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Abstract: A new family of mixture models for the model-based clustering of longitudinal data is introduced.

The covariance structures of eight members of this new family of models are given and the associated max-

imum likelihood estimates for the parameters are derived via expectation-maximization (EM) algorithms.
The Bayesian information criterion is used for model selection and a convergence criterion based on Aitken’s

acceleration is used to determine convergence of these EM algorithms. This new family of models is ap-
plied to yeast sporulation time course data, where the models give good clustering performance. Further

constraints are then imposed on the decomposition to allow a deeper investigation of correlation structure

of the yeast data. These constraints greatly extend this new family of models, with the addition of many
parsimonious models.

Title in French: we can supply this

Résumé : A new family of mixture models for the model-based clustering of longitudinal data is in-
troduced. The covariance structures of eight members of this new family of models are given and the

associated maximum likelihood estimates for the parameters are derived via expectation-maximization

(EM) algorithms. The Bayesian information criterion is used for model selection and a convergence crite-
rion based on Aitken’s acceleration is used to determine convergence of these EM algorithms. This new

family of models is applied to yeast sporulation time course data, where the models give good clustering

performance. Further constraints are then imposed on the decomposition to allow a deeper investigation
of correlation structure of the yeast data. These constraints greatly extend this new family of models, with

the addition of many parsimonious models.

1. INTRODUCTION

Longitudinal data arise when measurements are taken on each subject at a number of points
in time. The resulting insight into behaviour over time separates longitudinal data from other
types of data. However, modelling longitudinal data requires special considerations; in particular,
the correlation between measurements on each subject must be taken into account. Subjects in
longitudinal studies, or panel studies, are often considered to be independent, but this is not always
the case.

Consider, for example, data on the weights of calves on one of two different methods of control-
ling intestinal parasites (Kenward, 1987). Diggle et al. (1994) and Everitt (1995) present a variety
of methods that can be used to analyze these data and, in general, to analyze longitudinal data
with known groups. Due to the typically prospective nature of longitudinal data studies, group
memberships will usually be known a priori. However, situations do arise where group member-
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ships are not known and even where the purpose of the analysis is to find groups, or clusters, in
the data.

One such situation arises when the purpose of the study is to find groups of genes with similar
activation patterns over time. An example of this is the study that was conducted by Chu et al.
(1998) to investigate the behaviour of yeast sporulation data over time. The resulting data are
analyzed in Section 3.3 using the model-based clustering technique that is introduced in this work.

Model-based clustering is a technique for clustering data through the imposition of a mixture
modelling framework. A Gaussian mixture model is most frequently used and its density is of the
form

f(x) =
G

∑

g=1

πgφ(x | µg,Σg),

where πg is the probability of membership of group g and φ(x | µg,Σg) is the density of a multi-
variate Gaussian distribution with mean µg and covariance Σg.

Banfield and Raftery (1993), Celeux and Govaert (1995) and Fraley and Raftery (1998, 2002)
exploited an eigenvalue decomposition of the group covariance matrices to give a wide range of
parsimonious covariance structures. This work culminated in the MCLUST family of models,
which consists of ten mixture models that arise from the imposition of constraints on the group
covariance matrix Σg = λgHgAgH ′

g, where λg is a constant, Hg is a matrix of eigenvectors of Σg

and Ag is a diagonal matrix with entries proportional to the eigenvalues of Σg. Details of the
constraints that can be imposed are summarized in Fraley and Raftery (2006, Table 1). MCLUST
is the most well-established model-based clustering technique within the literature, which is partly
due to the mclust package (Fraley and Raftery, 2003) that is available within the R software (R
Development Core Team, 2009).

Bouveyron et al. (2007) introduced a family of mixture models specifically for the analysis of
high-dimensional data and McNicholas and Murphy (2008) developed a family of parsimonious
Gaussian mixture models that is closely related to the mixture of factor analyzers model (Ghahra-
mani and Hinton, 1997; McLachlan et al., 2003). In all of these cases, the classical approach
to model-based clustering is taken, where each alternative covariance structure corresponds to a
member of the family of mixture models.

However, some non-classical approaches have been taken to the model-based clustering of lon-
gitudinal data. De la Cruz-Meśıa et al. (2008) use a mixture of non-linear hierarchical models.
The modelling paradigm that they propose, which is essentially an extension of Pauler and Laird
(2000), makes each component density subject-specific and the only modelling of the component
covariance matrix that they engage in is the imposition of the isotropic constraint.

