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Abstract— The use of higher-order functions, as a method of
abstraction and re-use in EC encodings, has been the subject
of relatively little research. In this paper we introduce and give
motivation for the ideas of higher-order functions, and describe
their general advantages in EC encodings. We implement
grammars using higher-order ideas for two problem domains,
music and 3D architectural design, and use these grammars
in the grammatical evolution paradigm. We demonstrate four
advantages of higher-order functions (patterning of phenotypes,
non-entropic mutations, compression of genotypes, and natural
expression of artistic knowledge) which lead to beneficial results
on our problems.

“Writing about music is like dancing about architecture” –
various artists.1

I. INTRODUCTION

In a language with first-class functions, a function can be
assigned as the value of a variable and passed as an argument
to another function (known as higher-order). Whether in
evolutionary automatic programming or in programming “by
hand”, this facility is a powerful method of abstraction and
generalisation, and allows fine-grained re-use: patterns of re-
use which can not be captured by standard automatically-
defined functions (ADFs), for example, can be captured using
higher-order ADFs (HO-ADFs) [1].

The idea has been used rarely in evolutionary compu-
tation (EC), with the exception of seminal work by Yu
[2] which demonstrated its advantages on standard non-
interactive benchmarks. We now extend the idea to a new
representation, grammatical evolution (GE). We also focus on
its advantages with emphasis on aesthetic problem domains,
discussing four main advantages, as described next.

Using higher-order functions can produce more general
and generalisable solutions, and by increasing opportunities
for re-use, it can (1) make optimal solutions shorter,
which tends to make them easier to find [2]. It can “enrich”
the search space, that is increase the proportion of useful
programs. This can help to alleviate a significant problem
in interactive EC, the fitness evaluation bottleneck [3], [4].
By making more opportunities for re-use, HO-ADFs can
lead to phenotypes which are (2) more highly patterned,
and patterned in different ways, than those characteristic of
typical methods of re-use. Such phenotypes are particularly
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characteristic of aesthetic domains such as music and ar-
chitectural design. Using HO-ADFs in these two applica-
tion areas allows us to avoid the common interactive EC
(IEC) problem of having to evaluate many random-seeming
individuals in early generations. Higher-order representations
tend to allow (3) non-entropic mutations: a mutation causes
multiple consistent changes to the phenotype, rather than a
single change which damages the its balance or symmetry.
They also present an opportunity for creative workers to
(4) express their artistic knowledge in a natural way.
Many musicians and designers think naturally in terms of
patterns, themes with variations, and re-use. Higher-order
functions offer one natural and flexible way to express these
ideas through the grammar. By contrast, L-systems, cellular
automata, and similar biologically-inspired representations
tend to produce good emergent results that “surprise” the
user. This can be an advantage in many situations, but means
it is more difficult for the user to introduce a bias to the
representation to encourage desired properties in the output.

Our goal in this paper is to demonstrate these properties
of higher-order programming and show that they have a
beneficial effect not in a particular domain, but in aesthetic
domains in general. With this aim of generality, we discuss
two very different aesthetic domains, architectural design and
music. Both domains are largely aesthetic and subjective,
and our claims will be backed by aesthetic examples and
arguments, but not by experimental evidence. Future work
and papers dedicated to the domains separately might allow
a fully-developed objective approach, but that is not possible
here. Our contribution is entirely in the novel use of higher-
order programming in GE grammars for aesthetic problems.

This paper is structured as follows. Higher-order program-
ming is desribed in Section II, with a motivating example.
Section III describes relevant previous work on abstraction
and re-use in the context of aesthetic design problems and
general EC. In Sections V and IV we describe the applica-
tion of higher-order programming applied to two problem
domains, music and abstract architectural design. Finally,
Section VI draws some domain-independent conclusions.

