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Abstract 

Many authors, using both experimental tests and complex numerical models, have 

examined the effect of vehicle velocity on a highway bridge’s dynamic amplification. 

Although these tests and models give valuable quantitative information on dynamic 

amplification, they give little insight into how amplification is affected by individual 

vehicle/bridge parameters.  This paper uses relatively simple numerical models to 

investigate the effect of vehicle velocity on a bridge’s dynamic amplification. A single 

vehicle crossing a simply supported bridge is modeled as a constant point force. A set 

of critical velocities are determined associated with peaks of dynamic amplification 

for all beams. The reasons for these large amplifications are discussed. A more 

complex finite element model, validated with field tests, is used to test the 

applicability of the conclusions obtained from the simple models to a realistic 

bridge/vehicle system.  
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1 Introduction 

The Dynamic Amplification Factor (DAF) of a bridge is defined as the maximum 

total (dynamic plus static) load effect divided by the maximum static load effect.  

High dynamic amplifications in highway bridges are due to a combination of many 

factors. The main ones are bridge natural frequency, the frequencies associated with 

vehicle axle hop and body bounce, the damping capacity of the bridge, the damping of 

the vehicle’s suspension, the bridge pavement and approach pavement evenness, and 

finally the vehicle’s velocity (DIVINE 1997). Authors such as Olsson (1991) and Liu 

et al. (2002) found that a bridge’s DAF is sensitive to the velocity of the crossing 

vehicle and Green et al. (1995) suggest that maximum amplification factors occur at 

different vehicle velocities for different bridges. A large number of authors such as 

Greco & Santini (2002), Fafard (1997) and DIVINE (1997) found that, as a crossing 

vehicle’s velocity increases, the amplification factor of the bridge alternates between 

high and low DAFs. Although experimental work and complex finite element models 

can give valuable information regarding the magnitude and occurrence of these 

amplifications, they give little insight into the contribution of vehicle velocity to large 

DAFs. In this paper, the simple model of a single point force is used first to represent 

a single vehicle crossing a simply supported bridge. This model involves several 

significant simplifications. The mass of the vehicle is assumed to be small compared 

to the mass of the bridge. Only gravitational forces are considered. The vibration of 

the vehicle is ignored; therefore interaction between the vehicle and the bridge is also 

ignored. This model is clearly different from reality in many respects. It is developed 

here merely to gain an understanding of some of the principal factors which result in 

high amplification factors, namely bridge frequency, vehicle velocity and bridge 
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damping. The validity of the results is tested using a considerably more elaborate 

three-dimensional finite element model. The three-dimensional model is validated 

using field tests carried out on a bridge with two trucks in Slovenia. The results from 

the field tests are presented and discussed. In a companion paper (Brady & OBrien 

2005), a two point force system is used to represent a 2-axle vehicle or two (uniaxial) 

vehicles traveling in the same or opposing directions. 

 

 

2 The Dynamic Amplification Factor due to a Single Point Load 

The case of a single vehicle crossing a simply supported bridge is modeled as a point 

force crossing a simply supported beam at a constant velocity. The modeling of the 

system is based on the work of Frýba (1971). The beam illustrated in Figure 1 is 

modeled using the Bernoulli-Euler differential equation: 
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where t  is the time since the force arrived on  the beam; ( )tx,υ  is the beam vertical 

deflection at point x and time t , measured from the equilibrium position when the 

beam is loaded with its self weight only; E  is the  modulus of elasticity; J  is the 2nd 

moment of area (assumed constant), µ  is the mass per meter, bω  is the circular 

frequency of damping of the beam; P  is a concentrated force of constant magnitude. 

( )xδ  is the Dirac function and c is the constant velocity of the load. It is assumed that, 

initially ( t =0), there is zero beam deflection and zero beam rotation. Damping is 
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assumed to be proportional to the velocity of motion of the beam. Equation 1 is solved 

using the method of integral transformations assuming modal superposition. The 

contribution of each mode j  is summed to determine the bending moment response 

of the beam. The authors found that the solution converges satisfactorily when the 

first 20 modes of vibration are considered although fewer modes may be necessary to 

ensure convergence. 

