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Description of the Development of the LabVIEW Instantaneous

Emissions Estimation Software for use in the Urban Environment

Project Air Quality Work Package

Edward Caseya,b,c,∗, Donal Lennona,b William Smitha,c, David Timoney a,c

aUrban Environment Project Air Quality Research Group
bUCD Urban Institute Ireland

cUCD School of Electrical Electronic & Mechanical Engineering

1 Introduction

This Working Paper describes the development of
the current LabVIEW software programme used to
extract On-Board Diagnostic (OBD) signals from
vehicles. LabVIEW is a graphical programming
language based on G-coding [3] and provides a sim-
ple environment for data collection and display.
The current software version (Version 2.1) receives
inputs from the vehicle via the OBD connector and
displays the parsed and manipulated values of en-
gine load, engine speed, coolant temperature and
vehicle speed on a purpose built graphical user in-
terface. Table 1 describes the various versions of
the software package and explains which parame-
ters were used in each one, such that the current
working version was achieved.

The purpose of this document is to outline the pro-
cesses involved in achieving this system and to de-
scribe its use in service.

2 The structure of On-Board
Diagnostic Signals

On-board Diagnostics is a system whereby certain
pieces of information about the operation of a ve-
hicle, either past or current, can be extracted from
the vehicle’s Engine Control Unit (ECU). For the
system employed in this Paper, the physical con-
nection between the vehicle’s control unit and the
user interface, stored on a laptop, is a serial cable
connected to an ElmScan Scantool. The extracted
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data is then processed using a specially designed
piece of software.

All On-Board Diagnostic signals, either requests or
responses, are coded in hexadecimal format. This is
a compressed numerical system where decimal val-
ues are represented by a combination of figures and
characters. The minimum value in hexadecimal is
00 (decimal value of 0) and the maximum is FF
(decimal value of 255), resulting in 256 (28) pos-
sible numeric decimal values. These hexadecimal
values are then converted to decimal bytes for fur-
ther processing.

All request codes are described in the SAE J1979
Standard [7]. The service $01 is the most commonly
used, since this returns the current powertrain di-
agnostic data which relates to emissions outputs.
The general structure of a request is to use Ser-
vice $01 followed by the requested Parameter Iden-
tifier (PID). For example, requesting information
about engine speed takes the form $01 0C. The re-
sponse to such a request is preceded by the code $41
such that a full response concerning engine speed
is $41 0C xx1 xx2, where xx1 is the hexadecimal
value corresponding to response byte A and xx2 is
the hexadecimal value corresponding to byte B. Al-
though certain parameters, such as PID 00 and 01
can contain more than two bytes, all the parame-
ters processed in this programme contain just one
or two bytes, namely A and B.

For complete processing of the data, the hexadeci-
mal byte values must be converted to decimal val-
ues, since this is the data type most easily manipu-
lated in LabVIEW. While a large number of version
schemes are published, the LabVIEW environment

mailto:edward.casey@ucd.ie


Description of the Development ... Casey et al.

Table 1: Development of the LabVIEW software.

Ver. Parameters Notes
1.1 0C, 11, 05, 0D This version was never tested in a vehicle and was used

only as a means to test the parsing functions. A save data
function was also tested. The bilinear interpolation VI
was also fully implemented from this version, following
earlier sub-tests and review of previous versions. Note
that PID 11 was mistakenly used instead of PID 04.

1.2 0C, 11, 05, 0D This version saw initial development of the integration and
and differentiation of the vehicle speed parameter for
determining distance covered and acceleration respectively.

1.3 0C, 11, 05, 0D, 5E This version involved an initial parsing test for the fuel
usage parameter, PID 5E. Initial tests were successful
in terms of data parsing.

1.4 0C, 11, 05 , 0D, 5E Minor developments were made in the graphical user
interface layout to incorporate the display of the new
parameter, PID 5E.

1.5 0C, 11, 05 , 0D, 5E Data flow was modified to allow the user to specify the
fuel type and the save to file location prior to testing.
This system never worked particularly successfully.

