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Abstract This paper presents a novel approach for structural damage detection. The cross-entropy 

method is used to estimate the structural parameters of a simply supported beam from its response 

to a static load consisting of a heavy vehicle. Various states of beam damage are modelled through 

local reductions in flexural rigidity. The proposed method estimates the distribution of stiffness 

throughout the beam using the deflections due to a heavy load located on the beam. Parameters such 

as initial distribution values, structural model, number of readings and sample size are varied to 

assess their influence on the prediction of the damage severity and its location.  

Introduction 

The monitoring of the condition of a bridge network is a vital part of any transport infrastructure 

management system. This paper investigates the use of the cross-entropy (CE) method for detecting 

and evaluating a change in the flexural stiffness of a bridge.  

Damage Detection. The problem of estimating structural parameters from a limited number of 

measurements is an inverse problem with a non-unique solution. In recent years, many techniques 

have been developed to solve such problems as reviewed in [1,2]. Neural networks have been 

trained to recognise the structural response of healthy and damaged structures. Static deflection data 

have been used as input to neural networks to identify the structural parameters of a bridge truss [3]. 

Other techniques use spectral points in frequency response function data as input data to neural 

networks to identify damage to cantilever beams [4]. Probabilistic methods have also been proposed 

to detect damage to frame structures, where Bayesian analysis is used to estimate structural 

parameters [5, 6]. More frequently, changes in modal properties have been used to detect alterations 

in structural properties [7]. More recently, empirical modal decomposition and the Hilbert-Huang 

transform have been used to identify the instant at which damage occurs, by detecting spikes in the 

acceleration time history [8].  

Static-Loading Test. Many of the existing damage detection strategies make use of dynamic 

data, based on forced or ambient vibrations. This paper uses the structural response derived from a 

static loading test. The conditions of this test could be those of a proof-loading test. In this paper a 

concentrated load, equivalent to two military tanks, is applied over 5m, centred at midspan [9]. 

Military tanks offer a relatively mobile concentrated load, causing bridges to be closed for only a 

short period of time for testing. By testing bridges in this way, it is possible to determine something 

of their actual load capacity, which may exceed that determined by conventional analysis. The 

current paper simulates beam deflections due to this static proof-loading test. 

The Cross-Entropy Method. The CE method was first proposed by Rubenstein in 1997 [10]. 

The method can be summarised as an iterative procedure, with each iteration composed of two 

parts: 1. a random data sample is generated and 2. the method of generating the random data is 

altered, in order to produce a better sample in the next iteration [11].  

The CE method has been applied to rare event simulations and combinatorial optimisation [12]. 

The current paper employs a CE algorithm for combinatorial optimisation to estimate beam 

stiffness. As a non-unique problem, a variety of stiffness combinations will give beams with similar 

deflection properties. The CE method is employed here to create distributions for stiffness values 

and to select various combinations from these distributions. As the algorithm progresses, the 

distributions are systematically altered to give selections with improved performance.   



 

Characteristics of the Simulated Loading and Damaged Model 

This section describes the modelling of the damage and the data employed for the beam and the 

load models. A finite element model of a simply supported beam, of span 15m, was created in 

Matlab [13]. Beam properties were selected to give a structure of stiffness comparable to a bridge of 

equivalent span. Static proof-loading of 1.4kN was spread over 5m, centred at midspan (Fig. 1).  

 
Figure 1 - Simply Supported Beam and Loading Test 

 

All beam models were discretised into a mesh of 120 elements. Damage was modelled by a local 

reduction in beam stiffness. Fig. 2 shows the stiffness profile for a damaged beam, with cracking of 

15% beam depth, located at 10m along the beam. Stiffness in elements close to the damage is also 

reduced to provide a more realistic model of cracking, as the material close to a crack may provide 

little contribution to stiffness [14, 15]. In the current paper, the CE algorithm estimates the stiffness 

of an equivalent beam, with at most 120 elements. 

 
Figure 2 – Stiffness Profile for Damaged Beam  

Description of the Cross Entropy Algorithm for Damage Detection 

The CE algorithm attempts to identify the location and severity of damage to a simply supported 

beam given a number of deflection values resulting from a static loading test. The algorithm 

assembles stiffness values to create trial finite element beams. The structural response of each trial 

beam (TB) is then compared to that of the damaged beam. Each TB is composed of a number of 

elements, Nt, each with its own stiffness value.  

At first, the stiffness of each element of the TB is represented by a series of values resulting from 

sampling an assumed normal distribution for each element. The distribution of stiffness for the 

element n is defined by a mean, µn, and a standard deviation, σn. The initial values, µinit and σinit, are 

chosen to give a broad range of possible values, with mean reasonably close to the known stiffness 

value for a healthy element. By randomly selecting a stiffness value from sampling the distribution 

of each element, a TB is created. At each iteration, the selection process is repeated a number of 

times, giving a list of sampled TBs. Each TB (with different stiffness throughout the beam length) is 

subjected to the same static loading test, and the resulting deflection is calculated. The algorithm 

attempts to choose combinations of stiffness values so as to minimise the discrepancy between the 

measured true deflection and the simulated deflection found from the TB. 