 

Using the model described, the dynamic amplification factors at mid-span for a 

simply supported beam being crossed by a point load were determined at various 

velocities. Figure 2 shows the contour plot of dynamic amplification factor as a 

function of load circular frequency (πc/l) and beam first circular frequency. For this 

figure 3% damping was assumed for the beam; this was considered to be reasonably 

typical (DIVINE 1997). A value of 13 rad/s (2.07 Hz) is taken as the minimum 

practical beam circular frequency. It is apparent from the figure that there are a 

number of ridges that represent local maximum dynamic amplification factors. For the 

case of zero damping, these ridges form a series of straight lines (Brady 2004). In 

addition, the magnitude along the top of each ridge is constant. As the level of beam 

damping increases in the system, there is a slight loss of linearity in these ridges. 

However, for practical purposes, this loss of linearity is negligible. Figure 3 shows the 

ridges representing local maximum dynamic amplification factors against beam first 

circular frequency and load circular frequency for three particular beams. Only the 

first four ridges are shown.  

It can be concluded that a set of critical beam first circular to load circular frequency 

ratios exist. From these Critical Frequency Ratios the corresponding critical load 



 5

velocities, which produce local-maximum amplification factors, can be determined. 

Taking an average of the slopes of the line segments of each ridge in Figure 3 gives 

the Critical Frequency Ratios presented in Table 1. 

2.1 Example 

A 25m beam with a span to depth ratio of 20 and a rectangular solid cross-section 

with a width of 8.5 m is considered. The beam is assumed to be of concrete 

construction with a modulus of elasticity of 36×109 N/m2 and a density of 2446 kg/m3. 

These properties result in the beam having a first natural frequency of 3.47 Hz (21.9 

rad/s). The damping value for the beam is assumed to be 3%. Figure 4 shows the 

relationship between dynamic amplification and load circular frequency. This figure 

corresponds to a horizontal section through Figure 2. The ridges illustrated in Figure 3 

are clearly evident with DAF’s of 1.01, 1.03, 1.08 and 1.39. The maximum dynamic 

amplification factor occurs at 8.37 rad/s (240 km/hr or 150 mph). The other high 

dynamic amplification factors occur at load circular frequencies of 3.23 rad/s, 2.02 

rad/s, and 1.47 rad/s. To investigate why these high amplifications occur, it is helpful 

to examine the individual bending moment responses at each local maximum. 

Bending moment versus time responses for each of the Critical Frequency Ratios 

given in Table 1 (corresponding to critical vehicle speeds) are shown in Figure 5. The 

term ‘normalized bending moment’ refers to the total bending moment response 

divided by the mid-span static bending moment. In effect, the maximum value of the 

normalized bending moment response is the DAF. 

 

The first local-maximum amplification factor occurs when the bending moment 

versus time response contains one peak. The second local-maximum occurs when the 
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response contains three peaks, the third corresponds to five peaks and the fourth has 

seven peaks. Therefore the maximum dynamic amplification factors occur when the 

bending moment response has an odd number of peaks. In addition, it is clear that 

each local-maximum amplification factor is governed by the magnitude of the central 

peak in the response (1st of 1, 2nd of 3, 3rd of 5 and 4th of 7). 

 

It is interesting to consider the changes in dynamic amplification factor with respect to 

velocity. At high velocities the load reaches mid-span in less time than it takes the 

beam to vibrate once and the dynamic amplification factor is low (see right hand side 

of Figure 4). As the velocity falls, the dynamic amplification factor increases until it 

reaches a maximum at the Critical Frequency Ratio of 0.383; this response is 

illustrated in Figure 5. As the velocity decreases further, the magnitude of the single 

peak begins to decrease and a second peak begins to form in the response, 

corresponding to two beam vibrations. As the velocity continues to decrease, the 

second peak in the response increases and becomes higher than the first peak. A third 

smaller peak appears. This trend continues until the second peak reaches a maximum 

at the Critical Frequency Ratio of 0.148. With a further decrease in Frequency Ratio, a 

fourth peak begins to form and the pattern continues. This is the manner in which high 

amplification factors occur for all beams, with the velocities at which they occur 

clearly indicated by the Critical Frequency Ratios.  

