
 1

 

The use of vehicle acceleration measurements to estimate 

road roughness 

A. GONZÁLEZ*†, E. J. OBRIEN†, Y.-Y. LI† AND K. CASHELL† 
 

† School of Architecture, Civil Engineering & Landscape, University College Dublin, 
Ireland 

*Corresponding author. Address: UCD School of Architecture, Landscape and Civil Engineering, Earlsfort 
Terrace, Dublin 2, Ireland. Phone: +353-1-7165512, Fax: +353-1-7167399, 
Email: arturo.gonzalez@ucd.ie 

 
 

Abstract 

 

Road roughness is a broad term that incorporates everything from potholes and cracks to 
the random deviations that exist in a profile. To build a roughness index, road irregularities 
need to be measured first. Existing methods of gauging the roughness are based either on 
visual inspections or using one of a limited number of instrumented vehicles that can take 
physical measurements of the road irregularities. This paper proposes the collection of data 
from accelerometers fixed in a specific vehicle type and the use of this data to estimate the 
road condition. While the estimate is approximate, accelerometers are being increasingly 
used by car manufacturers to improve suspension performance and the proposed method is 
relatively inexpensive to implement and provide road managers with constantly updated 
measurements of roughness. This approach is possible due to the relationship between the 
power spectral densities of road surface and vehicle accelerations via a transfer function. 
This paper shows how road profiles can be accurately classified using axle and body 
accelerations from a range of simulated vehicle-road dynamic scenarios.  
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1.  Introduction 

The analysis and maintenance of a road surface is a difficult problem that pavement 
engineers have been facing for many years. Detection of the condition of a road profile is 
important for many reasons, such as safety and economic savings, but profiling methods 
using direct measurements of the road itself are usually expensive [1-6]. The aim of this 
paper is to develop a method of estimating the general condition of a road by utilising 
technology that increasingly exists in everyday vehicles. It is becoming common in the 
luxury end of the car industry, that accelerometers are being fitted in the suspensions in 
order to improve suspension performance and increase ride comfort [7,8]. These 
accelerometers are effectively measuring the response of the vehicle to the road surface. It 
is proposed herein to collect and store these acceleration measurements to estimate the 
average road condition. Other researchers are developing methods for the collection of such 
data by road network management authorities [9]. The roughness estimate can be used to 
identify sections of road where the profile roughness has increased and hence to prioritise 
sections and optimise the use of profilometers for more detailed investigations. 
 
Two popular methods to classify the roughness of a profile are the International Roughness 
Index (IRI) [10] and the International Standards Organisation (ISO) classification [11]. In 
this paper, the road condition is classified according to ISO, that uses Fourier analysis to 
calculate the Power Spectral Density (PSD) function of the surface. This PSD is compared 
to some boundaries that depend on the value of a geometric spatial mean, a, as described by 
equation (1).  
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where Ω is spatial frequency in cycles/m. It classifies the profile into ‘A’ (very good), ‘B’ 
(good), ‘C’ (average), ‘D’ (poor) and ‘E’ (very poor) roughness indices as shown in figure 
1 [11].  
 

[Insert figure 1 about here] 
 

2.  Vehicle and road profile models 

A 2-axle vehicle is modelled as a four degree-of-freedom suspension system. This model, 
known as a half-car, is illustrated in Figure 2.  
 

[Insert figure 2 about here] 
 
The sprung body mass of the vehicle, m3, has vertical body displacement y3(t) and rotation 
φ(t). The body mass moment of inertia is I3. The two unsprung masses corresponding to the 
front and rear axles, m1 and m2, have vertical axle displacements y1(t) and y2(t) respectively. 
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The tyre stiffness is modelled as a linear spring of constant Kt and the suspension system as 
a linear spring Ks in parallel with a damper Cs. The horizontal distance from the centroid of 
the vehicle to the front axle is described as D1, while the distance from the centroid to the 
rear axle is D2 .The motion controlling the vehicle response when travelling at uniform 
speed is defined by the ordinary differential equations (2)-(4) [12]: 
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The tyre force imparted to the road, ( )

i
R t , is given by equation (10).  
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where ( )

i
r x  is the surface roughness corresponding to the location of the th

i  axle at time t. 

This system of equations can be solved using the Runge-Kutta-Nyström method [13]. 
 
