Universal Taylor series for non-simply connected domains

Séries universelles de Taylor pour les domaines non-simplement connexes

Stephen J. Gardiner and N. Tsirivas

Abstract

It is known that, for any simply connected proper subdomain Ω of the complex plane and any point ζ in Ω , there are holomorphic functions on Ω that have "universal" Taylor series expansions about ζ ; that is, partial sums of the Taylor series approximate arbitrary polynomials on arbitrary compacta in $\mathbb{C}\backslash\Omega$ that have connected complement. This note shows that this phenomenon can break down for non-simply connected domains Ω , even when $\mathbb{C}\backslash\Omega$ is compact. This answers a question of Melas and disproves a conjecture of Müller, Vlachou and Yavrian.

Résumé

Il est connu que, pour un sous-domaine propre simplement connexe Ω du plan complexe et un point quelconque ζ de Ω , il y a des fonctions holomorphes sur Ω qui possèdent des séries de Taylor «universelles» autour de ζ ; c'est-à-dire tout polynôme peut être approximé, sur tout compact de $\mathbb{C}\backslash\Omega$ ayant un complémentaire connexe, par les sommes partielles de la série de Taylor. Cette note montre que ce résultat n'est plus vrai en général pour les domaines non-simplement connexes Ω , même lorsque $\mathbb{C}\backslash\Omega$ est compact. Cela répond à une question de Melas et réfute une conjecture de Müller, Vlachou et Yavrian.

1 Introduction

Let Ω be a proper subdomain of the complex plane \mathbb{C} and let $\zeta \in \Omega$. A function f on Ω is said to belong to the collection $U(\Omega, \zeta)$, of holomorphic

⁰2000 Mathematics Subject Classification 30B30, 30E10.

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and is also part of the programme of the ESF Network "Harmonic and Complex Analysis and Applications" (HCAA).

functions on Ω with universal Taylor series expansions about ζ , if the partial sums

$$S_N(f,\zeta)(z) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta)}{n!} (z-\zeta)^n$$

of the Taylor series have the following property:

for every compact set $K \subset \mathbb{C} \setminus \Omega$ with connected complement and every function g which is continuous on K and holomorphic on K° , there is a subsequence $(S_{N_k}(f,\zeta))$ that converges to g uniformly on K.

Nestoridis [17], [18] has shown that $U(\Omega, \zeta) \neq \emptyset$ for any simply connected domain Ω and any $\zeta \in \Omega$. (The corresponding result, where K is required to be disjoint from $\overline{\Omega}$, had previously been established by Luh [12] and Chui and Parnes [4].) In fact, Nestoridis showed that possession of such universal Taylor series expansions is a generic property of holomorphic functions on simply connected domains Ω , in the sense that $U(\Omega, \zeta)$ is a dense G_{δ} subset of the space of all holomorphic functions on Ω endowed with the topology of local uniform convergence (see also Melas and Nestoridis [14] and the survey of Kahane [11]).

The situation when Ω is non-simply connected is much less well understood, despite much recent research: see, for example, [2], [3], [5], [6], [7], [9], [13], [15], [19], [22], [23], [24], [25]. Melas [13] (see also Costakis [5]) has shown that $U(\Omega, \zeta) \neq \emptyset$ for any $\zeta \in \Omega$ whenever $\mathbb{C} \setminus \Omega$ is compact and connected, and has asked if $U(\Omega, \zeta)$ can be empty when $\mathbb{C} \setminus \Omega$ is compact but disconnected. On the other hand, Müller, Vlachou and Yavrian [15] have shown, for non-simply connected domains Ω , that thinness of the set $\mathbb{C} \setminus \Omega$ at infinity is necessary for $U(\Omega, \zeta)$ to be non-empty, and have conjectured that this condition is also sufficient. There is clearly a large gap between the results of [13] and [15]. Also there has been no known example of a domain Ω and points $\zeta_1, \zeta_2 \in \Omega$ such that $U(\Omega, \zeta_1) \neq \emptyset$ and $U(\Omega, \zeta_2) = \emptyset$.

The purpose of this note is to establish the following result. We denote by D(a, r) the open disc of centre *a* and radius *r*, and write $\mathbb{D} = D(0, 1)$. By a *non-degenerate continuum* we mean a connected compact set containing more than one element.