 

The effect of beam damping was investigated for a single load crossing a simply 

supported beam. It was found that the value of damping substantially affected the 

magnitude of the resultant amplification factors. As the level of damping in the beam 



 7

decreased the magnitude of the amplification factor increased. However, the Critical 

Frequency Ratios remain practically unchanged regardless of the level of damping. 

Thus for practical purposes, the Critical Frequency Ratios described in Table 1 are 

independent of the level of beam damping. 

 

 

3 Experimental Dynamic Amplification Factors 

An experiment was undertaken in Slovenia to investigate the dynamic amplification 

of a particular bridge. The results are used in two ways; firstly, the dynamic 

amplification factor for the bridge in question is determined. Secondly, the collected 

data is used to validate a finite element model. The experiment was carried out on 

April 20th, 1999 using two pre-weighed test vehicles. The test examined the dynamic 

amplification for single and pairs of vehicles crossing the bridge.  

 

The bridge is a 32 m long, simply supported span that forms part of a larger multi-

span structure. It has two lanes with bi-directional traffic flow and is slightly curved. 

The deck is of beam and slab construction. Figure 6 shows a schematic of the plan, 

cross-section, and details of the longitudinal beams and transverse diaphragm beams. 

Information regarding the depth of the asphalt pavement and the slab was not 

available; only the combined depth was recorded. Two pre-weighed vehicles were 

used in the test, one two-axle (2A) and one three-axle (3A), as shown in Figure 7. The 

axle spacings are 4.35 m for the two-axle vehicle and 3.22 m and 1.37 m (from the 

front) for the three-axle vehicle. The measured masses of the front and back axles of 

the two-axle vehicle are 3,460 kg and 12,900 kg respectively. The masses of the front 
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axle and rear tandem of the three-axle vehicle were 6,240 kg and 18,220 kg 

respectively. 

A total of twelve strain transducers were placed on the underside of the bridge beams 

to measure strain data. The transducers were calibrated using the finite element results 

presented in section 4.2. Axle detectors were placed on the road surface to provide 

information on vehicle velocity and position. Photocells were placed on each vehicle, 

which, in conjunction with reflective strips placed on the bridge railings, gave 

additional information on vehicle velocity. Accelerometers were placed on all of the 

axles on the two-axle and three-axle vehicle. The data was recorded on a laptop using 

a scanning frequency of 512 Hz.  

 

 

3.1 Experimental results 

Frequency analysis was carried out on the strains from a transducer placed on the 

beam on the underside of the Lane 1, at mid-span. The analysis was carried out for 28 

vehicle runs and the fundamental bridge frequency was determined to be 3.58 Hz 

(22.5 rad/s). The higher frequencies were determined as 4.60 Hz, 12 Hz and 13.02 Hz. 

Various free vibration signals were examined to determine the level of bridge 

damping.  It was found to be between 2% and 4%. There was a high level of noise 

present in the vehicle accelerometer readings. The two-axle vehicle’ frequencies were 

in the range of 2.1 Hz to 2.75 Hz and 11 Hz to 14 Hz. The frequency ranges of the 

three-axle vehicle were 2.1 Hz to 2.87 Hz and 9 Hz to 13.5 Hz. 
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The dynamic amplification factors for the two-axle and three-axle vehicles 

individually crossing the bridge are presented in Figure 8. It is clear that there is an 

insufficient number of vehicle crossing events to accurately determine the effect of 

vehicle velocity on the dynamic amplification. In general the dynamic amplification 

factor for the two-axle vehicle was higher than for the three-axle vehicle. The average 

values are 1.16 and 1.06 for the two- and three-axle vehicles respectively when the 