Based on the PSD(

i
Ω ) given by equation (1), the road surface irregularities can be 

generated using the discrete form of equation (11) [14]. 
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where x  is the distance measured from the left end of the road, N , the total number of 
waves used to construct the road surface, ∆Ω , the frequency interval 
( ( ) /

max min
N∆Ω = Ω − Ω ), and 

i
θ , the random phase angle uniformly distributed within 

[0 2 ]π, , that corresponds to the spatial frequency 
i

Ω , which is defined by equation (12): 

  
          ( 0.5)

i min
iΩ = Ω + − ∆Ω  1 2 3...i N= , ,                 (12) 

   

3.  Relationship between measured acceleration and road roughness 

As result of unsprung mass motion being strongly influenced by the road profile, a 
measured time history of the vehicle accelerations, ( )y t�� , can be used to describe the overall 
condition of the road profile, r(x). Vibrations and road profile can be related in a linear 
system through a transform function defined by equation (13) [15,16].  
 

H(Ω) = PSDacc(Ω)/PSDroad(Ω)     (13) 
 
where PSDacc(Ω)  and PSDroad(Ω)  are the PSD for a frequency Ω due to the vehicle 
accelerations and road profile respectively. Once PSDroad is obtained, the road can be 
classified according to figure 1. 
 

3.1 Calibration 

In practice, these transform functions will be unknown, but they can be experimentally 
obtained using equation (13) and driving the vehicle over a measured profile. Once the 
transform function is calibrated, it can be used to classify any other profile, although 
periodic calibrations of H(Ω) are recommended. For the purpose of illustrating this 
procedure, a theoretical known road profile is generated. Then, a ‘typical’ 2-axle vehicle is 
excited with this profile using equations (2)-(10). Finally, the transform function of the 
vehicle is obtained from the PSD’s of road profile and simulated vehicle accelerations via 
equation (13). All calculations are carried out using MATLAB software [17,18].  
 
Figure 3 shows the generated random road profile, classified by ISO as ‘D’ (poor). It is 
made up of 8001 spatial frequencies between 0.01 cycles/m and 4 cycles/m.  
 

[Insert figure 3 about here] 
 
Table 1 shows the values used for the parameters of the ‘typical’ half-car model employed 
in the simulation [16,19].  
 

[Insert table 1 about here] 
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Axle and body mass accelerations, 1( )y t�� , 2 ( )y t��  and )(3 ty�� , are illustrated in the figures 

4(a), (b) and (c) respectively for a speed of 50 km/h.  
 

[Insert figure 4 about here]  
 
Then, the PSD of axle accelerations are calculated. However, because FFT uses a constant 
bandwidth, it over-exaggerates the fluctuations at high frequencies. This problem is 
overcome applying a smoothing procedure defined in [11]. The resulting smoothed PSD is 
illustrated in log-log scale in figure 5 for the road profile and in figure 6 for vehicle 
accelerations. 
  

[Insert figure 5 about here] 
 

[Insert figure 6 about here] 
 
Figure 7 shows the calibrated transform functions for each vertical acceleration variable in 
this half-car model, derived from applying equation (13) to the figures 5 and 6.  
 

[Insert figure 7 about here] 
 
This function can be used to transform the PSD for axle or body accelerations to the PSD 
for the road profile and vice versa. For unknown road profiles, it can be used to find the 
PSD of the profile from axle or body acceleration measurements. 
 

4.  Numerical testing 

4.1 Validation for different road profiles 

Two new theoretical profiles are generated with the same spatial frequency range (0.01 
cycles/m ~ 4 cycles/m) but different geometric spatial means, falling into classes ‘C’ and 
‘D’. The axle and body accelerations due to the crossing of the ‘typical’ half-car model (as 
defined in table 1) are obtained for a speed of 50 km/h. The PSD of the road profile is 
estimated from the PSD of axle and body accelerations using the transform functions of 
figures 7(a) and 7(b) respectively. Figures 8 and 9 compare the ‘true’ PSD, directly 
obtained from the road profile, to the estimated PSD for both road profiles when using front 
and rear axle accelerations respectively. It can be seen that both axle acceleration 
measurements can be used for an estimate of the PSD and accurately classify the road 
without the need for profiling equipment. A small deviation appears between 0.07 and 0.08 
cycles/m (about 1 Hz, close to the body modes of vibration) of the PSDs in these two 
figures. 
 

[Insert figure 8 about here] 
 

[Insert figure 9 about here] 
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Figure 10 does the same comparison when using body accelerations. Sprung mass 
accelerations seem to provide a road spectra as accurate as the unsprung masses, except for 
small deviations at high frequencies and a significant peak around 0.5 cycles/m, about 7 
Hz, related to axle hop interference. The road class can be reasonably predicted once the 
spectra is not falling very close to the divisory line between two road classes.  

[Insert figure 10 about here] 
 

4.2 Validation for different speeds 

When measuring axle accelerations, the vehicle may drive at different speeds depending on 
traffic conditions. It is therefore important to evaluate the sensitivity of the transform 
function to speed. Figure 11 shows the ‘true’ and estimated PSD when driving the same 
vehicle at different speeds if using one only transform function (corresponding to 50 km/h). 
It is found that the closer the driving speed to the calibration speed, the more accurate the 
results become.  
 