Although classical model-based clustering continues to extend into new application areas, none
of the models that are currently available have a covariance structure specifically designed for the
analysis of longitudinal data. The aim of this paper is to introduce a family of mixture models
with a covariance structure specifically designed for the model-based clustering of longitudinal data.
Since the outcome variable x is recorded in a time ordered manner, a covariance structure that
explicitly accounts for the relationship between measurements at different time points is necessary.

Pourahmadi (1999, 2000) exploited the fact that covariance matrix Σ of a random variable can
be decomposed using the relation TΣT ′ = D, where T is a unique lower triangular matrix with
diagonal elements 1 and D is a unique diagonal matrix with strictly positive entries. This relation
is known as the modified Cholesky decomposition and it was used by Krzanowski et al. (1995)
in a discriminant analysis application. The modified Cholesky decomposition may equivalently
be expressed in the form Σ−1 = T ′D−1T , which is convenient when modelling the covariance of
a multivariate Gaussian distribution. The values of T and D have interpretations as generalized
autoregressive parameters and innovation variances, respectively (Pourahmadi, 1999) so that the
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linear least-squares predictor of Yt, based on Yt−1, . . . , Y1, can be written

Ŷt = µt +
t−1
∑

s=1

(−φts)(Ys − µs) +
√

dtεt, (1)

where εt ∼ N (0, 1), the φts are the (sub-diagonal) elements of T and the dt are the diagonal
elements of D.

Pan and MacKenzie (2003) exploited the modified Cholesky decomposition to jointly model
the mean and covariance in longitudinal studies. Pourahmadi et al. (2007) developed a method of
simultaneously modelling several covariance matrices using this decomposition; this work gives an
alternative to common principal components analysis (Flury, 1988) for longitudinal data.

In Section 2, we develop a model-based clustering framework for longitudinal data by using
Gaussian mixture models where the modified Cholesky decomposition of the group covariance
matrices are constrained in order to give parsimonious models. The mixture models are fitted
using an EM algorithm (Dempster et al., 1977), as outlined in Section 2.2.

The models are applied to time course gene expression data in Section 3, where they exhibit
good clustering performance. In Section 4, the structure of the lower triangular matrix is exploited
to extend this family of models to allow for situations where only autocorrelations up to lag d are
required. This extension of the family of models gives rise to more parsimonious models. The
extended family of models is then applied to a data set on the weight of rats on one of three
different dietary supplements, where one of the extended models is chosen. The results of this
work are summarized in Section 5.

2. GAUSSIAN MIXTURE MODELS WITH CHOLESKY-DECOMPOSED COVARIANCE STRUCTURE

2.1 The model

We assume a Gaussian mixture model, with a modified Cholesky-decomposed covariance structure,
for each mixture component. Therefore, the density of an observation xi in group g is given by

f(xi | µg, Tg, Dg) =
1

√

(2π)p|Dg|
exp

{

−
1

2
(xi − µg)

′T ′

gD
−1
g Tg(xi − µg)

}

,

where Tg is the p× p lower triangular matrix and Dg is the p× p diagonal matrix that follow from
the modified Cholesky decomposition of Σg.

Now, there is the option to constrain the Tg or the Dg to be equal across groups and there
is also the option to impose the isotropic constraint Dg = δgIp (cf. Tipping and Bishop, 1999),
which leads to a family of eight Gaussian mixture models. Each member of this family, along
with their respective nomenclature and number of covariance parameters, is given in Table 1. The
nomenclature is quite intuitive; for example, the VEA model has variable autoregressive structure
and equal, anisotropic noise across groups.

Constraining the Tg to be equal across groups suggests that the correlation structure of the
longitudinally recorded data values is the same for all of the groups. In this context, the correlation
structure reflects the autoregressive relationship between time points as outlined in Equation 1.
Imposing the constraint that the Dg are equal across groups suggests that the variability at each
time point is the same for each group and imposing the isotropic constraint Dg = δgIp suggests that
the variability is the same at all time points. For each given data set, any of the eight combinations
of these constraints given in Table 1 might be most appropriate.

Two of the models given in Table 1, EEA and VVA, are equivalent, from a clustering viewpoint,
to models that already exist within the MCLUST framework. However, the MCLUST covariance
structure does not explicitly account for the longitudinal correlation structure and so the models
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Table 1: The nomenclature, covariance structure and number of covariance parameters for each
model.