vehicle was in Lane 1. When the vehicle was in Lane 2, the average amplification 

factors were 1.29 and 1.14 for the two and three-axle vehicles respectively. The 

smaller factors for the three-axle vehicle may be due to the fact that it was 

significantly heavier than the two-axle vehicle. As the mass of a vehicle increases, its 

dynamic amplification factor decreases; this has been observed by many authors such 

as Kirkegaard et al. (1999), Huang et al. (1992) and DIVINE (1997). It is also clear 

that the amplification factor for the vehicles travelling in Lane 2 are higher than the 

amplification factors measured for Lane 1. The average amplification factors were 

1.11 and 1.21 when the vehicles were in Lane 1 and Lane 2 respectively. This is due 

to the position of the strain transducer, which is situated almost directly underneath 

Lane 1. Zhu & Law (2002) concluded that, for a beam and slab bridge, the 

amplification factor for the beams directly underneath the vehicle is lower than for the 

beams further away from the vehicle. Huang et al. (1992) and Kirkegaard et al. (1999) 

also concluded that the amplification factor was lower for the lanes in which the 

vehicle was travelling than for the lanes in which the vehicle was not travelling. 

 

It is clear from Figure 8 that the magnitude of the recorded dynamic amplification 

factors can vary considerably, even for the same vehicle velocity.. For example, for 
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the two-axle vehicle travelling in Lane 1 at approximately 30 km/hr, amplification 

factors of 1.09 and 1.25 were recorded. This may for a number of reasons, such as a 

change in the transverse position of the vehicle, a difference in road surface profile 

(due to a small change in the transverse position) or the vehicle vibrating differently 

as it enters the bridge. 

 

The case of the two vehicles crossing the bridge simultaneously in opposing 

directions was also examined. Figure 9 shows the dynamic amplification factor for the 

two-vehicle event. The amplification factor is plotted against the velocity of the two-

axle vehicle. In this figure, ‘3AL1 & 2AL2’ and  ‘2AL1 & 3AL2’ mean three-axle 

vehicle in Lane 1 with two-axle vehicle in Lane 2, and two-axle vehicle in Lane 1 

with three-axle in Lane 2. As in the case of the single vehicle crossing, there were an 

insufficient number of crossing events to determine accurately the relationship 

between the dynamic amplification factor and the velocity of the two vehicles. 

Likewise there was no clear pattern in the relationship between either vehicle's 

meeting position on the bridge. However, it is clear from the figure that the dynamic 

amplification factors for two vehicles on the bridge are considerably less than for a 

single vehicle. This has been observed by many other authors such as Zhu & Law 

(2002) and Kirkegaard et al. (1999). 

 

 

4 Finite Element Analysis 

The finite element (FE) program MSC/NASTRAN is used to construct the three-

dimensional bridge and vehicle models used in the Slovenian experiment. These 
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models are validated using the experimental results and used to examine the effect of 

vehicle velocity on dynamic amplification. The bridge slab and footpaths are modeled 

as a series of plate elements, while the longitudinal beams and transverse diaphragms 

are modeled as offset beam elements - Figure 10. 

 

The combined depth of the bridge slab and the asphalt pavement was measured on 

site. However, the individual depths are unknown. Various depths of asphalt and 

concrete were tested and the resultant model's natural frequencies compared to the 

measured bridge frequencies. An accurate bridge model could be achieved using a 

slab depth of 0.25 m and ignoring the mass of the asphalt surfacing (Brady 2004). The 

bridge is of concrete construction, but no information was available on its material 

properties. Following a frequency analysis, a modulus of elasticity of 4.8×1010 N/m2 

and Poissons Ratio of 0.15 was selected. This resulted in a first natural frequency of 

3.54 Hz, considered a reasonable approximation of the experimental value of 3.58 Hz. 

The higher FE model frequencies of 4.66 Hz, 13.38 Hz and 13.92 Hz also showed 

good agreement with the measured values of 4.60 Hz, 12 Hz and 13.02 Hz. The level 

of damping in the bridge model was estimated at 3%.  

