scales from 2
1
 to 2

6
. Obviously, α is 

underestimated because the upper tangent line, given by Equation 14, has a higher 

slope than the regression line. All negative Lipschitz values (noise) are eliminated and 

singularities of interest retained. 

5) The time information of the singularities of interest is retained and these are plotted on 

the original signal as shown in Fig. 6. 
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At this point the user must identify which of the potential singularities identified corresponds 

to the point of shear wave arrival. It is worth noting that the steps outlined above have all 

been programmed, but that the final interpretation must be conducted by the analyst. 

 

TESTING THE WAVELET APPROACH 

Synthetic Data Testing 

In order to test the wavelet approach, a number of synthetic signals were generated using the 

approach Arroyo et al. (2003), who refined the numerical model of Sanchez-Salinero et al. 

(1986), using Stokes’s fundamental solution for an isolated source. The wavelet technique 

was then applied to the synthetic signals of varying frequency, for which the true shear wave 

(1200 µs) and near field effect (1100 µs) arrival times were a known input. Gaussian noise 

was also applied to the synthetic signals at different levels (zero, 1%, 2%, 3% noise, where, 

for example 2% corresponds to a signal to noise ratio of 50). Synthetic signals and 

corresponding singularities with an input frequency of 2.5 kHz are shown in Figure 6 at 

different noise levels. All singularities detected between 800 µs and 1400 µs are shown. As 

mentioned above, the Lipschitz exponent of the theoretical near-field component will take a 

value of 2, thereby allowing the user to differentiate from the 1
st
 arrival singularities. Taking 

this into account, all signals were examined for a lower range of Lipschitz exponents (0.5 - 

1.6). As shown in Figure 6a, for a noise free synthetic signal, there is no singularity present at 

the travel time corresponding to the near field (1100 µs). By contrast, a consistent singularity, 

regardless of noise is always present at 1200 µs (± 5 µs), relating to the shear wave first 

arrival. 

These synthetic tests were also used to determine the Lipschitz exponent 

corresponding to the true shear wave arrival for the different signal to noise ratios. Every 

singularity within 5 µs was identified and the corresponding Lipschitz exponent determined. 
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A summary of the results of these tests, and other tests at frequencies of 1 kHz and 7.5 kHz 

are provided in Table 2 and show that, as expected, the Lipschitz exponent corresponding to 

the true shear wave first arrival decreases with increasing noise level. Measured Lipschitz 

exponents, were however, higher than expected, particularly for those measured on signals 

containing zero noise. As discussed above, the Lipschitz exponent of the idealised bender 

element signal (a sine wave) should take a value of 1 at each wave arrival as the first arrival 

and will be infinite almost everywhere. The DWT, however, limits the accuracy of the 

Lipchitz exponent estimation. This may be overcome by using a continuous wavelet 

transform to obtain a dense sequence of scales, allowing the user to calculate to a higher level 

of accuracy. This, however, may require significant additional computational time to analyse 

each signal. Therefore, when using this algorithm for experimental signals it is necessary to 

use a range of Lipschitz exponents in order to ensure that the singularity corresponding to the 

shear wave first arrival is determined. For low to moderate noise levels, at which most 

experimental bender element tests are preformed, an appropriate range of Lipschitz exponents 

for singularity detection would appear be 0.7 to 1.1. For noisy or very noisy signals a lower 

range of exponents should be applied. 

 

Experimental Testing 

The soil used for testing the wavelet approach was from the Onsøy marine clay test site, 

located approx. 100 km southeast of Oslo, just north of the city of Fredrikstad. Several 

research programmes have been carried out by the Norwegian Geotechnical Institute (NGI) at 

the Onsøy test site over the last 40 years. This uniform marine clay deposit consists of a 

weathered crust less than 1m thick underlain by 8m of soft clay with iron spots, organic 

matter and shell fragments and by 36m of homogenous soft to firm plastic clay over bedrock 
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(Lunne et al. 2003). Each of the tests presented in this paper were performed on Sherbrooke 

block samples from approximately 10m depth. 

An example of the application of the wavelet approach to a bender element signal from an 

unconsolidated specimen of Onsøy clay (91 mm bender element tip to tip travel distance) with 

an input frequency of 3 kHz is illustrated in Figure 7. Following the synthetic data testing, 

Lipschitz exponents in the range of 0.7 to 1.1 were used on the experimental data. This 

reveals several interesting singularities observed at travel times of 1015 µs, 1430 µs and 1500 

µs. The other singularities detected are unlikely to be related to the first arrival of the shear 

wave and are most likely to have been created by either signal noise or the arrival of reflected 

waves. Considering the singularities of interest: 

• the singularity at 1015 µs is most likely a result of noise, as it would appear to be far 

too early to be considered as the shear wave arrival. Although this singularity appears 

to be near what would be expected to be the beginning of the near field, as discussed 

above, the Lipschitz exponent of the theoretical near-field component will take a value 

of closer to 2, not 0.91 as measured for this singularity; 

• the singular point at 1430 µs is considered to be the point of first arrival of the direct 

shear wave and produces a shear wave velocity, Vs of 63.6 m/s. As discussed in the 

next section, in order to improve confidence in the selected singularity, a range of 

input frequencies should be used, and the corresponding output signals examined for 

consistent singularities. 