1.6 0C, 11, 05 , 0D, 5E A minor addition to the case structure controlling which
emissions maps are being used, such that the user can see
which ones are in use.

1.7 0C, 11, 05 , 0D, 5E The engine oil temperature parameter, PID 5C, was
5C included in this version. Parsing was successful.

1.8 0C, 11, 05 , 0D, 5E This was the first major vehicle test and highlighted the
2F, 05, 5C problems with a number of parameters, PIDs 2F, 05,

5C, which displayed the No data warning as a
response to each request.

1.9 0C, 04, 05, 0D Following on from the previous test, a feedback loop and
shift register were included to ensure a continuous signal.
This was included on account of the fact that no data was
displayed when the parameter was not being parsed.

1.10 0C, 04, 05, 0D A save to file implementation for all parameters was
included in this version. The graphical user interface was
also modified to take the reduction of parameters into
account. These became the standard parameters for the
‘complete’ version.

1.11 0C, 04, 05, 0D An integration scheme was included to allow for the display
of instantaneous and aggregated emissions data. The
graphical user interface was updated accordingly.

1.11.2 0C, 04, 05, 0D This version used the Maximum Torque Curve implementation
to determine load. The MathScript node was incorporated in
a Sub-VI.

2.0.1 0C, 04, 05, 0D A generic implementation of the MathScript Sub-VI is used
in this version

2.1 0C, 04, 05, 0D The MathScript implementation for load calculation was
removed and the simplified Maximum Torque Value was used.
The graphical user interface was modified accordingly.
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Figure 1: The engine control unit is connected through a serial cable to the scantool and a USB cable takes data to
the laptop.

includes a conversion function, making it particu-
larly suited to OBD based programming.

3 Parameter Selection

Despite the fact that a huge variety of possible
parameters exists within the SAE J1979 standard
[7], not all of these parameters are actually imple-
mented in vehicles. This is particularly true of Eu-
ropean vehicles, where the implementation dates for
OBD compatibility are considerably later than for
those in the United States.

The current version of the programme has tried to
take advantage of newly introduced or implemented
parameters while still building on previous incarna-
tions of the system. Obviously, certain parameters
were retained due to their importance. The selected
and tested parameters are discussed in more detail
below.

One of the first decisions made was that, in the
absence of modern, type specific emissions maps,
a set of previously obtained Volvo maps would be
used [4, 6]. These maps are two dimensional arrays
which describe the quantity of a pollutant species
which is evolved in units of grams per second (g
s−1). The columns of each array describe the engine
speed (rpm) while the rows describe the engine load
(Nm). Clearly, to make use of these tables, both
engine speed and engine load must be included in
the programme. The Engine Speed parameter (PID
0C) is easily extractable and parsing is relatively
straightforward. This process is described in more
detail in Section 4.1 on page 4.

Vehicle load, however, proved to be significantly
more difficult:

Extraction of load type data can be achieved us-
ing a variety of PIDs within the OBD environment.
The simplest form would be to extract the En-
gine Reference Torque (PID 63) at the beginning of
the experimentation. This value describes the one-
hundred percent reference value for all indicated en-
gine torque parameters and is defined only once [7].

Using this value for engine reference torque, it
would have been possible to use parameter 62, Ac-
tual engine Percentage Torque, to scale the Engine
Reference Torque appropriately. The output from
PID 62 is a single byte and parsing results in a per-
centage value. Simple multiplication would result in
a value for the current instantaneous torque value.

Unfortunately, implementation of this torque deter-
mination protocol did not yield results in the test
vehicle. Although the test vehicle is a modern vehi-
cle (2006, VW, Polo, 1.2 petrol), the required PIDs
are not implemented on the OBD ECU.

Two alternative parameters exist for load calcula-
tion but both return just percentage values of the
calculated (PID 04) or absolute (PID 43) load.

The Calculated Load Value (PID 04) is the param-
eter of choice, since the calculation scheme defined
is valid for both positive ignitions (petrol) and com-
pression ignition (diesel) engines. Two percentage
load calculation schemes are presented. A possi-
bly useful characteristic of this parameter is that a
value of 100% load is achieved at WOT conditions
for any engine type, at any altitude, for any given
temperature and at any value of engine speed [7].