Id. Model Tg Dg Dg Number of Covariance Parameters

1 EEA Equal Equal Anisotropic p(p − 1)/2 + p
2 VVA Variable Variable Anisotropic G[p(p − 1)/2] + Gp
3 VEA Variable Equal Anisotropic G[p(p − 1)/2] + p
4 EVA Equal Variable Anisotropic p(p − 1)/2 + Gp
5 VVI Variable Variable Isotropic G[p(p − 1)/2] + G
6 VEI Variable Equal Isotropic G[p(p − 1)/2] + 1
7 EVI Equal Variable Isotropic p(p − 1)/2 + G
8 EEI Equal Equal Isotropic p(p − 1)/2 + 1

introduced herein are more natural for longitudinal data. Further, these models will give infor-
mation about the nature of the covariance structure — specifically, regarding the autoregressive
structure and the innovation variances — that will not arise from MCLUST.

2.2 Model fitting

The models are fitted using an EM algorithm. The missing data are taken to be the group
membership labels, which we denote z, where zig = 1 if observation i is in group g and zig = 0
otherwise. Combining the missing data z with the known data x, gives the complete-data (x, z).
The complete-data likelihood for the mixture model is given by

Lc(πg, µg, Tg, Dg) =
n

∏

i=1

G
∏

g=1

[πgf(xi | µg, Tg, Dg)]
zig ,

and the expected value of the complete-data log-likelihood for the mixture model is

Q(πg, µg, Tg, Dg) =
G

∑

g=1

ng log πg −
np

2
log 2π −

G
∑

g=1

ng

2
log |Dg| −

G
∑

g=1

ng

2
tr

{

TgSgT
′

gD
−1
g

}

, (2)

where the zig have been replaced by their expected values

ẑig =
π̂gf(xi | µ̂g, T̂g, D̂g)

∑G
h=1 π̂hf(xi | µ̂h, T̂h, D̂h)

,

ng =
∑n

i=1 ẑig and Sg = (1/ng)
∑n

i=1 ẑig(xi − µg)(xi − µg)′. Now, maximising Q with respect to
πg and µg gives µ̂g =

∑n
i=1 ẑigxi/

∑n
i=1 ẑig and π̂g = ng/n, respectively.

The parameter estimates for Tg and Dg are also derived by maximizing Q and these depend
on the constraints (Table 1) used in the model. The parameter estimates from the M-step of
the VVI model are derived in Section 2.3. Aside from the EVA and EVI models, estimates for
the parameters of the other models are arrived at in a similar fashion and are available from the
authors upon request. The derivation of estimates for the EVA model are given in the Appendix;
the EVI estimation procedure is similar to the EVA procedure.
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2.3 Parameter Estimates for the VVI Model

Imposing the constraint Dg = δgIp and differentiating Equation 2 with respect to Tg and δ−1
g

respectively gives the following score functions.

S1(Tg, δg) =
∂Q(Tg, δg)

∂Tg
= −

ng

2δg
Tg

(

Sg + S′

g

)

= −
ng

δg
TgSg.

S2(Tg, δg) =
∂Q(Tg, δg)

∂δ−1
g

=
ng

2

(

pδg − tr
{

TgSgT
′

g

})

.

Only the lower triangular part of Tg needs to be estimated, so we need to solve the system of

equations given by the lower triangle of S1(T̂g, δg) = 0. Using the notation of Pourahmadi et al.

(2007), let φ(g)
ij represent those elements of Tg that are to be estimated, so that

Tg =





















1 0 0 0 · · · 0

φ(g)
21 1 0 0 · · · 0

φ(g)
31 φ(g)

32 1 0 · · · 0
...

...
. . .

...

φ(g)
p−1,1 φ(g)

p−1,2 · · · φ(g)
p−1,p−2 1 0

φ(g)
p1 φ(g)

p2 · · · φ(g)
p,p−2 φ(g)

p,p−1 1





















, (3)

and write S1(Tg, δg) ≡ S1(Φg, δg), where Φg = {φ(g)
ij } for i > j and i, j ∈ {1, . . . , p}. Also, let

LT{·} denote the lower triangular part of a matrix. Now, solving LT
{

S1(Φ̂g, δg)
}

= 0 for Φ̂g leads
to a total of p − 1 systems of linear equations and the solution to each of these equations can be
written













φ̂(g)
r1

φ̂(g)
r2
...

φ̂(g)
r,r−1













= −













s(g)
11 s(g)

21 · · · s(g)
r−1,1

s(g)
12 s(g)

22 · · · s(g)
r−1,2

...
...