II. HIGHER-ORDER PROGRAMMING

Higher-order programming involves the use of functions as
variable values, as function arguments, and as function return
values. It is a powerful method of abstraction, generalisation,
and re-use [1], important properties in programming by hand
as well as in automatic programming. One main motivation
for higher-order programming comes from situations where
multiple pieces of code have some behaviour in common
but require other parts of behaviour to be specified paramet-
rically, as in the following example adapted from [5] (p. 19).
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Suppose we have written a function list files(dir)

which walks the filesystem’s directory structure recursively
(starting at dir), printing out each filename as it is
encountered. Suppose we then need to write a function
print files which again walks the directory structure,
but this time prints the contents of each file instead of
the filename. Of course we can copy and paste our old
code, but this is inelegant and violates the “don’t repeat
yourself” principle: a bug-fix to the original function will not
automatically be propagated to the copy-pasted one. It would
be possible to put the new functionality into the existing
function, and parameterise the behaviour by adding a boolean
argument print filename only. However, this approach
will not scale if we then need functions to search each file
for a particular string, or to print each file’s modification
time, or new functions which have not been thought of yet.
Instead, it is better to abstract out the common portion of
behaviour to a function walk directories which takes
an extra argument, a function fn. walk directories

is therefore a higher-order function: it invokes fn

for each file encountered during the directory walk.
We can now achieve maximal re-use of our code
by calling walk directories(dir, print name),
walk directories(dir, print contents),
walk directories(dir, print modification time),
etc. Without higher-order programming, it would not be
possible to re-use the directory-walking functionality.
Looking at it from the point of view of automatic
programming, e.g. GP, we would need to re-evolve the
directory-walking functionality every time it is needed:
but parameterising it with a higher-order function allows
finer-grained re-use.

In this paper, we will use three main aspects of higher-
order programming.

• Functions as arguments allow us to combine program
components in fine-grained ways, as in the motivating
example above. Other examples include map(f, L),
which returns a new list created by applying f to each
element of list L, and fmap(Fs, x) which returns a list
created by applying each of the functions in Fs to x.
Note that passing a function as an argument is not the
same as passing the result of a function. Functions can
“cross-cut” each other rather than simply being arranged
in hierarchies.

• Currying is the process of creating a new function from
an existing one by fixing some of its arguments.

• Lambda expressions are a literal syntax for the creation
of anonymous functions on the fly. Currying is often
achieved in this way: for example, we can curry add(x,

y) to produce a new function of one argument (y)
as follows: add4 = lambda y: add(4, y). Curry-
ing and lambda expressions would be useful in the mo-
tivating example above if we wanted a named function
for, say, the original list files(dir) behaviour. We
can create it by saying list files = lambda dir:

walk directories(dir, print name).

Another possibility is passing functions as return values, but
this will not be considered in this paper.

The use of higher-order functions implicitly requires the
use of a non-trivial type system. That is, we must ensure
that the values being passed around within our generated
programs are of the correct types for their contexts. Types
include primitives such as boolean, integer and floating-point,
compound types like lists, and functions of various types.
In standard GP, all functions’ arguments and return values
are of a single type, typically either boolean or floating-
point. This closure property means that any function-call
can be substituted for any other. Standard GP thus uses a
“trivial” type system. In GP with higher-order functions,
we may have (say) functions which return integers and
functions which return functions which return integers. The
interpreter or compiler will give an error if these are not
distinguished. Yu [2] develops a type system sufficient to
the task, and the strongly-typed GP approach [6] would also
work. An appealing alternative, used here, is GE [7], [8].
In GE, a context-free grammar in BNF (Backus-Naur form)
specifies the form program strings may take. It allows the
expression of both syntactic (type) constraints and domain-
specific semantic constraints.

III. PREVIOUS WORK

The context for our work is the requirement for meth-
ods of re-use in EC. Although relatively simple problems
can usually be solved with sufficient evolutionary effort
(large population size and numbers of generations), for more
complex problems which exhibit structure or patterning of
any type it is better to use representations which allow re-
use of partial solutions (see e.g. [9]). Aesthetic domains
typically require such structure. The simplest and best-known
approach to re-use is automatically-defined functions (ADFs)
as used in GP [9]. ADFs have been used in the context
of grammatical evolution (GE) [10], [11], [12]. Similar
approaches to modularity and re-use have been successfully
used in other representations also [13], [14]. However, some
alternative approaches have greater abstraction power than
ADFs and similar modular approaches. As shown in the pre-
vious section, there are situations where standard functions
can not re-use common code, but higher-order functions can.