The calculation schemes are described by the fol-
lowing equations from the SAE 1979 standard [7]:

%load =
Ac

Ap
× Pbaro

29.92
×

√
298

Tamb + 273
(1)

where Ac is the current airflow and Ap is the peak
airflow measured at Wide Open Throttle at Stan-
dard Temperature and Pressure as a function of en-
gine speed; or

%load =
Tc

Tp
× Pbaro

29.92
×

√
298

Tamb + 273
(2)

where Tc is the current engine torque and Tp is the
peak engine torque at Standard Temperature and
Pressure as a function of engine speed. For both
calculation schemes, Pbaro is the barometric pres-
sure and Tamb is the ambient temperature in ◦C.
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With respect to the Absolute Load Parameter (PID
43), only spark ignition engines are required to sup-
port this PID. This means that PID 04 or an equiv-
alent would have to be implemented for diesel ve-
hicles anyway. To this end, it was considered that
the best approach would be to use PID 04 and come
up with a method of determining the absolute load
value, in newton metres (Nm), and using the per-
centage load as a scaling factor. The methods ex-
amined to allow for this are discussed in more detail
in Section 4.2.

Traditional methods of developing driving cycles
have relied almost exclusively on determining the
drive pattern from vehicle speed-time traces. The
benefit of this particular piece of software is that
both the speed-time trace and the traces of engine
load and engine speed can be determined. Thus,
it is possible to relate vehicle speed back to engine
load and engine speed without the need for cum-
bersome gearbox algorithms.

Vehicle speed can be determined from OBD PID 0D.
Inclusion of this parameter is not essential, since
the use of a global positioning system during ex-
perimentation will also show vehicle speed. How-
ever, the processing of vehicle speed, as described
in Section 4.3, allows for determination of the total
distance travelled and the acceleration and deceler-
ation of the vehicle. The acceleration data is useful
in terms of determining the aggressiveness of the
driving while the total distance travelled could be
used as an input to the cold start module. Full
details of the parsing and processing of the vehicle
speed data is described later.

A number of temperature measurements can be ob-
tained from OBD PIDs. The most useful of these is
probably the engine coolant temperature (PID 05).
The use of this parameter allows for the inclusion of
the cold start excess emissions module. Although
this module is not fully implemented in the current
version of the software, it will be included in future
versions. The parsing of the temperature parame-
ter is included in the software and is described in
Section 4.4.

4 Data Parsing, Scaling & Ma-
nipulation

Despite the vast array of possible parameters that
can be extracted from the OBD system there are
only a handful of parsing and scaling functions.
This greatly reduces the amount of processing re-
quired and the quantity of code needed to achieve
a result.

As described earlier, all requests for real-time data
are preceded by the code $01 and the parameter
identifier. A relatively small number of identifiers
are used in this programme.

The specific parsing, scaling and manipulation of
each of the sought parameters is dealt with below.

4.1 Engine Speed (PID 0C)

As described earlier, engine speed is one of the two
fundamental parameters required for the determi-
nation of real-time pollutant emissions estimates.
In order to describe the parsing and scaling func-
tion employed in the LabVIEW programme, con-
sider the following.

Using the request $01 0C, a reply of $41 0C 1F 39
is returned. The first element of the data parsing is
to examine the response for a common string token.
For each reply about the engine speed, this com-
mon string token will be $41 0C. Using the Match
Pattern function within LabVIEW, it is possible to
strip off the common string token and retain just the
data bytes 1F and 39, denoted xx1 and xx2 respec-
tively. In order to logically separate the data bytes,
it is necessary to examine the reduced or stripped
string, namely 1F 39 and split it into separate to-
kens. By using two Scan String for Tokens func-
tions in parallel, one with a token offset of three
characters, the two bytes are successfully separated.

Figure 2: Data parsing and scaling function for engine
speed.

