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Abstract

It is known that, for any simply connected proper subdomain 
 of
the complex plane and any point � in 
, there are holomorphic func-
tions on 
 that have �universal�Taylor series expansions about �; that
is, partial sums of the Taylor series approximate arbitrary polynomi-
als on arbitrary compacta in Cn
 that have connected complement.
This note shows that this phenomenon can break down for non-simply
connected domains 
, even when Cn
 is compact. This answers a
question of Melas and disproves a conjecture of Müller, Vlachou and
Yavrian.

Résumé

Il est connu que, pour un sous-domaine propre simplement connexe

 du plan complexe et un point quelconque � de 
, il y a des fonctions
holomorphes sur 
 qui possèdent des séries de Taylor «universelles»
autour de �; c�est-à-dire tout polynôme peut être approximé, sur tout
compact de Cn
 ayant un complémentaire connexe, par les sommes
partielles de la série de Taylor. Cette note montre que ce résultat n�est
plus vrai en général pour les domaines non-simplement connexes 
,
même lorsque Cn
 est compact. Cela répond à une question de Melas
et réfute une conjecture de Müller, Vlachou et Yavrian.

1 Introduction

Let 
 be a proper subdomain of the complex plane C and let � 2 
. A
function f on 
 is said to belong to the collection U(
; �), of holomorphic
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functions on 
 with universal Taylor series expansions about �, if the partial
sums

SN (f; �)(z) =

NX
n=0

f (n)(�)

n!
(z � �)n

of the Taylor series have the following property:

for every compact set K � Cn
 with connected complement and every func-
tion g which is continuous on K and holomorphic on K�, there is a subse-
quence (SNk(f; �)) that converges to g uniformly on K.

Nestoridis [17], [18] has shown that U(
; �) 6= ; for any simply connected
domain 
 and any � 2 
. (The corresponding result, where K is required
to be disjoint from 
, had previously been established by Luh [12] and Chui
and Parnes [4].) In fact, Nestoridis showed that possession of such universal
Taylor series expansions is a generic property of holomorphic functions on
simply connected domains 
, in the sense that U(
; �) is a dense G� subset
of the space of all holomorphic functions on 
 endowed with the topology of
local uniform convergence (see also Melas and Nestoridis [14] and the survey
of Kahane [11]).

The situation when 
 is non-simply connected is much less well under-
stood, despite much recent research: see, for example, [2], [3], [5], [6], [7],
[9], [13], [15], [19], [22], [23], [24], [25]. Melas [13] (see also Costakis [5])
has shown that U(
; �) 6= ; for any � 2 
 whenever Cn
 is compact and
connected, and has asked if U(
; �) can be empty when Cn
 is compact but
disconnected. On the other hand, Müller, Vlachou and Yavrian [15] have
shown, for non-simply connected domains 
, that thinness of the set Cn

at in�nity is necessary for U(
; �) to be non-empty, and have conjectured
that this condition is also su¢ cient. There is clearly a large gap between the
results of [13] and [15]. Also there has been no known example of a domain

 and points �1; �2 2 
 such that U(
; �1) 6= ; and U(
; �2) = ;.

The purpose of this note is to establish the following result. We denote
by D(a; r) the open disc of centre a and radius r, and write D = D(0; 1). By
a non-degenerate continuum we mean a connected compact set containing
more than one element.

Theorem 1 Let 
 be a domain of the form Cn(L [ f1g), where L is a
non-degenerate continuum in CnD. Then U(
; 0) = ;.

The conjecture of Müller, Vlachou and Yavrian is thus disproved. Also,
if we take L to be D(�5=3; 1=3), then U(
; 0) = ; by Theorem 1 and yet
a result of the second author [22] tells us that U(
;�1=2) 6= ; (see also
Costakis and Vlachou [7]). Thus we now have an example of a domain
where the existence of functions with universal Taylor series depends on the
chosen centre for expansion. The result of Melas, that U(
; 0) 6= ; if Cn
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is compact and connected, is now seen to be sharp in the sense that, by
Theorem 1, it can fail with the removal of one additional point from the
domain. Theorem 1 fails if L is allowed to be a singleton [13].

2 Proof

Let 
 be as in the statement of Theorem 1, and suppose, for the sake of
contradiction, that there exists a function f in U(
; 0). We can write f =
g+ h, where g is the singular part of the Laurent expansion of f associated
with the singularity at 1, and h is holomorphic on CnL. We denote the
Taylor coe¢ cients of g and h about 0 by (an) and (bn), respectively. Since
(SN (f; 0)(1)) is dense in C and (SN (h; 0)(1)) converges, we see that g is
non-zero.