[Insert figure 11 about here] 
 
Hence, accuracy can be improved by using a set of transform functions for a range of 
speeds and choosing that transform function appropriate to the speed closest to that for 
which axle accelerations are taken. Transform functions are illustrated in figure 12 for 40, 
45, 50, 55 and 60 km/h speeds.  
 

[Insert figure 12 about here] 
 
Calibration of the transform function every 5 km/h is found to provide sufficient accuracy 
for a correct ISO classification. For example, PSD results of figure 10 are obtained using a 
transform function calibrated at 40 km/h for axle measurements taken at 42 km/h. 

 
[Insert figure 13 about here] 

 

4.3 Validation for a vehicle fleet 

The PSD of front axle accelerations in the temporal frequency domain (cycles/s), PSD(f), 
can be obtained by dividing the PSD of axle accelerations in the spatial frequency domain, 
PSD(Ω) (figure 6(a)), by speed and the result is illustrated in figure 14. 
 

[Insert figure 14 about here] 
 
It can be seen that the critical frequency, where the peak values of PSD(f) occur, is 10.56 
cycles/s, which represents axle hop frequency. It can be assumed that the PSD due to axle 
acceleration measurements will be similar if the axle hop natural frequency is similar and 
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other parameters vary within a reasonable range. In other words, if the transform function 
calculated for a particular vehicle was applied to the axle accelerations from other vehicles 
with similar properties, a reasonable degree of accuracy can be expected. 
 
In order to test this assumption, the accelerations of six vehicles of the same type (eg., a 
fleet of public service vehicles) are simulated using the parameters specified in table 2.  
 

[Insert table 2 about here] 
 
Only the transform functions of the ‘typical’ half-car or calibration vehicle (figure 9) are 
employed to determine the PSD of the road profile from the axle accelerations of each 
vehicle. Figure 15 shows the PSD results for each of the six scenarios. It is found that the 
closer the axle hop frequency of the test vehicle is to the calibration vehicle, the more 
accurate the estimate. It can be concluded that the transform function of the calibrated 
vehicle can be used to estimate road roughness accurately once the vehicle has similar axle 
hop frequency and vehicle parameters.  
 

[Insert figure 15 about here] 
 

4.4 Validation for noise-corrupted acceleration data 

The results discussed so far has been somewhat idealised because they have ignored the 
effects of noise. For high-quality sensors, the average power of the measurement noise will 
be small in comparison to the average power of the underlying accelerations. However, the 
noise power is typically spread out over a range of frequencies, and therein lies the 
problem. An additive noise model is used here to describe the noisy data that invariably is 
part of the measurements. So, the simulated acceleration, a(t), is calculated as the sum of 
the true acceleration, ÿ(t), and the noise, n(t):  
 

a(t) = ÿ (t) + n(t)       for any instant t     (14) 
 
The noise, n(t) is zero-mean and described by its variance σn

2. The impact of the noise on 
the signal is described by the Signal to Noise ratio (S/N), which is given by: 
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where σy

2 and σa
2 are the variances of the true and the recorded accelerations respectively. 

 
The algorithm is tested for the accelerations of the front axle shown in figure 4(a), which 
are corrupted with different levels of noise. Following smoothing procedure described in 
section 3.1, figure 16 shows the original and smoothed (PSDs of the noise-free (ÿ(t)) and 
noise-corrupted accelerations (a(t)) for S/N of 20 (relative error in measurement of 5%), 10 



 8

(relative error of 10%) and 5 (relative error of 20%). It can be seen how the influence of 
noise on the PSD is very relevant for low frequencies, but it hardly has any effect on the 
high frequencies, even for low S/N.  
 

[Insert figure 16 about here] 
 
One hundred different noise signals (n(t)) are randomly generated varying the initial seed 
for each of the three S/N, which results into a total of 300 noise-corrupted acceleration 
samples being tested. The 100 estimated PSD’s of road profiles are shown and compared to 
the ‘true’ PSD for each S/N in figure 17. If taking into count only the low frequency 
components, the deviations introduced by noise classify the road into a poorer class than in 
reality.  The higher S/N, the poorer prediction for the low frequencies class. For the 
simulations under study, S/N of 20 will accurately classify the road class as ‘D’ except for 
very low spatial frequencies (figure 17(a)). S/N of 10 will classify the road class as ‘E’ for 
spatial frequencies below 0.04 cycles/m (figure 17(b)), while S/N of 5 will classify the road 
as ‘F’ for spatial frequencies below 0.04 cycles and as ‘E’ for spatial frequencies between 
0.04 and 0.1 cycles/m (figure 17(c)). However, the influence of S/N on the high spatial 
frequency components of the spectra is not so important, and once frequencies are above 
0.1 cycles/m, the road class is generally accurately predicted regardless the noise level. 
 