. . .
...

s(g)
1,r−1 s(g)

2,r−2 · · · s(g)
r−1,r−1













−1 











s(g)
r1

s(g)
r2
...

s(g)
r,r−1













,

for r = 2, . . . , p. Solving diag{S2(Φ̂g, δ̂g)} = 0 for δ̂g, gives δ̂g = (1/p) tr
{

T̂gSgT̂ ′

g

}

.

3. ANALYSES

3.1 Convergence criterion

The Aitken acceleration was used to provide an asymptotic estimate of the log-likelihood at each
iteration and this estimate was then used to determine the convergence of each EM algorithm.
The Aitken acceleration at iteration m is given by

a(m) =
l(m+1) − l(m)

l(m) − l(m−1)
,

where l(m+1), l(m) and l(m−1) are the log-likelihood values from iterations m + 1, m and m − 1
respectively. Then, the asymptotic estimate of the log-likelihood at iteration m + 1 is given by

l(m+1)
∞

= l(m) +
1

1 − a(m)
(l(m+1) − l(m))

5



(Böhning et al., 1994) and the EM algorithm can be said to have converged when l(m+1)
∞ −l(m+1) < ε

(Lindsay, 1995) or when l(m+1)
∞ − l(m) < ε (McNicholas et al., 2010). The latter criterion has the

advantage that it is necessarily at least as strict as the lack of progress l(m+1) − l(m) < ε.

3.2 Model selection

The Bayesian information criterion (BIC; Schwartz, 1978) is used to select the best member of this
family of Gaussian mixture models. The BIC can be written BIC = 2l(x, θ̂)−ρ log N, where l(x, θ̂)
is the maximized log-likelihood, θ̂ is the maximum likelihood estimate of θ, ρ is the number of free
parameters in the model and N is the number of observations. The use of the BIC for mixture
model selection is justified by Keribin (1998, 2000), who shows that it gives consistent estimates of
the number of components in a mixture model, under certain regulatory conditions. Furthermore,
Fraley and Raftery (1998, 2002) and McNicholas and Murphy (2008) give practical evidence that
the BIC is effective as a model selection criterion for Gaussian mixture models.

3.3 Yeast Sporulation Time Course Data

Sporulation is a process by which diploid cells of budding yeast give rise to haploid cells. Chu et al.
(1998) measure changes in gene expression during sporulation using 97% of yeast genes; their study
used 6118 gene expressions that were measured over seven time points t ∈ {0, 0.5, 2.0, 5.0, 7.0, 9.0, 11.5}.
The role of clustering in such time course analyses is important since the objective is to find groups
of genes that express similarly over the course of the experiment. Genes with similar expressions
are said to be co-expressed. Certain genes are known to have specific functions and when other
genes are found to co-express with these genes, new insight can be gained into their function.

Chu et al. (1998) eliminated about 80% of the genes prior to their analysis by focusing on the
genes that showed obvious changes in expression and restricting themselves to genes that were
induced (showed increased expression). Mitchell (1994) had previously suggested that there were
four temporal classes of these genes. Chu et al. (1998) contended that four groups was “not
sufficient to represent the diversity of the observed expression patterns” and they chose seven
temporal patterns that seemed appropriate. These patterns were chosen by eye. A total of thirty
genes (Table 2) were selected as representative of these seven patterns; these are known as ‘model
expression profiles’. Then the remaining genes were clustered into the seven groups based on their
correlation with these model profiles.

Wakefield et al. (2003) used a four-stage Bayesian hierarchical model to analyze this time
course data. Before applying the hierarchical model, Wakefield et al. (2003) used Bayes factors to
reduce the number of genes from 6118 to 1104, conceding that their modelling paradigm “may be
computationally prohibitive for a large number of genes”. They found that the number of temporal
classes was probably between 11 and 14, with G = 12 being the most probable. On comparison
of their G = 12 component model to the model profiles (40 genes) of Chu et al. (1998), they
concluded that there model offered “new insights into co-expression”. Note that, while Chu et al.
(1998) considered seven time points, Wakefield et al. (2003) considered six time points, dropping
t = 0 and and taking the values at each other time “relative to time t = 0” for each gene.

In our analyses of these data, all seven time points were considered and no genes were deleted.
As is common, the negative logarithm, base 2, of each observation was taken and then each time
point was standardized to have mean zero and variance one prior to the analysis. Then the novel
model-based clustering technique introduced herein was applied to the these data for G = 1, . . . , 20
using five random starting values for ẑ for each of the eight models and each value of G. The BIC
for each model and each of the 20 values of G is depicted in Figure 1; aside from a few of the earlier
G values, for which the VVA model was chosen, the EVA model was selected.