 

The road surface is modeled as a random process described by the power spectral 

density (PSD) function given by Yang & Lin (1995) and implemented by González  

(2001). The road surface profile for the bridge is chosen as ‘Good’ with a roughness 

coefficient of 16×10-6 m3/cycle (Wong, 1993). A 10 cm bump is incorporated to 

represent the expansion joint at the entrance to the bridge.  
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Vehicle models of both the two- and three-axle vehicles were constructed. The body 

of the vehicles are modeled as rigid frames and the suspension as spring and dashpot 

systems. Each vehicle’s axles are modeled as rigid bars and each tire as a spring and 

dashpot system. A schematic of the two-axle vehicle model is shown in Figure 11. 

The three-axle vehicle is almost identical except that it has an additional axle. Mass 

elements are included in the model, just above each of the suspensions. The 

information regarding axle masses, vehicle inertial properties and suspension and tire 

parameters was obtained from experimental studies carried out in Munich 

(Baumgärtner 1998, Lutzenberger & Baumgärtner 1999) and on a Finnish 

instrumented truck (Huhtala 1999). Manufacturers information (Kirkegaard et al, 

1999) was also considered. Further details of the vehicle parameters can be found in 

Brady (2004). The vehicle properties were adjusted so that the frequency ranges of 

both agreed with those found by experiment. The necessary adjustments were found 

to be minimal.  

 

The interaction between the bridge and the vehicle is implemented using a Lagrange 

technique. Cifuentes (1989) first developed this method for the problem of a single 

circular moving mass crossing a one-dimensional beam. González (2001) extended 

the theory to allow for multiple wheel loads in three-dimensions. The Lagrange 

multiplier formulation defines a set of auxiliary functions. These are used to generate 

a compatibility condition that ensures that the vehicle wheels remain in contact with 

the bridge deck. Using this formulation, the interaction force between the wheel mass 

and the bridge can be quantified. In turn, both the force and moment acting at a 

particular bridge node can be determined using these auxiliary functions.  
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4.1 Validation of FE model 

The completed models were compared to the results from the experiment, namely 

from the data recorded from the strain transducer placed at the mid-span of the beam 

underneath Lane 1. The transducer calibration factor was determined by scaling 

typical time histories to the FE model results. Figure 12 shows the comparison 

between the experimentally measured stress and the model stress for the two-axle and 

three-axle vehicles crossing the bridge and meeting at approximately the mid-span. As 

can be seen from the figure there is a reasonable match. The level of vibration is 

similar in each case and the period of oscillation of the model stress is the same as the 

measured value. Similar comparisons were carried out for faster velocities; the 

matches between the model and experimental stresses were again found to be 

consistently reasonable (Brady 2004).  

  

 

4.2 Computer model calculations of dynamic amplification factor  

A more comprehensive analysis of the effect of vehicle velocity on dynamic 

amplification for the experimental bridge can be undertaken using the finite element 

model. The dynamic amplification factor for a single vehicle crossing the bridge is 

determined by carrying out a number of simulations at a range of velocities. Authors 

such as Liu et al. (2002) conclude that a vehicle’s approach length is an important 

consideration when examining dynamic amplification. A number of approach lengths 

were considered and a length of 100 m was found adequate for each vehicle to reach a 

steady state of vibration. Figure 13 shows the dynamic amplification factors for both 
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vehicles individually crossing the bridge in Lane 1, and crossing in the opposite 

direction in Lane 2. 

 

It is clear from the figure that the dynamic amplification oscillates between high and 

low values as the velocity of the crossing increases. The two-axle vehicle traveling in 

Lane 2 generates a higher amplification factor (1.4 at 50 km/hr) than that vehicle in 

Lane 1 (1.25 at 50 km/hr). The maximum amplification factor for the three-axle 

vehicle in Lane 1 is 1.16 at 80 km/hr and is 1.22 at 80 km/hr when the vehicle is in 

Lane 2. Thus, the maximum amplification factors for each vehicle occur at different 

velocities. The dynamic amplification factor is generally higher for the two-axle 

vehicle than for the three-axle vehicle. In addition, the dynamic amplification factor is 

generally lower for the vehicles traveling in Lane 1 than in Lane 2.  