The next step is to convert the hexadecimal values,
1F and 39, to decimal value using the Hexadeci-
mal String to Number function. This results in two
double-type values which can be manipulated us-
ing standard mathematical structures. The scaling
function used to convert the two decimal values to
a ‘real’ revolutions per minute value is given in the

4 | Air Quality Urban Environment Project | UII 07/01
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Table 2: Description of the final parameters used. Taken from SAE JA1979 [7].

Parameter Name PID Data Bytes Maximum Minimum Units
Engine Speed OC A, B 0 65,536 rpm
Vehicle Speed OD A 0 255 km hr−1

Engine Load O4 A 0 100 %
Coolant Temperature O5 A -40 +215 ◦C

SAE J1979 Standard [7]. Mathematically, it is given
by

RPM =
(A× 256) + B

4
(3)

where A and B are the decimal values of the two
bytes. Thus for hexadecimal values of 1F and 39,
the corresponding decimal values are 31 and 57.
Applying Equation 3 yields an engine speed value
of 1998 rpm.

A further manipulative step, with regard to engine
speed and pollutant emissions calculations, will be
discussed later in this document.

4.2 Engine Load (PID 04)

Although multiple engine load determination
schemes exist within the scope of OBD-II param-
eters, PID 04 was selected as the load determinant
since it functions for both petrol and diesel engines
and works for both naturally aspirated and boosted
engines.

The principal difficulty with this particular calcu-
lation for load is the fact that the result is a per-
centage of the peak torque available during normal,
fault-free driving [7] as opposed to an absolute value
for load in newton metres (Nm).

It is best to consider a further example to clarify the
parsing scheme. In response to the request $01 04,
a reply with a single byte is returned, such as $41
04 58. As with the engine speed, the hexadecimal
string is stripped to just the single byte. In this
particular case, the byte need not be further parsed
but simply converted to decimal, with hexadecimal
value 58 corresponding to a decimal value of 88.

Figure 3: Data parsing an scaling of engine load.

This decimal value is then scaled according to

%load =
A× 100

255
(4)

Continuing the example, this results in a percentage
load value of 34.5%. This however, is not particu-
larly useful on its own. A method for determining
the absolute load value, in Newton metres is re-
quired. A number of possiblilities were examined
during the development and validation stages.

Figure 4: Torque curve for the Volvo 940. This digitised
plot was used to determine the maximum load
value for parsing.

Consider the graph shown in Figure 4. This is the
torque curve for the Volvo 940. Maximum torque is
defined as a function of engine speed. The equation
of the line was entered into a LabVIEW MathScript
Node. Using the value for engine speed, determined
according to Equation 4 above, the maximum avail-
able torque for any given engine speed can be de-
termined. It was, however, found that the speed of
calculation was quite long, of the order of tenths of
seconds to seconds. Also, such a scheme requires
the user to digitise a graph, determine the equation
of the spline and define the coefficients to be used
by the programme. This implementation (Version
2.0.1) describes an equation of the forth order, given
by

Tmax = ax4 + bx3 + cx2 + dx + e (5)

It is not expected that any equation would be of
greater order. Thus, only the required co-efficient
would be entered in the frontend, as illustrated in
Figure 5.

UII 07/01 | Urban Environment Project Air Quality | 5
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Figure 5: An implementation of the maximum torque
curve method as employed in Version 2.0.1.
The cumbersome nature makes it unwieldy as
does the slow calculation using the MathScript
Node.

This is a cumbersome process and is open to sig-
nificant levels of human error. Also, it does require
access to the maximum torque curves of each of the
vehicles under test.

On closer inspection, the difference between the
maximum and minimum peak torque is quite small
and it should be possible to use the peak torque at
rated rpm for a given engine as an approximation
of the torque value. This negates the need for com-
plex manipulation of the peak torque curve. The
user simply enters a single value of peak torque and
this value is multiplied by the percentage of peak
torque extracted form the OBD-II system. Further
details are given in Section 9.1

The resulting value of torque will, therefore, lie be-
tween 0 and the maximum rated torque for the en-
gine under test.

As with engine speed, a further manipulation of the
engine load value is required and will be discussed
later.