Meta-programming and higher-level programming in gen-
eral have been used rarely in EC, with a few exceptions.
A macro is a function-like construct associated particularly
with Lisp and unavailable in most programming languages.
Rather than evaluating its arguments and then using their
values, a macro leaves its arguments uninterpreted, then
writes a new piece of code using them. This allows it
to emulate higher-order functionality. Automatically-defined
macros [15] work in the context of standard Lisp-based GP,
and are very powerful (though this power has perhaps not
been fully exploited). The PushGP system, which uses an
unusual language and encoding, is also capable of higher-
order behaviour [16]. Both of these possibilities are powerful
but relatively unintuitive: by contrast, we see higher-order
functions as easy to use. They are available in a mainstream



language (Python) with bindings to 3D and music software.
Writing a grammar to produce Python code is also easy.

The only explicit use of a standard higher-order pro-
gramming approach in EC is that by Yu [2]. Yu showed
that higher-order functions can lead to better and more
generalisable solutions. One mechanism by which this occurs
is the creation of behaviours applicable to an input list of
any size. This allowed Yu to solve the general even-n parity
problem, a problem which is difficult without methods of re-
use for n > 4 and is already difficult using standard ADFs
for n > 6 [9] (Chapter 6). Hierarchical ADFs improve the
situation but not to the point that cases above n = 11, or the
general case, can be considered.

Yu found that using higher-order functions can have the
effect of increasing the proportion of useful programs in the
search space, making search more likely to succeed. Random
search then performs surprisingly well. If the solution is
compressible, in the sense that there are repeated behaviours
which can be abstracted, then solutions may be much shorter.
If good short solutions exist, then the exponential increase
in search space size associated with searching for longer
solutions can be partly avoided, again making search more
tractable. Highly-compressed solutions may also be more
fragile, however. Yu’s ideas have not previously been ex-
tended to the GE representation, nor used in the context of
aesthetic EC where patterning of outputs is essential.

A great deal of recent work has focussed on generative
systems and open-ended encodings, and increasingly this
is seen as the best route to the creation of the staggering
organised complexity found in nature [17], [18], [19]. A
chief characteristic of such representations is that phenotypes
are “larger” than genotypes, but are organised or patterned
in some way. In this context, a very useful perspective is
given by Woodward [20]. The idea here is that if an optimal
genotype is patterned, it presents an opportunity for a method
of abstraction and re-use to produce the required pattern
at the phenotype level without requiring patterning at the
genotype level: “Shortest solutions [ie genotypes] have no
structure, if they did any repeated structure could be removed
by replacing the repeated structure by appropriate modules.”
[20]. As a result, the genotype required to represent a
particular structured phenotype will be shorter than would
have been possible without any method of re-use. With re-
use, it is possible for an unstructured genotype to give rise
to a structured phenotype. Note that Woodward assumes that
the modules available in the system are capable of capturing
any type of structure. Again, standard ADFs are not capable
of this. To take advantage of some types of structure in the
problem, stronger forms of re-use are required.

The representation used throughout this paper is GE [7],
[8]. Genotypes are variable-length linear arrays of integers
which specify the production rules chosen during derivation
from a context-free grammar. An intermediate phenotype
phase is the string resulting from this derivation. This is
interpreted as a computer program which produces an output
such as a 3D object or a piece of music. GE is a good

representation for our ideas, since it is easy to define fixed
or variable numbers of ADFs and HO-ADFs with different
numbers and types of arguments.

Another grammatical formalism which has been widely
and successfully used in generative art and music is Linden-
meyer systems (L-systems) [21]. L-systems have in common
with GE that they work by string re-writing. Because of
the parallel expansion of all non-terminals simultaneously
in L-systems, they typically give structured results. This is
an advantage they share with our ADF/HO-ADF approach.
By contrast with L-systems, the HO-ADF approach has
been used very rarely in EC and never, to our knowledge,
in aesthetic EC, and so is open for investigation. The L-
system approach encourages fractal-style self-similarity at
different scales, which we believe is unnecessary in our
chosen problem domains, and so is not considered further.