Let � = inffjzj : z 2 Lg and 0 < � < " < � � 1. The Taylor series for g
and h about 0 converge absolutely in D and D(0; �), respectively, so we can
de�ne the �nite quantities

�� =
1X
n=0

janj
(1 + �)n

and �� =
1X
n=0

jbnj
�

�

1 + �

�n
:

Since f 2 U(
; 0), we can choose a strictly increasing sequence (Nk) of
natural numbers such that

SNk(g; 0)(z) + SNk(h; 0)(z)! 0 as k !1, uniformly on L: (1)

On D(0; �(1 + ")) we have

jSNk(h; 0)(z)j �
NkX
n=0

jbnj �n(1 + ")n � f(1 + ")(1 + �)gNk ��;

so by (1) we can choose k0 such that

jSNk(g; 0)(z)j � f(1 + ")(1 + �)g
Nk (��+1) (z 2 L\D(0; �(1+")); k � k0):

We also have

jSNk(g; 0)(z)j �
NkX
n=0

janj (1+")n � f(1 + ")(1 + �)gNk �� (z 2 D(0; 1+"));

so
jSNk(g; 0)(z)j � f(1 + ")(1 + �)g

Nk � (z 2 A"; k � k0); (2)

where � = maxf��; �� + 1g and

A" = D(0; 1 + ") [
�
L \D(0; �(1 + "))

�
:
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Let G" denote the Green function for the domain D" = (C [ f1g)nA"
with pole at in�nity. Then

G"(z)� log jzj ! � log C(A") (jzj ! 1);

where C(A) denotes the logarithmic capacity of a set A (see Section 5.8 of
[1], or Section 5.2 of [21]). Thus we can choose r�;" > maxfjzj : z 2 Lg such
that

G"(z) � log jzj � log C(A") + � (jzj � r�;"): (3)

Bernstein�s lemma (Theorem 5.5.7 in [21]) tells us that any polynomial q of
degree n � 1 satis�es�

jq(z)j
maxA" jqj

�1=n
� eG"(z) (z 2 D"nf1g):

Applying this inequality to the polynomial SNk(g; 0), and using (2) and then
(3), we obtain

jSNk(g; 0)(z)j � f(1 + ")(1 + �)gNk �eNkG"(z)

�
�
(1 + ")(1 + �)e� jzj

C(A")

�Nk
� (jzj � r�;"; k � k0):

We next adapt an argument from pp.498,499 of Gehlen [8]. Let � 2 (0; 1).
Since

janj1=n =

����� 12�i
Z
fjzj=r�;"g

SNk(g; 0)(z)

zn+1
dz

�����
1=n

�
�
(1 + ")(1 + �)e�

C(A")

�Nk=n

1=n
� r

Nk=n�1
�;" (n � Nk; k � k0);

we obtain

lim sup
k!1

max
�Nk�n�Nk

janj1=n �
�
(1 + ")(1 + �)e�

	1=�
r
1=��1
�;"

C(A")
= �; say. (4)

Since L is a non-degenerate continuum that intersects fjzj = �g, we have

C(L \D(0; �(1 + "))) > 0

and so
C(A") > C(D(0; 1 + ")) = 1 + ":

We can thus choose � su¢ ciently small that (1 + ")(1 + �)e� < C(A"), and
then choose � su¢ ciently close to 1 to ensure that � < 1.

Finally, we will apply an observation of Müller (see Remark 2 in [16]).
Since the function g has its only singularity at 1 and vanishes at1, Wigert�s
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theorem (Theorem 11.2.2 in Hille [10]) tells us that there is an entire function
F of exponential type 0 such that F (n) = an for all n � 0. However,
Theorem V of Pólya [20] says that, for any � > 0, however small, such a
function F has the property that the sequence fn 2 N : jF (n)j > e��ng is of
density 1. This contradicts (4) with � < 1. Thus our original assumption,
that there exists f in U(
; 0), must be false, and the proof of the theorem
is complete. �

Remarks. 1) The assumption that L is a continuum can be relaxed. It is
enough to suppose that L is a compact subset of CnD such that C(D(0; �2)\
L) > 0 where � = inffjzj : z 2 Lg.
2) The proof actually shows that there is no holomorphic function f on 

such that (SN (f; 0)) is divergent at z = 1 and has a subsequence that is
uniformly bounded on L.
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