4.3 Vehicle Speed (PID 0D)

Although vehicle speed will be determined indepen-
dently by the global positioning system available
through the Built Environment Laboratory of the
Urban Institute, the vehicle speed parameter is also
extracted by the LabVIEW programme. The same
parsing scheme is employed in this case as for engine

load, since a request, of the form $01 0D, returns a
response containing just one byte, such as $41 0D
3E.

Figure 6: Data parsing and scaling function for vehicle
speed. Notice the direct one-to-one mapping of
the extracted byte value and the vehicle speed.

Thus, it is not necessary to scan the string for a to-
ken. This particular parameter also uses a direct re-
lationship between the converted hexadecimal value
and the actual speed of the vehicle. Thus, a hex-
adecimal value of 3E corresponds to a decimal value
of 62 which represents 62 kilometres per hour (km
hr−1). Mathematically, this may be interpreted as

v = A (6)

From an engineering point of view, the standard
unit of metres per second (m s−1) is more useful. To
this end, a conversion scheme is introduced. Math-
ematically, this may be described as:

v [m s−1] =
v [km hr−1]

3.6
(7)

Having converted the value to m s−1, the Time Do-
main Maths function was employed twice to carry
out two different mathematical functions. The in-
tegration of the speed signal results in a figure for
total distance travelled in metres. Similarly, dif-
ferentiation of the signal results in a value for the
instantaneous acceleration of the vehicle. Both pa-
rameters are useful in terms of determining the ag-
gressiveness of the driving (acceleration) and in im-
plementing the cold start factor calculation (dis-
tance). A full implementation of cold start has not
been completed but will be based on both distance
travelled and engine coolant temperature.

4.4 Engine Coolant Temperature
(PID 05)

Although the cold start emissions module has not
been fully implemented in this version of the pro-
gramme, the coolant temperature will be used to de-
termine the cut-off point for cold start excess emis-
sions. Further to a review of work carried out in
other institutions [2, 5, 8], it was decided that the
combination of coolant temperature and total dis-
tance travelled would be deciding factors in the cut-
off point. Further investigation of these parameters
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and the implementation of the cold start excess fac-
tor calculations will be examined in the near future.

Work in previous versions of the software currently
under discussion [6] did use the engine coolant tem-
perature as the determinant for cold start emis-
sions. The engine coolant temperature determina-
tion scheme is described below and is included in
this version of the programme.

The request for snap-shot data is given by $01 05
and a reply takes the the form $41 05 68, for ex-
ample. Since only one byte of data is returned, the
parsing scheme is the same as for vehicle speed or
percentage engine load.

Figure 7: Data parsing and scaling function for engine
coolant temperature.

Each byte corresponds to a 1◦C change in temper-
ature with a -40◦C offset. Mathematically, this is
described by:

Tcoolant = A− 40 (8)

such that for the example value mentioned above,
the hexadecimal value of 68 corresponds to a dec-
imal value of 104 and, with the offset, results in a
coolant temperature of 64◦C.

5 Instantaneous Emissions Es-
timation Scheme

In order to determine an instantaneous emissions
quantity, described in grams per second (g s−1), a
relationship between pollutant output and engine
load and speed has been devised. Previous versions
of the software have employed the used of emis-
sions maps based on the Volvo 940. These emis-
sions maps are two dimensional arrays describing
the pollutant emissions as a function of both en-
gine load and engine speed. The engine speed is
described by the columns of the table and is grad-
uated in revolutions per minute (rpm); the engine
load is described by the rows and is graduated in
newton metres (Nm).

The first processing task was to ensure the com-
patibility of the emissions maps and the LabVIEW
package:

Each map was read into software using the Read
From File express virtual instrument (Express VI).
Using this VI, it is possible to define the table
boundaries, such that header rows and descriptor
columns are removed and just the data remains.
This in turn led to a new problem, that of defining
which column and row represented which engine op-
erating condition.

In all, eight emissions maps exist. Each of carbon
monoxide (CO), hydrocarbons (HC), oxides of ni-
trogen (NOx), particulate matter (PM) is defined
for both petrol and diesel. For any given experi-
ment, either petrol or diesel maps are used and this
is defined by the user. Discrimination is achieved
using a Case Structure where there are eight inputs,
four each from petrol and diesel, but only four out-
puts. The cases are either diesel (true) or petrol
(false). A switch is used to ensure the correct con-
nection of the terminals, as shown in Figure 8.