IV. ARCHITECTURAL DESIGN

The application of architectural design is a good medium
for the study of abstraction and re-use in aesthetic EC. We
will restrict ourselves to a limited sub-domain of architectural
design: the space of frame designs, i.e. designs constructed
from homogeneous beams of variable length, similar to the
trusses discussed by Cagan [22]. This sub-domain, though
very limited, is already sufficiently complex to raise difficult
representational issues. Shea and Cagan develop a sophisti-
cated representation to produce relatively simple structures.
In our previous work [23], we have studied this domain,
finding that interactive GE was a good alternative repre-
sentation, well-suited to representation of the design space
and interactive search. However, we also found that a large
evolutionary effort was often required to produce interesting
designs, and that too many designs suffered from obvious
failings, making the user’s job tedious and unrewarding.
We now report on further work in the same sub-domain,
improving on our previous work by analysing the effects of
higher-order programming.

A. Separating Behaviour and Data

Consider a representation which produces a recursively-
grown list of independent beams, with their end-points each
represented as (x, y, z) co-ordinates. Such a representation is
lacking in methods of abstraction and re-use. It is possible
to find any object in our design space, but the chances of
constructing an object in which all beams are connected
according to an overall coherent design are slim: see Fig-
ure 1 (a). Let us therefore consider representations allowing
abstraction and re-use.

We firstly introduce the idea of geometric paths repre-
sented by ADFs. A path is a straight line, ellipse, spiral,
sinusoidal, or bezier curve. As well as placing beams between
neighbouring points along a path, we may wish to use path
data in other ways. We can achieve this using higher-order
functions. We create a set of primitive (not higher-order)
functions which, given a point, produce a beam. Examples
include connectToOrigin (given any point, create a beam



(a) (b)

Fig. 1. In (a), no re-use. In (b), re-use without higher-order combination.

(a) (b)

(c)

Fig. 2. Re-using a bezier curve with higher-order map. In (a),
follow(path). In (b), map(connectToOrigin, path). In (c),
map(perpendicularZ, path). Each of the three uses the same bezier
path function, but the usage of the path is separated from its definition. Both
aspects are available for re-use.

from that point to the origin (0, 0, 0)) and the anony-
mous function created by currying the beam function itself:
lambda pt: beam(pt, <pt>). Here, pt is an argument to
the function, but <pt> is a non-terminal which will be given
a value during the grammatical derivation. Given any such
point-to-beam function, we can use the higher-order function
map to get an object created by calling that function for each
point along a path. A path can now be used in multiple ways:
this is a type of abstraction. See Figure 2.

We are also using currying and lambda abstraction here:
a function perpendicular(point, plane) is available,
which returns a beam given a point and an integer indicating
which plane to drop to (e.g. 2 indicates the z = 0 plane).
The perpendicularZ function, used in Figure 2, might
be created by currying: perpendicularZ = lambda x:

perpendicular(x, 2). Similar methods are used to create
variant connect functions. In both of these cases, the aim
is to produce a new function which takes a single point
as an argument, so that the new function can be used as
an argument to map. An anonymous curried function such
as lambda x: connect(x, (3, 5, 7)) allows re-use of
the point (3, 5, 7) across multiple invocations of the function.

So far we have separated the creation of path data from its

usage and obtained a flexible method of re-combining and re-
using them. One potential advantage of this scheme is that
during interactive evolution, a user might find that (say) a
particularly appealing curve is combined with an unappealing
variant connect, e.g. Figure 2(b). The separation of path
data from behaviour means that a single favourable mutation
might be enough to produce the same curve combined with
(say) perpendicularZ, as in Figure 2(c).

We also need the ability to apply multiple behaviours to
a single point: this is considered next.