[Insert figure 17 about here] 
 

5. Conclusions 

Current methods of estimating the road condition generally involve taking direct 
measurements of the profile using lasers or other measuring devices. Although there have 
been major improvements in recent years in the quality of road profiling equipment, these 
devices remain expensive to purchase, inefficient in terms of time and specialized in terms 
of operation. With maintenance and construction costs demanding a large portion of road 
management authorities budgets, this paper has presented a convenient, fast and 
economical method of estimating the road condition, using data harnessed from vehicle 
accelerometers. Then, the PSD of a road profile can be estimated from the PSD of the axle 
or body accelerations measured over the road profile. Such an approach requires prior 
knowledge of the vehicle transform function. This transform function depends only on 
vehicle parameters and it can be obtained by dividing the PSD of accelerations measured 
over a known profile by the PSD of that profile. 
 
Computer simulations of half-car models have been carried out to analyse the sensitivity of 
the proposed road classification method to road roughness, speed, vehicle parameters and 
noise. Although it is hard to predict the exact interaction between a vehicle and a road in a 
simulation and the vehicles that are used are somewhat simplified, the findings give definite 
indications of the good levels of accuracy for the PSD estimate. The method is shown to be 
robust enough for a number of road profiles, vehicle speeds and dynamic scenarios. The 
possibility of using a fleet of vehicles to calculate profiles simultaneously is also 
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successfully tested. This would be far more time-efficient than using a single vehicle and 
opens up the possibility of using data from existing public sector vehicle fleets. In the 
presence of a significant random noise component, the low spatial frequency components 
of the road are classified into unrealistic poorer classes, but high spatial frequency 
components are generally classified within the correct road class. It has been shown how 
data from accelerometers fixed to the sprung mass can give a road spectra as accurate as 
axle acceleration data. Nevertheless, axle accelerations seem to provide slightly better 
estimates of the PSD than body accelerations for high spatial frequencies, which have been 
shown to be less sensitive to noise. Once the PSD of the road is identified, it is possible to 
generally classify the road as being very good/good/poor etc., thereby prioritising the roads 
that need further attention. Should a particular road be classified as poor for example, a 
more detailed investigation of the profile could then be carried out using specialised 
equipment such as profilometers.  
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Figure 1. Classification of road roughness by ISO 
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Figure 4. Vehicle accelerations: (a) Front axle ÿ1(t), (b) Rear axle ÿ2(t), (c) Body ÿ3(t) 
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Figure 5. Smoothed PSD(Ω)  of the road profile 
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Figure 6. Smoothed PSD(Ω)  for: (a) Front and rear axle accelerations, (b) Body accelerations 
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Figure 7. Transform function (H(Ω)) for: (a) Front and rear axle accelerations, (b) Body accelerations 
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Figure 8. Comparison of ‘true’ and estimated PSD(Ω) of road profile using front axle accelerations: (a) Class 

‘C’ profile, (b) Class ‘D’ profile 
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Figure 10. Comparison of ‘true’ and estimated PSD(Ω) of road profile using body accelerations: (a) Class ‘C’ 

profile, (b) Class ‘D’ profile 
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Figure 11. Comparison of ‘true’ and estimated PSD(Ω) of profiles for a range of speeds 

 
 



 24

 
 

Figure 12. Transform function (H(Ω)) for a range of speeds 
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Figure 13. Comparison of ‘true’ and estimated PSD(Ω) of profiles at 42 km/h 
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Figure 14. PSD(f) of the front axle accelerations versus temporal frequency (f in cycles/s) 
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Figure 15. Comparison of ’true’ and estimated PSD(Ω) of profiles for a range of vehicle parameters 
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Figure 16. Original and Smoothed PSD(Ω) of front axle accelerations for noise levels of : (a) noise-free, (b) 

S/N=20, (c) S/N=10 and (d) S/N=5 
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Figure 17. Comparison of ‘true’ and estimated PSDs(Ω) of road profile from 100 randomly generated noise-

corrupted axle accelerations with: (a) S/N=20, (b) S/N=10 and (c) S/N=5 
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Cs (kNs/m) 10.884 10.884 10.884 10.884 10.884 15 

c (km/h) 41 48 54 59 60 51 
Front axle hop (Hz) 10.56 10.56 8.62 12.93 10.55 10.56 
Body bounce (Hz) 2.12 2.31 1.73 2.6 2.12 2.12 
Body pitch (Hz) 1.48 1.32 1.2 1.81 1.48 1.48 

Road class D C D C D C 

 
 
 

 