 

If using R measured deflection readings (um,1, um,2 .... um,R), spread evenly along the beam, it is 

possible to calculate R simulated deflections for each TB, uTB,1, uTB,2 .... uTB,R. An error objective 

function is defined here as the sum of the mean squared differences between the measured 

deflections and the TB deflections, over all measured nodes  

     At each iteration, only a portion of TBs giving a lowest error is retained. The mean and standard 

deviation of this portion form the mean and standard deviation for the distributions of the next 

iteration on an element-by-element basis. In this paper, 10% of the TBs are retained to generate the 

distributions for the subsequent iteration. 

The system is said to converge when the error function stabilises, i.e., when the total error falls 

by less than 0.1% over 10 iterations. During the process, the standard deviation for all elements may 

be artificially increased, a technique known as ‘injection’. If the system has become trapped in false 

minima, this ‘injection’ offers an opportunity to ‘escape’. In this paper, injection is applied when 

convergence occurs for the first time. Once the system re-converges, the process is stopped.  

Results 

This section discusses the accuracy of the predictions and outlines the sensitivity of the algorithm to 

several parameters.  

Distribution Development. Fig. 3 illustrates how the distributions for elemental stiffness values 

typically develop during the algorithm. The first row of distributions shows element 20, a healthy 

element, while the second row shows element 40, a damaged element. In each case, the solid black 

vertical line represents the target stiffness value for that element. The first column shows the broad 

distributions at iteration 1. At iteration 50, distributions for both elements have become narrower, 

and the means have shifted towards the exact stiffness value. Convergence was reached and the 

process was stopped at iteration 880, with a very narrow distribution for each element. 

 
Figure 3 – Stiffness Distributions for Elements 20 and 40, at iterations 1, 50 and 880.  

Black vertical line represents target stiffness value. 

 

Influence of the Initial Mean Values Assumed in Simulations. The CE algorithm was used to 

detect the damage shown in Fig. 2 for various values of initial mean, µinit. For these simulations Nt = 

60 and R = 29, corresponding to a deflection reading at every 0.5m. In each case, the same µinit 

value was applied to all elements for the first iteration, as there is no prior knowledge of the damage 



 

location or severity. Fig. 4 shows the estimated stiffness profile for the beam with µinit = 1.11x10
10

 

Nm
2 

and 1.66x10
10

 Nm
2
 (equal to 60% and 90% the stiffness for a healthy beam element 

respectively). The process gives similar results for both values of µinit. In both cases, the stiffness of 

damaged elements is estimated closely, while some inaccuracy is evident in elements close to the 

supports.  

 
Figure 4 – Estimated and Target Stiffness Profiles for Different Values of µinit  

 

Influence of the Initial Standard Deviation Assumed in Simulations. The CE algorithm was 

used to detect the damage shown in Fig. 2 for various values of σinit. For these simulations Nt = 60 

and R = 29 deflection readings. Again, no prior knowledge was assumed and the same σinit value 

was applied to all elements. Fig. 5 shows how the mean of the assumed distribution for element 11 

(a healthy element) varies for each iteration. The continuous horizontal line represents the target 

value. 

 
Figure 5 – Distribution Mean of Element 11 at each Iteration for Different Values of σinit  

 

For each σinit value, convergence occurs for the first time between 450 and 500 iterations. Once 

convergence occurs, the σn value for each element is artificially increased to the initial value, σinit. 

This injection had a positive effect on the mean value for each value of σinit. The mean values have 

estimated the target more closely after injection. It is noted that this is not always the case; in many 

instances injection tends to drive the mean values away from the target value. 



 

Influence of the Number of Trial Beams used in each Iteration. The number of TBs 

assembled at each iteration is denoted NTB. Fig. 6 shows the output from CE for 2 values of NTB, 

along with the target stiffness profile of Fig. 2. In each case the number of discretised beam 

elements is Nt =30. The algorithm estimates the stiffness of damaged elements quite well for both 

values of NTB. However, with NTB = 10,000 the estimated stiffness profile is less erratic, deviates 

less from the target profile and gives less error at the extreme elements. 

 
Figure 6 – Estimated and Target Stiffness Profiles for NTB = 1000 and 1000 

 

Influence of the Number of Elements Making the TB. The number of discretised elements 

making each trial beam is denoted by Nt. For larger values of Nt, the problem becomes more 

complex, with more parameters to estimate. Fig. 7 shows the output for the CE algorithm, 

identifying the profile of Fig. 2, with different number of elements in the TB. For these simulations 

R = 14, corresponding to a deflection reading at every metre. For both Nt = 30 and Nt = 120, the 

algorithm indicates damage location and severity reasonably well. With Nt = 120 the estimated 

profile is more erratic, with significant errors close to the supports.  