 

The effect of a different road surface profile is examined in Figure 14 (a). The figure 

shows the resultant dynamic amplification factors for two different profiles, A and B. 

Both profiles have a roughness level of 'Good'. It is clear from the figure that the 

profile difference greatly affects the magnitude of the dynamic amplification factor. 

However, the maximum amplification factors occur at approximately the same 

velocities. In addition, the average amplification factor is the same for both 

pavements. Figure 14 (b) shows a comparison of stress between the two-axle vehicle 

crossing the bridge in Lane 1 at 50 km/hr where a large discrepancy exists between 

amplification factors. The general shape of the responses is similar, the discrepancy 

occurring due to a difference between the relative magnitudes of the individual peaks.  
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Figure 15 shows a comparison of the dynamic amplification factor for the two-axle 

vehicle model traveling in Lane 1 with the point load model described in section 2. 

From initial inspection the two curves appear to match very poorly, as would be 

expected. However, the underlying reasons for the corresponding peaks are similar. 

Figure 16 shows the stress responses for the critical velocities in the finite element 

model. For the velocities of 30 km/hr, 50 km/hr, 70 km/hr and 100 km/hr, the 

responses have 13, 9, 5, and 3 peaks respectively. These critical velocities can be 

converted to Frequency Ratios and compared to the peaks for the single point load. 

Table 2 shows the comparison of maximum dynamic amplification factors.  

 

A number of conclusions can be drawn from the table and Figure 15. There is an 

approximate match in the velocities at which the maximum amplification factors 

occur despite the enormous difference in the models. However, the complex model is 

clearly missing some of these maxima. This may be a natural phenomenon or may be 

due to the large velocity increment chosen in the finite element analyses. What is 

important to note is that the manner in which these maximum amplification factors 

occur is the same, i.e., the number of peaks in each case is the same for the simple and 

complex models.  

 

The rear axle of the NASTRAN two-axle vehicle was considerably larger than the 

front axle. In effect, the vehicle acted quite like a single sprung load. If the axle 

weights of the vehicle were more balanced, it would be expected that the similarity 

between the simple and complex models would be less. Finally it is important to 

consider the mass of the FE vehicle used in the above analysis. The vehicle mass to 
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bridge mass ratio for the two-axle vehicle is 3 %. Ichikawa et al. (2000) suggest that 

when the mass ratio is less than 10 %, the vehicle mass can be ignored. Therefore, for 

the two-axle vehicle considered, it is reasonable to assume that the mass will have 

little effect on the resultant dynamic amplification factors. It is possible that if the 

mass of the vehicle were larger, the simple model may not be able to predict the 

critical velocities as accurately.  

 

 

5 Conclusions 

For the case of single point load crossing a simply supported beam at a constant 

velocity, it was found that maximum dynamic amplifications occur at a number of 

Critical Frequency Ratios. For a given bridge, these Frequency Ratios imply a number 

of critical load velocities. The level of beam damping does not significantly affect the 

critical ratios. However, damping does affect the magnitude of the individual 

amplification factors.  

 

The amplifications observed in the Slovenian Bridge confirmed many phenomena 

observed in the literature. It was found that in general, the amplification factor for two 

vehicles simultaneously crossing the bridge in opposing directions was considerably 

less than for a single vehicle.  