Figure 8: Discrimination between petrol and diesel emis-
sions maps is achieved using a simple switch.
In the ‘false’ position, only the petrol maps are
read in, while in the ‘true’ position, the diesel
maps are passed to the Bilinear Interpolation
VI.

The two dimensional nature of the emissions maps
necessitated the use of a Bilinear Interpolation VI.
This function takes three arguments, namely a col-
umn identifier, a row identifier and the data to be
interpolated. Calculation of these identifiers is de-
scribed below. Data is passed from the emissions
maps as dynamic data and is converted to double
integer type data.

The engine speed values in the emissions maps lie
between 1000 rpm and 5500 rpm with increments of
250 rpm, giving a total of 19 columns. In the case
of the engine load, the minimum value was 0 Nm
and the maximum was 185 Nm, rising in increments
of 5 Nm, resulting in 38 rows. Since the bilinear
interpolation VI does not recognise absolute values,
such as an engine speed of 2000 rpm and 20 Nm
load, but rather absolute cell co-ordinates in terms

UII 07/01 | Urban Environment Project Air Quality | 7
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of column and row number, a new scheme had to be
devised for calculating the emissions output. The
system proposed by Deery was deemed to be the
best [4].

In this scheme, each value of engine speed is allo-
cated a column number, such that 1000 rpm corre-
sponds to column 0 (the first index) and 5500 rpm
corresponds to column 18. This leads to a direct
linear relationship between engine load and column
index. The resulting equation of the line could them
be used to convert the engine speed to a column in-
dex for use by the bilinear interpolation VI. The last
problem is the fact that a zero engine speed value
does not exist. To this end, a new column was in-
cluded and all the values were assumed to be zero
emissions at 0 load. This meant that the indices
had to be shifted by 1 and also that a new equation
for the 0 rpm to 1000 rpm cell had to be devised.

Figure 9: Graphical representation of the conversion equa-
tions used for (top) engine speed and (bottom)
engine load for the bilinear interpolation VI.

An identical system is used for the load rows, where
the zero load corresponds to row 0 and 185 Nm
corresponds to index 37. No further manipulation
was required.

The LabVIEW implementation for both the con-
version of rpm and Nm values to cell co-ordinates
are shown in Figure 9. In the case of the engine
speed implementation, it was necessary to include
the conditional structure so that the correct inter-
polation formula could be used for the given engine
speed ranges. This ensures that for engine speed
values between 0 rpm and 999 rpm, the equation:

y = 0.001x (9)

is used while for values n the range 1000 rpm to
5500 rpm,

y = 0.004x− 3 (10)

is used. This is shown diagrammatically in Figure
10.

Figure 10: Implementation of the calculation scheme to
determine the column identifier for both the
range 0-999 rpm (above) and 1000-5500 rpm
(below).

In all, five interpolations are implemented to allow
for calculations of each of the four pollutant species
and the fuel consumption (FC). The resulting out-
put values are displayed on-screen both in graphical
form and as a number. the values of instantaneous
emissions are them passed to a Time Domain Maths
VI and integrated, such that a total emissions value
can e determined for the trip so far.

6 Communicating With On-
Board Diagnostic Devices
Using LabVIEW

Communication with the OBD ECUs is achieved
using the Serial VISA Connection in LabVIEW.
This system allows the user to specify which VISA
Resource they wish to use. Such resources normally
take the form of a COM port, such as COM1 or an
LPT port, such as LPT1. For the purposes of this
programme, a COM connection is used. The VISA
establishes a connection with the OBD device and
then outputs the data extracted from the OBD. The
VISA connection works in two directions. Firstly,
a request is sent to the OBD ECU for a parameter,
such as engine speed, then the request is processed
and a reply is sent back. This reply is then printed
to screen and passed to the main programme for
parsing, scaling and manipulation as described in
Section 4. Once the programme is terminated, the
VISA connection is closed.