B. Iterating over Functions

In order to produce larger and more complex designs, it
is possible to create multiple paths and apply a behaviour to
each. However, we again have the problem that the multiple
paths may be entirely unsuitable for each other. For example,
they will in most cases not result in a design which is entirely
self-connected: see Figure 1 (b). An alternative strategy is to
create a list of functions, and create a higher-order function
which returns the result of applying each function to a
given point. This is precisely the fmap function described
in Section II. In the simplest case, this will result in a
design where several behaviours meet at a single point. One
feature enabled by this idea was requested by architectural
students during classroom trials of our software: the ability
to use a particular style of joint developed by the students,
characterised by the meeting of four beams.

The true power of fmap appears when we combine it
with map, so each point in a list created by map is passed
successively as the point argument to fmap. This combining
method increases flexibility greatly, while encouraging the
essential properties of connectedness and overall coherence.
Three individuals, created by random sampling of a small
number of generations of size 15, in three independent runs,
are shown in Figure 4 (c-e). A simplified version of the
grammar used to produce these individuals is shown in
Figure 3. From the point of view of grammar design, the most
interesting point is the ease with which the user can change
the number and definitions of ADFs (<scalar pt func>

and <point shape func>). The higher-order function is
<map fmap>. No HO-ADFs are used here.

To construct complex paths without making the vast ma-
jority of paths appear random, we combine simple paths by
addition (see add in Figure 3) to produce compound paths.
We have also implemented just one of the many possible
functions which create a compound object located at a given
point: triangle (see Figure 4(a)) creates a small triangle
oriented in the x, y, or z-plane (in future work we will allow
such functions to be evolved rather than hard-coded).

The individual whose code is given in Figure 6 and
is pictured in Figure 5(a)) uses one instance each of
map fmap and map to combine two triangle functions, one
perpendicular, and a path created by adding a linear path
and a sinusoidal one. This example demonstrates the idea
of “stylistic” as opposed to entropic mutation. The original
individual and three new ones created by a single mutation
are shown. The mutated individuals retain a strong stylistic



# compose list of functions with list of points
<scene> ::= map_fmap(<point_to_shape_funcs>, <points>)

# create organised list of points using map. scalars(n)
# returns a list of n scalars evenly spaced in [0, 1]
<points> ::= map(<scalar_point_func>, scalars(<n>))

# functions which, given a scalar, return a point
<scalar_pt_func> ::= lambda t: diagonal(<pt>, <pt>, t)

| lambda t: ellipse(<pt>, <r>, <r>, t)
| lambda t: sinusoid(<period>, t)
| lambda t: bezier(<pt>, <pt>, <pt>, <pt>, t)
| lambda t: spiral(<phase>, <period>,

<r>, <bezier>, t)
| lambda t: add(<scalar_pt_func>(t),

<scalar_pt_func>(t))

# functions which return a shape, given a point.
<point_shape_func> ::= lambda pt: beam(<pt>, pt)

| lambda pt: perpendicular(pt, <dim>)
| lambda pt: triangle(pt, <dim>)
| lambda pt: connectToOrigin(pt)

# points are represented as tuples
<pt> ::= (<x>, <x>, <x>)
# <period>, <x>, <dim> are numbers

Fig. 3. Simplified version of the grammar used to produce our architectural
designs.

(a) (b)

(c)

Fig. 4. Combining map and fmap for coherent, compound designs.

similarity to the original. Many components are changed by
the mutation, but in a consistent way.

Crucially, the representation of this individual is quite
minimal: little or no further abstraction is possible. This
is the end-point of the process implied by Woodward [20].
The underlying genotype has no structure, but the phenotype
design is patterned and coherent. Mutations result in inter-
esting variations which are still well-organised: see Figure 5.
There are many well-formed and stylistically similar designs
in the vicinity of the original individual, and so we claim
that this representation is conducive to successful IEC. The
search space has been “enriched” with a higher proportion
of individuals which are self-consistent in the sense that
each component conforms to an overall structure (to see this,
imagine offsetting just one component of 5(a) in the y-axis,
i.e. “into” or “out of” the page). Even early generations

(a) Original (b) Mutation

(c) Mutation (d) Mutation

Fig. 5. W-shaped gate: each of the three individuals created from the
original by a single mutation retain a strong stylistic similarity to the
original. The design’s organisation is not destroyed, even though many
components are changed in some way.

tend to produce results we find subjectively interesting,
which helps to alleviate the fitness evaluation bottleneck in
interactive EC [3], [4].