Theorem 1 Let Ω be a domain of the form $\mathbb{C}\setminus(L \cup \{1\})$, where L is a non-degenerate continuum in $\mathbb{C}\setminus\overline{\mathbb{D}}$. Then $U(\Omega, 0) = \emptyset$.

The conjecture of Müller, Vlachou and Yavrian is thus disproved. Also, if we take L to be $\overline{D}(-5/3, 1/3)$, then $U(\Omega, 0) = \emptyset$ by Theorem 1 and yet a result of the second author [22] tells us that $U(\Omega, -1/2) \neq \emptyset$ (see also Costakis and Vlachou [7]). Thus we now have an example of a domain where the existence of functions with universal Taylor series depends on the chosen centre for expansion. The result of Melas, that $U(\Omega, 0) \neq \emptyset$ if $\mathbb{C} \setminus \Omega$ is compact and connected, is now seen to be sharp in the sense that, by Theorem 1, it can fail with the removal of one additional point from the domain. Theorem 1 fails if L is allowed to be a singleton [13].

2 Proof

Let Ω be as in the statement of Theorem 1, and suppose, for the sake of contradiction, that there exists a function f in $U(\Omega, 0)$. We can write f = g + h, where g is the singular part of the Laurent expansion of f associated with the singularity at 1, and h is holomorphic on $\mathbb{C}\backslash L$. We denote the Taylor coefficients of g and h about 0 by (a_n) and (b_n) , respectively. Since $(S_N(f,0)(1))$ is dense in \mathbb{C} and $(S_N(h,0)(1))$ converges, we see that g is non-zero.

Let $\rho = \inf\{|z| : z \in L\}$ and $0 < \delta < \varepsilon < \rho - 1$. The Taylor series for g and h about 0 converge absolutely in \mathbb{D} and $D(0, \rho)$, respectively, so we can define the finite quantities

$$\alpha_{\delta} = \sum_{n=0}^{\infty} \frac{|a_n|}{(1+\delta)^n}$$
 and $\beta_{\delta} = \sum_{n=0}^{\infty} |b_n| \left(\frac{\rho}{1+\delta}\right)^n$.

Since $f \in U(\Omega, 0)$, we can choose a strictly increasing sequence (N_k) of natural numbers such that

$$S_{N_k}(g,0)(z) + S_{N_k}(h,0)(z) \to 0 \quad \text{as } k \to \infty, \text{ uniformly on } L.$$
 (1)

On $\overline{D}(0, \rho(1+\varepsilon))$ we have

$$|S_{N_k}(h,0)(z)| \le \sum_{n=0}^{N_k} |b_n| \, \rho^n (1+\varepsilon)^n \le \{(1+\varepsilon)(1+\delta)\}^{N_k} \, \beta_{\delta}$$

so by (1) we can choose k_0 such that

$$|S_{N_k}(g,0)(z)| \le \{(1+\varepsilon)(1+\delta)\}^{N_k} (\beta_{\delta}+1) \quad (z \in L \cap \overline{D}(0,\rho(1+\varepsilon)); k \ge k_0).$$

We also have

$$|S_{N_k}(g,0)(z)| \le \sum_{n=0}^{N_k} |a_n| (1+\varepsilon)^n \le \{(1+\varepsilon)(1+\delta)\}^{N_k} \alpha_\delta \quad (z \in \overline{D}(0,1+\varepsilon)),$$

 \mathbf{SO}

$$S_{N_k}(g,0)(z)| \le \{(1+\varepsilon)(1+\delta)\}^{N_k} \gamma_{\delta} \quad (z \in A_{\varepsilon}; k \ge k_0),$$
(2)

where $\gamma_{\delta} = \max\{\alpha_{\delta}, \beta_{\delta} + 1\}$ and

$$A_{\varepsilon} = \overline{D}(0, 1 + \varepsilon) \cup \left[L \cap \overline{D}(0, \rho(1 + \varepsilon))\right].$$