From Figure 1, it is apparent that this family of models suggest that the true number of groups
in the sporulation data is somewhere in the early to mid teens. More precisely, the best model
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Figure 1: A plot of BIC values versus number of groups for all eight models.

was a EVA model with G = 13 and a BIC of −68300.91. Selection of the EVA model indicates
that, while the autoregressive structure of the data, as suggested by the T matrix, is the same
across groups (temporal patterns), the innovation variances differ both between temporal patterns
and between times. A cross tabulation (Table 2) of the cluster membership and the model profiles
of Chu et al. (1998) shows that there is some correspondence for these 40 genes; the Late group
corresponds perfectly and some of the later groups are very similar. This is what one would
expect since genes that were induced late would be the easiest to spot by eye. However, there
are notable differences in estimated co-expressions for the earlier groups. Note that there are only
eight columns in Table 2, despite the fact that the best model in our analysis had G = 13 groups.
This is because our model is based on all 6,118 genes and the 40 model profiles of Chu et al. (1998)
appeared in just eight of our 13 groups.

Table 2: Frequencies of the 40 genes selected as model profiles by Chu et al. (1988), cross-tabulated
by the seven temporal patterns suggested by Chu et al. (1998) and by our temporal patterns (A–H).

Group A Group B Group C Group D Group E Group F Group G Group H

Metabolic 4 2
Early 1 5
Early 2 2 1 1 2 1
Early-Mid 4 3 1
Middle 3 4
Mid-Late 3
Late 4
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This analysis presents new insight into these data by providing 13 distinct temporal patterns,
based all 6118 genes. This insight is quite different from the results of Wakefield et al. (2003), who
split 1104 of the 6118 genes into twelve temporal patterns. The largest group in our analysis had
1830 genes and so it is certainly not the case that our groups are just the twelve of Wakefield et
al. (2003) plus a noise group containing the 5014 genes that Wakefield et al. (2003) deleted.

As mentioned in Section 1, MCLUST is the most well-established Gaussian model-based clus-
tering technique within the literature. In order to illustrate the usefulness of the novel technique
introduced herein, relative to existing methods, the MCLUST family of models was also used to
analyze these data. The data was preprocessed in the same fashion, by taking negative logarithms
and standardizing, and the mclust software for R was used. All ten MCLUST models were run for
G = 1, . . . , 20 and the best model was a VVV model with six components. This model, which is
equivalent to the VVA model from Table 1, had a BIC of −68685.55, which is notably less than the
BIC for the G = 13 component EVA model (−68300.91). From Table 3, it is apparent that there
is no correspondence between the model profiles of Chu et al. (1998) and the MCLUST temporal
patterns. As mentioned earlier, one would expect to see a correspondence in some of the later
model profiles. The correspondence between the MCLUST results and the method introduced
herein is given in Table 4: it is apparent that our EVA model is not simply splitting the MCLUST
groups but is suggesting a substantially different sructure.

Table 3: Frequencies of the 40 genes selected as model profiles by Chu et al. (1988), cross-tabulated
by the temporal patterns suggested by Chu et al. (1998) and by the MCLUST patterns (I–IV).

Group I Group II Group III Group IV

Metabolic 6
Early 1 5
Early 2 1 1 2 3
Early-Mid 3 5
Middle 3 4
Mid-Late 1 2
Late 4

4. CONSTRAINING SUB-DIAGONALS

4.1 Introduction

During the analysis of the yeast sporulation data it was noted that many of the values below the
first sub-diagonal of the estimated T matrix (Equation 4) were small. In fact, all but one of the
elements below the first sub-diagonal could be considered small;

T =





















1.00 0.00 0.00 0.00 0.00 0.00 0.00
−0.08 1.00 0.00 0.00 0.00 0.00 0.00
−0.02 −0.59 1.00 0.00 0.00 0.00 0.00

0.02 0.02 −0.67 1.00 0.00 0.00 0.00
0.03 −0.01 −0.02 −0.75 1.00 0.00 0.00

−0.04 0.03 0.05 0.02 −1.01 1.00 0.00
−0.03 −0.03 0.03 −0.02 −0.18 −0.71 1.00





















. (4)
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Table 4: Frequencies of all 6,118 genes, cross-tabulated by our temporal patterns (A–M) and by
the MCLUST patterns (I–VI).