We have succeeded in our goal of abstraction and re-
use. Our designs are quite complex, yet organised; and our
grammar is quite open-ended, capable of producing a wide
variety of very different styles of structure. Creating similar
structures without advanced methods of abstraction and re-
use would be possible but would require a huge evolutionary
effort to produce an individual composed of many individual
components, carefully aligned. By contrast, the individuals
shown appeared in the first 3 or 4 generations in a run with
population size 15, in which selection was not applied.

V. MUSIC

We introduce our study of higher-order functions in the
context of music by working a toy example. Consider the
very simple hand-written piece of music shown in Figure 7,
which exhibits several types of pattern. How should we rep-
resent the musical search space? For the sake of simplicity, in



map_fmap([lambda x: triangle(x,0),
lambda x: perpendicular(x,2),
lambda x: triangle(x,2)],

map(lambda t: add(
lambda t: linear(t, ((14,10,8),

(9,15,12)))(t),
lambda t: (0.0, 0.0, 11*(
1.0+sinusoid(1*4*pi*t)))(t)),

scalars(10)))

Fig. 6. W-shaped gate: original code.

this example, we assume that all notes are of equal duration
and volume and that accidentals (sharps and flats) and rests
are not allowed.

The simplest possible representation will simply see us
store 32 integers in an array. This representation has several
obvious disadvantages, as with the individual-beams repre-
sentation considered at the beginning of Section IV. The vast
majority of the search space will be comprised of random-
sounding pieces. A large evolutionary effort will be required
to produce a coherent-sounding piece. Mutations will be
highly entropic—that is, they will gradually degrade a piece,
rather than transforming it into a distinct but stylistically
similar one. The underlying issue, which is too large to
be fully addressed here, is the contrast between stylistic
similarity and “Hamming” or “edit-distance” similarity.

We seek a representation which does not suffer these
disadvantages. In order to exploit the structure obvious in
the piece, we will look for methods of abstraction and re-use.
The first compressible feature we notice is the simple ascend-
ing 4-note pattern, which is repeated multiple times starting
on different notes. Given a function ascend(start-note,

n), we can call it with n = 4 and different start-note
parameters to produce each of the instances. The second
argument could be curried to produce a new function
ascend4(start-note). This avoids the duplication of the
4. Similarly, a repeat4(start-note) function can cre-
ate the two instances of repeated notes. The entire piece
can now be represented as ascend4(10) ascend4(6)

ascend4(8) repeat4(10) (etc.). This can be compressed
further. With the creation of a new, higher-order function
f(g, h, start-note) which calls its first argument three
times and its second argument once, each at appropriate
start-notes relative to its final argument, the piece will
be reduced to f(ascend4, repeat4, 10) f(ascend4,

repeat4, 8). This suggests another function, j(f, g,

h, start-note, jump) which calls f twice, once at
start-note and once at start-note + jump, passing
g and h in each time. Our piece is now represented by
j(f, ascend4, repeat4, 10, -2), which seems very
minimal indeed. Much of the de-duplication work could not
be achieved without higher-order programming.

We also claim that this representation reflects the com-
poser’s or listener’s parsing of the piece. In this simple case,
it is easy to see: it would be incorrect to view the second half
of the melody as new material rather than a transposition of
the first half, for example. Our representation captures these
obvious structural relationships. In more complex music,

including hand-written pieces as well as that produced by our
IEC system (see Section V-A below), the relationships are
not so obvious and the parsing of a piece becomes partially
subjective [24]. Nevertheless, we claim that “paper-based”
musical composition sometimes uses thought processes mod-
elled closely by this type of representation.