Let G_{ε} denote the Green function for the domain $D_{\varepsilon} = (\mathbb{C} \cup \{\infty\}) \setminus A_{\varepsilon}$ with pole at infinity. Then

$$G_{\varepsilon}(z) - \log |z| \to -\log \mathcal{C}(A_{\varepsilon}) \quad (|z| \to \infty),$$

where $\mathcal{C}(A)$ denotes the logarithmic capacity of a set A (see Section 5.8 of [1], or Section 5.2 of [21]). Thus we can choose $r_{\delta,\varepsilon} > \max\{|z| : z \in L\}$ such that

$$G_{\varepsilon}(z) \le \log |z| - \log \mathcal{C}(A_{\varepsilon}) + \delta \quad (|z| \ge r_{\delta,\varepsilon}).$$
 (3)

Bernstein's lemma (Theorem 5.5.7 in [21]) tells us that any polynomial q of degree $n \ge 1$ satisfies

$$\left(\frac{|q(z)|}{\max_{A_{\varepsilon}}|q|}\right)^{1/n} \le e^{G_{\varepsilon}(z)} \quad (z \in D_{\varepsilon} \setminus \{\infty\}).$$

Applying this inequality to the polynomial $S_{N_k}(g, 0)$, and using (2) and then (3), we obtain

$$\begin{aligned} |S_{N_k}(g,0)(z)| &\leq \{(1+\varepsilon)(1+\delta)\}^{N_k} \gamma_{\delta} e^{N_k G_{\varepsilon}(z)} \\ &\leq \left\{ \frac{(1+\varepsilon)(1+\delta)e^{\delta} |z|}{\mathcal{C}(A_{\varepsilon})} \right\}^{N_k} \gamma_{\delta} \quad (|z| \geq r_{\delta,\varepsilon}; k \geq k_0). \end{aligned}$$

We next adapt an argument from pp.498,499 of Gehlen [8]. Let $\nu \in (0, 1)$. Since

$$\begin{aligned} |a_n|^{1/n} &= \left| \frac{1}{2\pi i} \int_{\{|z|=r_{\delta,\varepsilon}\}} \frac{S_{N_k}(g,0)(z)}{z^{n+1}} dz \right|^{1/n} \\ &\leq \left\{ \frac{(1+\varepsilon)(1+\delta)e^{\delta}}{\mathcal{C}(A_{\varepsilon})} \right\}^{N_k/n} \gamma_{\delta}^{1/n} r_{\delta,\varepsilon}^{N_k/n-1} \quad (n \le N_k; k \ge k_0), \end{aligned}$$

we obtain

$$\limsup_{k \to \infty} \max_{\nu N_k \le n \le N_k} |a_n|^{1/n} \le \frac{\left\{ (1+\varepsilon)(1+\delta)e^{\delta} \right\}^{1/\nu} r_{\delta,\varepsilon}^{1/\nu-1}}{\mathcal{C}(A_{\varepsilon})} = \lambda, \quad \text{say.} \quad (4)$$

Since L is a non-degenerate continuum that intersects $\{|z| = \rho\}$, we have

$$\mathcal{C}(L \cap \overline{D}(0, \rho(1+\varepsilon))) > 0$$

and so

$$\mathcal{C}(A_{\varepsilon}) > \mathcal{C}(\overline{D}(0, 1 + \varepsilon)) = 1 + \varepsilon.$$

We can thus choose δ sufficiently small that $(1 + \varepsilon)(1 + \delta)e^{\delta} < C(A_{\varepsilon})$, and then choose ν sufficiently close to 1 to ensure that $\lambda < 1$.

Finally, we will apply an observation of Müller (see Remark 2 in [16]). Since the function g has its only singularity at 1 and vanishes at ∞ , Wigert's

theorem (Theorem 11.2.2 in Hille [10]) tells us that there is an entire function F of exponential type 0 such that $F(n) = a_n$ for all $n \ge 0$. However, Theorem V of Pólya [20] says that, for any $\mu > 0$, however small, such a function F has the property that the sequence $\{n \in \mathbb{N} : |F(n)| > e^{-\mu n}\}$ is of density 1. This contradicts (4) with $\lambda < 1$. Thus our original assumption, that there exists f in $U(\Omega, 0)$, must be false, and the proof of the theorem is complete.