• the singular point at 1500 µs could be the arrival of the reflection of the direct shear 

wave off the bottom cap. This wave will have travelled 95 mm, suggesting a shear 

wave velocity Vs of 63.3 m/s, similar to that measured for the shear wave first arrival. 
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Influence of Input Frequency on Different Methods of Travel Time Assessment 

As discussed in the introductory section, shear wave arrival times have been estimated by 

various authors using a number of methods, both in the time and frequency domain. The 

interpreted travel time from a number of these methods are compared with the wavelet 

derived time on the same sample of unconsolidated Onsøy clay, as shown in Fig. 8, for a 

range of frequencies (1 kHz, 3 kHz, 7.5 kHz). All singularities detected between 900 µs and 

1750 µs are shown. As illustrated in Figure 8a, for an input frequency of 1 kHz, the received 

signal is significantly affected by near field effects. As shown, the visual methods produce 

relatively different travel times (1825 µs and 1730 µs for peak-to-peak and zero-crossing 

respectively). Similarly the peak cross-correlation function is obtained at 1910 µs. The result 

produced using the wavelet approach (1430 µs) is considerably different to that observed 

using the other methods. Each of the other approaches, however, may be strongly dependant 

on input frequency. As shown on Figure 8b and 8c, and again in Figure 9, (for a greater 

number of input frequencies) at higher frequencies the estimated travel times from the zero-

crossing and peak-to-peak approaches decrease when input frequency increases, eventually 

converging with the results of the wavelet approach. The cross-correlation approach, which 

has also been shown to be affected by near field affects at low frequency (Mohsin & Airey 

2003) produces a relatively stable result around 1535 µs; this travel time is however 

significantly higher than that calculated using the other approaches. As shown, the travel time 

measured by the wavelet approach is not significantly affected by input frequency and varies 

between 1370 and 1430 µs with an accuracy of ± 32.5 µs. 

Using the wavelet approach the first arrival time is well detected from a consistent 

singularity in the output signals and is independent of input frequency. However, a good 

quality input signal and a high sampling frequency are necessary to obtain reliable results. In 

practice it is has been found that the ratio of sampling frequency (fr) to input frequency (fi) is 
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significant. If the ratio of fr/fi is maintained above 50, detection of singularities is usually 

possible and accurate. In general, the travel time is obtained with an accuracy of roughly ± 5 

% using the wavelet approach, producing a shear modulus value (Gmax) with an accuracy of 

roughly ± 10%, regardless of the presence of strong near-field effects. As discussed above, the 

DWT limits the accuracy of the Lipschitz exponent estimation. This may be overcome by 

using a continuous wavelet transform to obtain a dense sequence of scales, allowing the user 

to calculate to a higher level of accuracy. This however may require significant additional 

computational time to analyse each signal. 

 

 

CONCLUSIONS 

This paper has introduced and tested a wavelet based approach for the determination of shear 

wave arrival times from bender element signals. To detect function discontinuity or 

singularity, a wavelet transform was employed to all signals and local Lipschitz exponents 

were employed. The local maxima lines of the wavelet transform modulus are observed at 

different scales, allowing identification of the location of all singularities. By selecting 

Lipschitz exponents compatible with the input signal it is possible to characterise these 

singularities, ultimately leading to detection of the singularity relating to the first arrival.  

The wavelet approach was tested on both experimental and synthetically generated 

signals. For the synthetic signals, a consistent singularity, at different levels of noise was 

observed at the time corresponding to the true arrival. As the Lipschitz exponent 

corresponding to the true shear wave first arrival decreases with increasing noise level it is 

recommended that a range of Lipschitz values be used when testing experimental signals. 

When tested on experimental signals obtained from bender element tests on Onsøy clay, the 

wavelet approach yielded positive results. Unlike visual assessment approaches, such as the 
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zero-crossing and peak-to-peak methods, or the cross correlation approach, the wavelet 

approach is not affected by near field effects and instead was characterised by a relatively 

consistent singularity across a range of frequencies. One limitation of the wavelet approach 

appears to be that it is unsuitable for automation and requires the user to select the appropriate 

singularity relating to the arrival of the shear wave. 
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Figure 1.  Typical bender element signal received from a transmitted sine pulse. 

Received signal is within the near field and exhibits characteristic points, 1 at 

the first deflection, 2 first maximum, 3 zero after first maximum, and 4 first 

major peak. 

 

 

Figure 2. Connection between time and frequency domains. 
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Figure 3.  Mallat tree with dyadic sequence of scale (2
j
) 

 

 

Figure 4. Sample bender element input and output signal, S. 
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Figure 5.  Signal decomposition across a number of scales of S with a Symlet 7. 

 

 Wavelet Type 

 Haar Daubechies L Symlet L Coif L 

Explicit expression Yes No No No 

Support width 1 2L - 1 2L - 1 6L - 1 

Regularity Not Regular ≈ 0.3L ≈ 0.3L ≈ 0.6L 

Vanishing moments 1 L L 2L 

Symmetrical No No Near Yes 

 

Table 1: Properties of commonly used support wavelets 

 

 

 Frequency 

Noise 1 kHz 2.5 kHz 7.5 kHz 

None 1.16 1.16 1.52 

1% 0.91 1.16 0.92 

2% 0.71 1.07 0.93 

3% 0.62 0.84 0.70 

Table 2: Lipschitz exponents of singularities corresponding to the true shear wave first arrival 

at different frequencies and noise levels.  
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Figure 6. Synthetic signals with an input frequency of 2.5 kHz and corresponding 

singularities at Gaussian noise levels of (a) zero %, (b) 1%, (c) 2%, and (d) 

3%. Shear wave and near field arrival times are 1200 µs and 1100 µs 

respectively.  
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Figure 7. Location of singularities on a sample signal using a symlet 7 and a range from 

0.7 to 1.1 of Lipschitz exponents. 

 

 

Figure 9. Comparison between travel times measured using four different methods, 

across a wide range of frequencies (1 – 10 kHz). 
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Figure 8. Shear wave arrival times measured using the wavelet, peak-to-peak, zero-

crossing and cross correlation methods overlain on received bender element 

signals for input frequencies of (a) 1kHz, (b) 3kHz and (c) 7.5 kHz.  

 