Note that each of the functions given above is to be
regarded as an ADF—that is, we are not assuming that such
specific functions will be provided for us, perfectly suited
to our target piece. Some of them, of course, are higher-
order ADFs. Mutations can affect the definition of these
functions, as well as the invoking code. It is now instructive
to consider the effects of mutations on a representation like
this. Changing the 10 to a 12 will transpose the entire piece
upwards, rather than putting just some notes out of tune with
the rest. Now suppose a mutation occurs in the definition of
f, so that it follows a (0, -5, -2) pattern instead of the (0,
-4, -2) it currently has. Since f is re-used, this change will
not break the symmetry of the piece. Now imagine that the
4, in the definition of repeat4, is replaced by a 3. This
change will decrease the piece’s symmetry somewhat. It will
transform the piece from strict 4/4 to 3/4 with two bars of
4/4, demonstrating that duplication (of the 4) was available
for abstraction. Next, these ideas are implemented in a more
sophisticated evolutionary/generative music system.

The function f, above, essentially “does something n
times, then does something else”—where the two somethings
are passed-in as functions. Re-use of such a function leads
to the reification of this structure as a fully-fledged musical
motif—despite the fact that it contains no pitch or time
data itself. This type of abstract motif is a perfect fit
for higher-order programming by passing-in behaviours. It
would be impossible to describe and pre-write all possible
functions which might work in this way, since they are so
many and varied. Therefore it is necessary to use an ADF-
like technique in combination with a meta-programming or
higher-order programming technique to evolve them.

A. Music System Implementation

The representation we have chosen is, again, GE with
ADFs and HO-ADFs. Here, the GE derivation process pro-
duces a program which outputs a piece of music in MIDI
format, the final phenotype. The grammar used here is quite
complex: a phenotype string consists of some boilerplate
code, multiple ADF function definitions, some constants,
some variable state, and some invocation code. Although the
array representation raises interesting issues, we focus here
on the higher-order programming aspects of the grammar,
a simplified version of which is shown in Figure 8. From
the point of view of grammar design, again, the most
interesting point is the ease with which the user may change
the number and definitions of both ADFs and HO-ADFs.
The complete grammar and working code is available for
download: http://skynet.ie/˜jmmcd/software/
mtm_demos_cec2010.tgz.

The system operates in a manner reminiscent of turtle
graphics, in that a cursor with state (position and “orienta-
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Fig. 7. A short, compressible piece of music, together with a simple integer representation of the pitches. This piece is not an output of our IEC system
and is shown for explanatory purposes only.

# start symbol
<S> ::= <def_adfs><calls>
<def_adfs> ::= <def_hof0><def_hof1><def_adf0><def_adf1>

# definitions of ADFs and HO-ADFs
<def_hof0> ::= def hof0(fn):{<code_in_fn>}
<def_hof1> ::= def hof1(fn):{<code_in_fn>}
<def_adf0> ::= def adf0():{<code_no_adfs>}
<def_adf1> ::= def adf1():{<code_no_adf1>}

# code usable inside a HO-ADF
<code_in_fn> ::= <command_in_fn>

| <code_in_fn> <command_in_fn>
<command_in_fn> ::= <command> | fn()

# code usable inside an ADF
<code_no_adfs> ::= <command> | <code_no_adfs> <command>
<code_no_adf1> ::= <command> | <code_no_adf1> <command>

| adf0() | <code_no_adf1> adf0()

# invocation of ADFs and HO-ADFs
<calls> ::= <call> | <calls> <call>
<call> ::= <hof_name(<adf_name>)
<hof_name> ::= hof0 | hof1
<adf_name> ::= adf0 | adf1

# primitives create notes and change state
<command> ::= note() | triad() | rest()

| set_pitch_delta(<int>)
| set_current_pitch(<int>)
| set_time_delta(<int>)

Fig. 8. Simplified grammar for generation of music. We pass a function
fn into the HO-ADFs, and it can be called from inside.

tion”) moves about in a score, sometimes dropping notes or
chords at its current position. The basic commands available
in the grammar include note, rest, set pitch delta,
and set time delta. The ADFs can be passed as argu-
ments to HO-ADFs, allowing complex patterns of re-use.
The bodies of both the ADFs and HO-ADFs are created
through a recursive grammar technique, where the allowable
commands are built up into a list. adf1 can call adf0: though
superficially similar, this is not as powerful as allowing a
function argument to be passed in, because when the function
to be called inside a function’s definition is specified as a
parameter it allows the HO-ADF to be re-used in multiple
ways. This can not be achieved using standard ADFs.