8 | Air Quality Urban Environment Project | UII 07/01
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The VISA requests are constructed automatically
via the Queue Sequencer. This creates a queue of
hexadecimal requests which are then passed to the
VISA resource, processed and returned. The re-
quests can be timed manually, although times below
250 ms have resulted in incomplete response data.

The VISA and Queue Sequencer act in the same
way as the HyperTerminal described in Section 8,
only in an automated manner.

Although the previous versions of this programme
used the Stacked Sequence Structure, this version
uses the Framed Sequence. This ensures that exe-
cution of the programme takes place in a predefined
sequence. The user can therefore select whether the
vehicle under test is a petrol or diesel vehicle and
provisions can be made to ensure that the data is
saved to the correct location in memory before the
engine is started. Full details of these features are
discussed in more detail in Section 7. It also en-
sures that the VISA connection is opened before
data parsing takes place, ensuring that invalid data
is not saved.

7 Saving and Storing of Data

All experimental data is saved to an .lvm or .tdm
file format and is readable by Microsoft Excel for
post-processing. All gathered parameters and their
associated manipulations are stored. In order to
save time, the saved data is sent to a pre-defined
data file. The name and location of the data file are
displayed on the GUI. The Strip Path VI is used to
split the file pathname into the name and the path
for ease of viewing on the control panel

The Write to Measurement File VI can be config-
ured before the test by accessing the block diagram.
The dialogue box allows the user to define various
parameters, such as the location data is to be saved
to, the type of data stored, what time stamps are to
be used and whether data should overwrite previous
data files. In this version of the software, each new
test is saved to new data file, numbered sequentially.

8 Establishing a Communica-
tions Link

Although earlier versions of the ElmScan used a
direct serial connection, the ElmScan 5-USB uses
a serial emulation via a USB port. To establish a
link with the vehicle, a number of steps must be
carried out.

The physical equipment consists of the ElmScan
scan tool, an OBD-II to serial connector and a USB-
A to USB-B connector. The OBD-II plug contains
slots for up to 16 pins, although only 9 pins are used
for this system. These 9 pins still allow communi-
cation with five common OBD protocols.

The first task was to locate the Diagnostic Link
Connector (DLC) within the car. This is a 16 pin
D-shaped socket located within the passenger com-
partment of the vehicle. The OBD-II socket is in-
serted into the connector and the serial plug is con-
nected to the scan tool. At this point, the power
LED lights up and system cycles through the red
and yellow Tx and Rx LEDs. Power is supplied to
the scan tool from the vehicle’s battery via pin 16 of
the OBD connection. The scan tool was then con-
nected to the laptop using the USB cable. In order
for the USB hub to recognise the serial connection,
a set of drivers must be installed to establish a Vir-
tual COM Port (VCP). These drivers are supplied
with the scan tool.

Having established the physical link with the car,
the next step was to ensure that the vehicle and
the laptop were actually communicating in a coher-
ent manner. Installation of drivers was verified by
opening the System panel within Control Panel in
Windows. The Device Manager within the Hard-
ware tab was used to search for the new device and
the COM port number corresponding to the USB
Serial Device was noted.

The Windows HyperTerminal was used to establish
the communications link between the vehicles OBD
system and the laptop. This system allows the user
to specify the COM port and its properties. The
COM port specific to the USB Serial Device was
specified and a baud rate (the number of bits trans-
ferred per second) of 9600, a data bit value (the
maximum number of data bits in each message) of
8, a parity value of N and a stop bit of 1 were also
specified, in accordance with the ElmSacn manufac-
turer’s specification [1]. Flow control was governed
by the hardware. Having carried out these tasks,
the HyperTerminal displayed the ElmScan prompt
line. At this point, the user entered the request
$0100 and a reply of four bits is returned. The
specific values are not necessarily of any significant
importance but the fact that a reply, in the for-
mat $41 00 AA BB CC DD is returned means that
a successful communication link has been opened
with the vehicle. At this point, the HyperTerminal
was closed and operational control was passed to
the LabVIEW software package.
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9 Graphical User Interface
Development

One of the attractive features of the LabVIEW envi-
ronment is the fact that a user friendly front end can
easily be developed using the standard palettes. It
means that all acquired and calculated parameters
can be shown to the user in an easy to understand
format.