A B C D E F G H I J K L M

Group I 211 386 198 1 4 6 121 1 22 14 16
Group II 46 11 236 132 534 333 2 1 13 1 52
Group II 152 39 23 26 1 121 28 1 5
Group IV 106 3 495 165 1 1777
Group V 17 1 19 106 14 2 193 103 3
Group VI 7 6 14 8 67 4 166 104

While it is difficult to determine if a value in T is small without taking the values of the Dg in
context, it led to the notion of setting various sub-diagonals of Tg to zero and hence the possibil-
ity of a more parsimonious class of models. This constrained correlation structure removes any
autocorrelation over large time lags; that is, Tg constrained to d sub-diagonals implies an order d
autoregressive structure within the framework of Equation 1. In this section we derive parameter
estimates when certain sub-diagonals of Tg are set to zero.

4.2 Constraints & nomenclature

We constrain the elements of Tg to be zero below a given number of sub-diagonals. The notation
V1VA is used to denote the VVA model where the elements of Tg are zero below the first sub-
diagonal, V2VA denotes the VVA model where the elements of Tg are zero below the second
sub-diagonal, and so forth. Note that, although not used herein, models where all sub-diagonal
elements are zero, such as V0VA, are equivalent to the diagonal MCLUST models.

Working out parameter estimates when only the first sub-diagonal of Tg is non-zero is trivial.
For example, from the computations of Section 2.3 it is clear that the parameter estimates for Tg

in the M-step of the V1VI model will be φ̂(g)
r,r−1 = −s(g)

r,r−1/s(g)
r−1,r−1, for r = 2, . . . , p.

4.3 Parameter estimates for the V2VA and VdVA models

Differentiating Equation 2 with respect to Tg and D−1
g , respectively, gives the score functions

S1(Tg, Dg) = −ngD−1
g TgSg and S2(Tg, Dg) = ng/2

(

Dg − TgSgT ′

g

)

. Using the familiar notation, we
can write Tg as in Equation 3 but with zeros below the second sub diagonal. The notation SDr{·} is

used heretofore to denote the first r sub-diagonals of a matrix. Now, solving SD2

{

S1(Φ̂g, Dg)
}

= 0

for Φ̂g leads to a total of p− 1 systems of linear equations, all but one of which is 2× 2. This one

exception is 1 × 1, which gives the familiar solution φ̂(g)
21 = −s(g)

21 /s(g)
11 . The solutions in the 2 × 2

cases are given by

(

φ̂(g)
r,r−2

φ̂(g)
r,r−1

)

= −

(

s(g)
r−2,r−2 s(g)

r−1,r−2

s(g)
r−2,r−1 s(g)

r−1,r−1

)−1 (

s(g)
r,r−2

s(g)
r,r−1

)

,

for r = 3, . . . , p and solving diag
{

S2(Φ̂g, D̂g)
}

= 0 for D̂g, gives D̂g = diag
{

T̂gSgT̂ ′

g

}

.
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The parameter estimates for Tg and Dg can be generalized to the VdVA case. Using the same

notation, the Φ̂g are given by













φ̂(g)
r,r−d

φ̂(g)
r,r−(d−1)

...

φ̂(g)
r,r−1













= −















s(g)
r−d,r−d s(g)

r−(d−1),r−d · · · s(g)
r−1,r−d

s(g)
r−d,r−(d−1) s(g)

r−(d−1),r−(d−1) · · · s(g)
r−1,r−(d−1)

...
...

. . .
...

s(g)
r−d,r−1 s(g)

r−(d−1),r−1 · · · s(g)
r−1,r−1















−1












s(g)
r,r−d

s(g)
r,r−(d−1)

...

s(g)
r,r−1













,

for r = 2, . . . , p and, once again, D̂g = diag
{

T̂gSgT̂ ′

g

}

. Parameter estimates in the other cases for
this general constraint are similar except in the EVA and EVI cases. Estimates for the EVA case
are given in the Appendix and those for the EVI case are very similar.

4.4 Application to yeast sporulation data

The eight models introduced herein (Table 1) were applied to the yeast sporulation data with all
elements of Tg below the first and second sub-diagonals, respectively, set to zero (d = 1, d = 2).
The result of this analysis was that the EVA model, with full T (d = 6), was still the best model.
The best of these two constrained models for G = 13 was the E1VA model, with BIC=-68317.46.