Figure 9 shows some fragments extracted from the scores
produced in this way. These pieces have visible structure, and
(subjectively) sound as if they have some intention behind
them, rather than sounding “random”. A simple example is
the third piece shown in Figure 9, which appears to be “going
somewhere” and then “arrives”. But pieces are usually not
structured in an overly-repetitive way (the simple worked
example in Figure 7 exhibits this problem), because patterns
are superimposed with each other or varied slightly. Although

Fig. 9. Score fragments from pieces generated using a higher-order function
grammar similar to that of Figure 8.

the pieces are very short (it might be possible to produce
complete pieces by stitching several together as in [25]), they
are already interesting to listen to: they can be downloaded
from http://skynet.ie/˜jmmcd/software/mtm_
demos_cec2010.tgz. Within a single run it is often
possible to spot variations on a common theme, rather than
multiple slightly broken versions of a piece—evidence that
the genetic operators search at the right level. Crucially,
these pieces have been produced with very little evolutionary
effort, typically arising in the first 3 or 4 generations with a
population of 10. This is important because our central claim
is not about the high standard of these pieces, but rather about
the encoding’s effect on the search space. Related individuals
share an abstract, perceptual kind of similarity (even if they
are very different as seen by a hamming-style measure), and
the space is enriched to the point that early generations are
rewarding and encourage further evolution.

VI. CONCLUSIONS

In this paper we have introduced higher-order program-
ming and applied it in two aesthetic EC problem domains
with interesting results. We have used three techniques char-



acteristic of higher-order programming, currying, anonymous
functions, and higher-order functions. In the grammars we
have given for both application domains, re-use is the central
idea, and HO-ADFs allow types of re-use not possible
with standard ADFs. Because we have studied two very
different problem domains, we conclude that higher-order
programming has four properties of particular benefit to
cross-domain aesthetic EC:

• Compression of genotypes: a piece of music or an
architectural design must reach a particular “size” in
terms of numbers of components. If a codon was re-
quired to place every note or every component precisely,
genotypes would need to be large. HO-ADFs allow
each function call to produce multiple components and
so achieve compression. For example, the original W-
shaped gate of Figure 5 uses about 25 codons to produce
a design of 33 components (or more if each triangle
is counted as three components rather than one), each
requiring the specification of two end-points of three
dimensions each.

• Patterning in phenotypes: our designs and musical
outputs are not intended as finished products, but they
exhibit very clear patterning or structure even in early
generations. This enriches the search space, making the
user’s job much more pleasant and easier. Figure 4, for
example, showed patterned designs created with little or
no evolutionary effort.

• Non-entropic mutations: starting from a given pheno-
type, a single mutation does not move a note out-of-
place, or move a beam component to a position incon-
sistent with the established pattern (as might happen
with a direct encoding). Such mutations would gradually
degrade a good design. Instead, a single mutation can
make many small changes which are self-consistent,
making a new but still balanced pattern. This was
observed in the W-shaped gate example of Section IV
and in the initial worked example of Section V.

• Natural expression of artistic knowledge: The theme-
and-variation pattern, for example, was observed to be
expressible with the HO-ADFs of Figure 8.

In both domains, using a few functions which can be
combined in multiple ways, we have obtained interesting
outputs even in early generations. This goes towards a central
issue in interactive EC, the fitness evaluation bottleneck [3],
[4]. We believe that higher-order programming is of potential
benefit to many aesthetic EC problems.

This paper has made a qualitative argument for the
techniques of higher-order programming. We believe that a
qualitative approach is useful in aesthetic domains despite
the danger of subjectivity. In future work we will attempt to
study the same issues quantitatively.
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