The frontend is divided using a tab structure, not
unlike a standard Windows interface. Most users
should be familiar with such a system. The first el-
ement of the tabs structure gives the user the abil-
ity to have a clear overview of the current operating
conditions.
All elements of the front end are retrieved from var-
ious palettes and are dropped and manipulated on
screen. Thus, sophisticated front ends can be de-
veloped quickly. Such frontends also afford the user
the ability to both control the data flow and view
retrieved data.

9.1 Initialisation

Before running the system, it is possible to select
the fuel type used, either diesel or petrol. The
switch activates a case structure terminal within the
programme and allows either the petrol emissions
maps or the diesel emissions maps to be read by the
bilinear interpolation VIs. The COM port in use
can also be selected such that communication can
start immediately. The currently sought parame-
ter is also displayed and the request and responses
are displayed in the Reply Received text box. It is
also possible for the user to specify the speed at
which the parameters are sought and refreshed, ei-
ther by using the scroll bars or by typing the value
into the box provided. A standard error handled is
used in this programme and the associated indica-
tors are shown in this tab. The current file name
for the saved data is also displayed, along with an
LED which indicates that saving is occurring. A
single value for torque is also entered by the user.
This value should be the maximum rated torque for
the engine and is scaled during the data extraction
process by the Calculated Load Value (PID 04).

9.2 Times

The Times tab displays the current date and time
and also shows the current duration of the test.
This value is important for the cold start function
which is to be implemented at a later date. It is also
used by the Time Domain functions for integration
and differentiation of the vehicle speed signals.

9.3 Virtual Dashboard

The Virtual Dashboard is used to display the cur-
rent values of the various engine based parameters
extracted from the OBD system. This allows the
user and the driver to make visual inspections of
the data and ensure that no major discrepancies
exist between the ‘real’ display and the ‘virtual’
display. The parameters shown are coolant tem-
perature, in thermometer style, engine speed and
vehicle speed, all shown on dials. The vehicle speed
is also described in both kilometres per hour (km
hr−1) and metres per second (m s−1). The load
value is initially expressed as percentage and then
scaled against the maximum rated torque to yield a
load value in newton metres (Nm). Values for total
distance covered (km and m) and acceleration (m
s−2) are also shown and help to describe the type
of driving currently under consideration.

Figure 11: The final version of the graphical user interface
(GUI) for the Virtual Dashboard.

9.4 Emissions

This tab displays a graph of the current and past
emissions for the duration of the journey. A cumula-
tive value and an instantaneous value for each pollu-
tant species, namely carbon monoxide (CO), hydro-
carbons (HC), oxides of nitrogen (NOx), particulate
matter (PM), as well as the current fuel consump-
tion (FC) are all displayed. A parsing check display
is also shown. This describes the current fuel type
and the row and column index being used for the
calculations.

9.5 Parsing Summary

In an attempt to quantify errors or logical mistakes
in the programming, a parsing summary tab ex-
ists in the current version. This allows the user
to quickly view all the hexadecimal, decimal and
scaled values on one screen.
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10 Further Work

Although the current version of the software does
function well, there are a number of refinements
that could be made.

A full implementation of the cold start emissions
scaling factors is needed. This should be based on
more than just the coolant temperature, as was case
in earlier versions of the software. Examinations
are ongoing on how best to implement this. Other
institutions, such as INRETS in France, have been
working on similar proposals.

It would be useful to have a higher refresh rate than
the current system. It is hoped that this can be re-
solved in the near future. Discussions are ongoing
with National Instruments about this. If the re-
fresh rate can be increased, a clearer picture of the
drive cycle can be described, without the need for
complex post processing using filters and so on.

Although the system is capable of determining the
speed of the vehicle, the inclusion of GPS type data
will be useful. It would also be possible to include
a visualisation module, using such data as might be
available from Google Maps, to allow the user to
see where the vehicle is. This may also be useful
for post processing and correlation work at a later
date. Work in this field is ongoing.
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