 

An FE model was calibrated using experimental strain data recorded in the 

experiment. This validated model was then used to investigate the conclusions arrived 

at using the simple point load model. For the case of a single vehicle crossing the 
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bridge, the single point load model was found to reasonably predict the vehicle 

velocities at which maximum dynamic amplifications occur. Furthermore, the single 

point load model reasonably predicted the manner in which they occurred, i.e., the 

number of peaks in the stress record. However, the simple model was unable to 

accurately predict the magnitude of the amplification factors.  
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Appendix. Notation 

 E         - Young’s modulus of the beam, 

 J  - moment of inertia of the beam cross section (assumed constant), 

P  - concentrated force of constant magnitude, 

c - constant velocity of the point load, 

j - mode number, 

l - beam or bridge span, 

 t  - time coordinate with the origin at the instant the force arrives on  the 

beam, 

x   - horizontal distance coordinate with the origin at the left-hand end of 

the   beam, 

µ  - mass per meter of the beam (assumed constant), 

bω  - circular frequency of damping of the beam, 

( )tx,υ  - beam vertical deflection at point x and time t , measured from the  

equilibrium position when the beam is loaded with its self weight only, 

( )xδ  - Dirac function (impulse, also known as delta function). 
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Figure 1 – Schematic of beam and load model 
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Figure 2 - Contour plot of amplification factor versus beam first circular frequency 

and load circular frequency (3 % damping) 
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Figure 3 – Local maximum dynamic amplification factors with maximum value 

shown in each case (3% damping) 
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Figure 4 - Dynamic amplification factor versus load circular frequency for 25m bridge 

with 3% damping 
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Figure 5 – Mid-span bending moment responses of 25m bridge with 3% damping   

(FR = Frequency Ratio) 
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(a) – Plan,         indicates center line of longitudinal beams and          indicates 

centerline of diaphragms  

(b) – Section A-A  
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Figure 6 –Slovenian bridge details (all dimensions are in meters) 
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(a) – Two-axle vehicle  

 

(b) – Three-axle vehicle 

Figure 7 – Test vehicles  
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(a) - Two-axle vehicle 
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(b) - Three-axle vehicle 

Figure 8 – Dynamic amplification factors for a transducer in Lane 1 
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Figure 9 - Dynamic amplification factor for two vehicles  

crossing bridge simultaneously 
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Figure 10 – Completed FE bridge model 
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Figure 11 – Generic vehicle model (González , 2001) 
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(a) - Two-axle vehicle traveling in Lane 1 at 

15.16 km/hr 
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(b) - Three-axle vehicle traveling in Lane 1 at 

17.93 km/hr 
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(c) – Two vehicle event  

Figure 12 – Comparison of experimental and simulated vehicle crossing events 
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(a) - Two-axle vehicle  
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(b) - Three-axle vehicle  

Figure 13 – Dynamic amplification factor for vehicles crossing bridge 
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(a) - Effect of two different 'Good' pavement 

profiles 
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(b) - Effect of pavement profiles on 

dynamic response for two-axle vehicle in 

Lane 1 

Figure 14 – Effect of pavement difference on dynamic amplification factor 
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Figure 15 – Comparison of dynamic amplification factors for 32 m bridge for two-

axle vehicle and point load 
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Figure 16 – Stress versus time responses for the critical vehicle velocities for two-axle 

vehicle model in Lane 1 
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Table 1 – The average Critical Frequency Ratios that produce local-maximum 

dynamic amplification factors for 3% damping 

Frequency Ratio Dynamic 

Amplification 

Factor 

0.383 1.392 

0.148 1.084 

0.092 1.031 

0.067 1.010 
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Table 2 – Comparison of maximum dynamic amplification factors (DAF) 

Point load Two-axle vehicle model 

Frequency 

Ratio 

Velocity 

(km/hr) 

No. 

peaks 

DAF Frequency 

Ratio 

Velocity 

(km/hr) 

No. 

peaks 

DAF 

0.3827 / 1 1.39 / / / / 

0.1477 120.61 3 1.08 0.1224 100 3 1.06 

0.0924 75.49 5 1.03 0.0857 70 5 1.07 

0.0675 55.09 7 1.01 0.0612 50 7 1.25 

0.0530 43.27 9 1.00 / / / / 

0.0431 35.20 11 0.99 / / / / 

0.0368 30.07 13 0.99 0.0367 30 13 1.22 

0.0323 26.40 15 0.98 / / / / 

 

 

 

 