Remarks. 1) The assumption that L is a continuum can be relaxed. It is enough to suppose that L is a compact subset of $\mathbb{C}\setminus\overline{\mathbb{D}}$ such that $\mathcal{C}(D(0,\rho^2)\cap L) > 0$ where $\rho = \inf\{|z| : z \in L\}$.

2) The proof actually shows that there is no holomorphic function f on Ω such that $(S_N(f, 0))$ is divergent at z = 1 and has a subsequence that is uniformly bounded on L.

References

- D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.
- [2] A. G. Bacharoglou, "Universal Taylor series on doubly connected domains", Results Math. 53 (2009), 9–18.
- [3] F. Bayart, "Universal Taylor series on general doubly connected domains", Bull. London Math. Soc. 37 (2005), 878–884.
- [4] C. K. Chui and M. N. Parnes, "Approximation by overconvergence of power series", J. Math. Anal. Appl. 36 (1971), 693–696.
- [5] G. Costakis, "Some remarks on universal functions and Taylor series", Math. Proc. Camb. Philos. Soc. 128 (2000), 157–175.
- [6] G. Costakis, "Universal Taylor series on doubly connected domains in respect to every center", J. Approx. Theory 134 (2005), 1–10.
- [7] G. Costakis and V. Vlachou, "Universal Taylor series on non-simply connected domains", Analysis 26 (2006), 347–363.
- [8] W. Gehlen, "Overconvergent power series and conformal maps", J. Math. Anal. Appl. 198 (1996), 490–505.
- [9] W. Gehlen, W. Luh and J. Müller, "On the existence of O-universal functions", Complex Variables Theory Appl. 41 (2000), 81–90.
- [10] E. Hille, Analytic Function Theory. Vol. II. Ginn, Boston, 1962.
- [11] J.-P. Kahane, "Baire's category theorem and trigonometric series", J. Anal. Math. 80 (2000), 143–182.

- [12] W. Luh, "Universal approximation properties of overconvergent power series on open sets", Analysis 6 (1986), 191–207.
- [13] A. Melas, "Universal functions on nonsimply connected domains", Ann. Inst. Fourier (Grenoble) 51 (2001), 1539–1551.
- [14] A. Melas and V. Nestoridis, "Universality of Taylor series as a generic property of holomorphic functions", Adv. Math. 157 (2001), 138–176.
- [15] J. Müller, V. Vlachou and A. Yavrian, "Universal overconvergence and Ostrowski-gaps", Bull. London Math. Soc. 38 (2006), 597–606.
- [16] J. Müller, "Small domains of overconvergence of power series", J. Math. Anal. Appl. 172 (1993), 500–507.
- [17] V. Nestoridis, "Universal Taylor series", Ann. Inst. Fourier (Grenoble) 46 (1996), 1293–1306.
- [18] V. Nestoridis, "An extension of the notion of universal Taylor series", in Computational Methods and Function Theory 1997 (Nicosia), pp.421– 430, Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999.
- [19] V. Nestoridis and C. Papachristodoulos, "Universal Taylor series on arbitrary planar domains", C. R. Math. Acad. Sci. Paris 347 (2009), no. 7-8, 363–367.
- [20] G. Pólya, "Untersuchungen über Lücken und Singularitäten von Potenzreihen. II", Ann. of Math. (2) 34 (1933), 731–777.
- [21] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, 1995.
- [22] N. Tsirivas, "Universal Faber and Taylor series on an unbounded domain of infinite connectivity", Complex Var. Theory Appl., to appear.
- [23] N. Tsirivas and V. Vlachou, "Universal Faber series with Hadamard-Ostrowski gaps", Comput. Methods Funct. Theory, 10 (2010), 155-165.
- [24] V. Vlachou, "A universal Taylor series in the doubly connected domain C\{1}", Complex Var. Theory Appl. 47 (2002), 123–129.
- [25] V. Vlachou, "Universal Taylor series on a non-simply connected domain and Hadamard-Ostrowski gaps", in Complex and Harmonic Analysis, pp.221–229, DEStech Publ., Inc., Lancaster, PA, 2007.

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

stephen.gardiner@ucd.ie nikolaos.tsirivas@ucd.ie