The EdVA model was then fitted to these data for d = 3, 4, 5. The best of these models was the
E5VA with BIC -68331.76. Therefore, the best model was still the full EVA model. Interestingly,
the full model being better than the E5VA model indicates that correlation persists across all time
points including time zero; as previously mentioned, this time point was dropped in the analysis
of Wakefield et al. (2003).

4.5 Application to rats data

In order to show that a model with constraints imposed on the sub-diagonals of Tg will sometimes
be selected, the following analysis is presented. Data on the body weights of rats on one of three
different dietary supplements were sourced from the nlme package (Pinheiro et al., 2008) for the R

software. These data were published in Crowder and Hand (1990) and have been analyzed many
times: see Hand and Crowder (1996) and Haslett (1997) for examples. They are used solely for
illustrative purposes here and what follows is not intended to be an in-depth analysis of these data.
For one thing, we make no attempt to model the component means which one may do by allowing
for a systematic trend, for example.

A total of 16 rats were put on one of three different diets; eight rats were on Diet 1, four were
put on Diet 2 and four on Diet 3. Weights were first recorded after a settling-in period and then
weekly for a period of nine weeks. An extra measurement was taken at 44 days to help gauge the
effect of a treatment that occurred during the sixth week. These 11 measurements can be seen on
the time series plot in Figure 2. From this figure, it is clear that the rats are grouped by weight,
with two exceptions: a heavier rat on Diet 2 and a lighter rat on Diet 3.

Although the true diets are known, we treat this as a clustering problem and so assume no
prior knowledge of component membership. The eight models in Table 1 were fitted to these
data for G = 1, 2, . . . , 6. The best model was an EEA model with G = 5. This model put the two
exceptions into groups on their own and all other rats were correctly classified. Selection of an EEA
model suggests that the covariance structure is the same for each group and so the classification
is effectively based on the mean. Further, the fact that the isotropic constraint was not imposed
implies that the innovation variance is not the same at each time point.

To illustrate that a model with constraints imposed on the sub-diagonals of Tg will sometimes
be selected, the EdEA models were fitted to these data for d = 1, 2, . . . , 10, where the E10EA
model is equivalent to the full EEA model. The BIC for each model is given in Table 5 and the
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Figure 2: Time series for each rat, by diet: Diet 1 (solid lines), Diet 2 (dashed) and Diet 3 (dotted).

best model was the E8EA model, which has a T matrix with eight non-zero sub-diagonals. The
estimated cluster memberships were identical to those for the EEA model.

Table 5: BIC values for the EiEA models fitted to the rats data for i = 1, 2, . . . , 10.

Model BIC Model BIC

E1EA 511.47 E6EA 523.73
E2EA 504.52 E7EA 536.91
E3EA 507.97 E8EA 557.57
E4EA 503.47 E9EA 554.64
E5EA 496.00 E10EA 555.27

5. SUMMARY

A new model-based clustering technique, using Gaussian mixture models, has been introduced for
the analysis of longitudinal data. This family of mixture models follows the classical approach where
each member of the family has different constraints imposed on the modified Cholesky-decomposed
covariance structure. Initially, eight members of this family were given and the associated maxi-
mum likelihood estimates for their parameters were derived using an EM algorithm. These models
provided new insight when applied to yeast sporulation time course data. Furthermore, by con-
straining certain sub-diagonals of Tg to be zero, the number of members of this family of models
was greatly increased, including members with more parsimonious covariance structures.

The family of models offers much scope for further expansion by constraining subsets of the T
matrix, which capture the correlation structure of the data. Initial extensions constraining sub-

11



diagonals of the T matrix were given in this work, focusing on adjacent sub-diagonals. The extra
models that were obtained as a result of this extension where shown to be useful when applied
to a well known data set on the weight of rats. Future work will focus on constraining different
combinations of the sub-diagonals of T — there are 2p−1 possible combinations — and on the
incorporation of missing data into the modelling framework.

APPENDIX

Parameter estimates for the EVA model when Tg is not constrained. For the EVA model, Tg = T
and so, from Equation 2, the expected value of the complete-data log-likelihood Q can be written

Q(T, Dg) = C −
G

∑

g=1

ng

2
log |Dg| −

G
∑

g=1

ng

2
tr

{

TSgT
′D−1

g

}

. (5)

Differentiating Equation 5 with respect to Tg and D−1
g respectively gives the following score func-

tions,

S1(T, Dg) =
∂Q(T, Dg)

∂T
= −

G
∑

g=1

ngD
−1
g TSg, and S2(T, Dg) =

∂Q(T, Dg)

∂D−1
g

=
ng

2
(Dg − TSgT

′) .