 
Figure 7 – Estimated and Target Stiffness Profiles for Various Nt 

 

Error in the elements closest to the supports has been seen in a number of simulations. This 

phenomenon is investigated further in Fig. 8. Fig. 8 shows the development of the distribution mean 

for the healthy elements 1, 50 and 120, with target stiffness given by a horizontal line. It can be seen 

that the estimated stiffness of element 50 is relatively stable, while the mean for stiffness of 

elements 1 and 120 appears to fluctuate more freely. Beam deflection is least sensitive to the 

stiffness value of the extreme elements. As the algorithm minimises the deflection error, it is 

expected to have difficulty estimating the stiffness close to the supports. 



 

 

 
Figure 8 – Estimated and Target Stiffness Profiles for Elements 1, 50 and 120 

 

Variation of the Location & Severity of the Beam Damage. A total of 9 damage events were 

modelled, corresponding to cracking of 5%, 10% and 15% beam depth located at 7m, 10m and 14m 

along the beam. It is expected that less severe damage, close to the supports would be most difficult 

to detect, as such damage would have the least pronounced effect on beam deflection. Fig. 9 shows 

the stiffness value for the most damaged element, for different damage events, with the target 

stiffness shown in white. For these simulations Nt = 60 and R = 29, corresponding to a deflection 

reading at every 0.5m. It can be seen that the output matches the stiffness of the most damaged 

element reasonably well, even where the damage is less severe and/or close to the supports. 

 
Figure 9 – Estimated and Target Stiffness for Various Damage Events 

 

Influence of the Number of Deflection Readings Used in the Predictions. A greater number 

of deflection readings along the beam provides more detail about the deflection profile. By 

increasing the number of deflection values considered, an improvement in accuracy may be 

expected. Fig. 10 shows the estimated stiffness profile, along with the target profile of Fig. 2, with 

number of readings R = 29, 5 and 3. For each simulation, the number of discretised beam elements 

is Nt = 30. With R = 29 deflection points, the system attempts to match the deflection value at every 

internal node, and gives a good estimation of beam stiffness. But even with just 5 deflection values, 

the algorithm performs well. With just 3 deflection values, the damage location is less precise, and 

the stiffness of element 20 is overestimated by 17%, although damage can still be located 

reasonably well.  



 

 
Figure 10 – Estimated and Target Stiffness Profiles for Various Number of Measurements, R 

 

Testing of an Undamaged Beam. The deflection pattern of a healthy beam was also presented 

to the algorithm with R = 14. The undamaged case tests the ability of the algorithm to resist giving a 

false alarm, in indicating damage where none is present. Fig. 11 shows the estimated stiffness 

profile with Nt = 30. Fig. 11 shows inaccuracy in the estimation of element stiffness at the supports. 

The stiffness of element 1 is overestimated by 22%. Increased stiffness at the supports of a bridge 

could point to an increase in friction at the bearings, a common problem in beam bridges. The 

lowest stiffness value indicated by the algorithm is in element 3, with stiffness 94% of that for a 

healthy element, equivalent to a crack depth of 2% of beam depth. 

 
Figure 11 – Estimated and Target Stiffness Profiles for an Undamaged Beam 

 

Summary & Conclusions 

An algorithm that uses CE to detect damage has been presented. The method has been shown to 

have potential to estimate the structural parameters of a simply supported beam from the deflection 

due to a static loading test. Various beam damage states have been modelled by local reductions in 

flexural rigidity, and the ability of the CE algorithm to estimate the damage has been tested. The 

stiffness of the damaged elements has been closely identified in most of the cases. The results have 

shown that the algorithm is less accurate in estimating stiffness of undamaged elements close to the 

supports. It is possible that the use of rotation measurements close to the supports would give more 

accurate results than the use of the negligible displacements developing at these locations. This 

could be achieved in practice with the use of inclinometers. The method has also shown to be 

sensitive to the number of elements used to form each TB and the number of TBs formed per 

iteration. 

The method proposed here has the advantage of operating without prior knowledge of system 

behaviour, other than a reasonable initial estimate of element stiffness values. This is in contrast to 



 

neural networks, which require extensive training in order to respond appropriately to stimulus. The 

ability of the method to identify damage in the presence of noise also requires attention, although 

large signal to noise ratios are expected, given the static nature of the test. The influence of noisy 

data may be reduced by using multiple measurements and more than one static loading case. The 

addition of a regularisation term to the error function may allow the algorithm to favour stiffness 

profiles with certain desirable properties, rather than minimising the deflection error alone. The 

method is also being extended to accept dynamic responses, or a combination of responses, again 

assembling stiffness values to match the measured response. 
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