Now, solving LT
{

S1(T̂ , Dg)
}

≡ S1(Φ̂, Dg) = 0 for Φ̂ leads again to a total of p−1 systems of linear
equations. The solution for the first row of the lower triangle of Tg is,

G
∑

g=1

ng

[

s(g)
11 φ̂21

d̂(g)
22

+
s(g)
21

d̂(g)
22

]

= 0, and so φ̂21 = −

∑G
g=1 ng

[

s
(g)
21

d̂
(g)
22

]

∑G
g=1 ng

[

s
(g)
11

d̂
(g)
22

] = −

∑G
g=1 πg

[

s
(g)
21

d̂
(g)
22

]

∑G
g=1 πg

[

s
(g)
11

d̂
(g)
22

] . (6)

For convenience, we introduce the notation κij
m =

∑G
g=1 πg

[

s(g)
ij /d̂(g)

mm

]

, so that Equation 6 can be

written φ̂21 = −κ21
2 /κ11

2 . Now, solving the second row means solving the linear system

(

κ11
3 κ21

3

κ12
3 κ22

3

) (

φ̂31

φ̂32

)

= −

(

κ31
3

κ32
3

)

, and so,

(

φ̂31

φ̂32

)

= −

(

κ11
3 κ21

3

κ12
3 κ22

3

)−1 (

κ31
3

κ32
3

)

.

It follows that the solution to the (r − 1)st system of equations is given by













φ̂r1

φ̂r2
...

φ̂(g)
r,r−1













= −











κ11
r κ21

r · · · κr−1,1
r

κ12
r κ22

r · · · κr−1,2
r

...
...

. . .
...

κ1,r−1
r κ2,r−2

r · · · κr−1,r−1
r











−1 









κr1
r

κr2
r
...

κr,r−1
r











, (7)

for r = 2, . . . , p. Note that κij
m = κji

m and so the (r−1)× (r−1) matrix in Equation 7 is symmetric.
Solving the second score function, diag

{

S2(T̂g, D̂g)
}

= 0, gives D̂g = diag
{

T̂ SgT̂ ′
}

.

Parameter estimates when sub-diagonals of Tg are constrained. In most of the cases where sub-
diagonals are set to zero, the solutions are very similar to two and d-sub-diagonal cases detailed in
Section 4.3, and so they are not given here. However, in the EVA and EVI cases, the solutions are
a little more involved than the other cases and so the derivations of the parameters in the M-step
for the E2VA and EdVA cases are provided in full. The corresponding estimates for the EVI model
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are similar. Recall that differentiating Equation 5 with respect to Tg and D−1
g respectively gives

the following score functions,

S1(T, Dg) =
∂Q(T, Dg)

∂T
= −

G
∑

g=1

ngD
−1
g TSg, and S2(T, Dg) =

∂Q(T, Dg)

∂D−1
g

=
ng

2
(Dg − TSgT

′) .

For model E2VA, solving SD2

{

S1(T̂ , Dg)
}

= 0 for Φ̂ leads again to a total of p − 1 systems of

linear equations, all but one of which is 1× 1. The solution for the 1× 1 system is φ̂21 = −κ21
2 /κ11

2

and solving the remaining systems gives the solution

(

φ̂r,r−2

φ̂r,r−1

)

= −

(

κr−2,r−2
r κr−1,r−2

r

κr−2,r−1
r κr−1,r−1

r

)−1 (

κr,r−2
r

κr,r−1
r

)

,

for r = 3, . . . , p. Now, these estimates can be extended to the EdVA case as follows;













φ̂(g)
r,r−d

φ̂(g)
r,r−(d−1)

...

φ̂(g)
r,r−1













= −













κr−d,r−d
r κr−(d−1),r−d

r · · · κr−1,r−d
r

κr−d,r−(d−1)
r κr−(d−1),r−(d−1)

r · · · κr−1,r−(d−1)
r

...
...

. . .
...

κr−d,r−1
r κr−(d−1),r−1

r · · · κr−1,r−1
r













−1










κr,r−d
r

κr,r−(d−1)
r

...
κr,r−1

r











,

for r = 2, . . . , p. For any d, solving diag
{

S2(T̂g, D̂g)
}

= 0 for D̂g, gives D̂g = diag
{

T̂ SgT̂ ′
}

.
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