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Abstract

Ranked preference data arise when a set of judges rank, in order of their pref-
erence, a set of objects. Such data arise in preferential voting systems and market
research surveys. Covariate data associated with the judges are also often recorded.
Such covariate data should be used in conjunction with preference data when draw-
ing inferences about judges.

To cluster a population of judges, the population is modeled as a collection
of homogeneous groups. The Plackett-Luce model for ranked data is employed to
model a judge’s ranked preferences within a group. A mixture of Plackett-Luce
models is employed to model the population of judges, where each component in
the mixture represents a group of judges.

Mixture of experts models provide a framework in which covariates are included
in mixture models. Covariates are included through the mixing proportions and
the component density parameters. A mixture of experts model for ranked prefer-
ence data is developed by combining a mixture of experts model and a mixture of
Plackett-Luce models. Particular attention is given to the manner in which covari-
ates enter the model. The mixing proportions and group specific parameters are
potentially dependent on covariates. Model selection procedures are employed to
choose optimal models.

Model parameters are estimated via the ‘EMM algorithm’, a hybrid of the
Expectation-Maximization and the Minorization-Maximization algorithms. Exam-
ples are provided through a menu survey and through Irish election data. Results
indicate mixture modeling using covariates is insightful when examining a popula-
tion of judges who express preferences.

Keywords: ranked preference data; clustering; covariates; Plackett-Luce model.

1 Introduction

Ranked preference data arise when judges rank some or all of a set of objects in order
of their preference. Such data arise in a wide range of contexts including in preferential
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voting systems (eg. Irish elections that use a preferential voting system (Coakley and
Gallagher, 2004)), in market research surveys (eg. food preference surveys (Ralston et al.,
2002)) and in university application procedures (eg. in Ireland, students rank up to ten
degree courses in their college application (Gormley and Murphy, 2006)).

Modeling preference data in an appropriate manner is imperative when examining
the behavior of the set of judges who gave rise to the data. Additionally, it is often
the case that covariates associated with each judge are recorded when a survey of their
preferences is taken. Such covariate data can be used in conjunction with preference data
to provide a deeper understanding of the preferences and/or structure of the population
of judges under investigation. Models for preference data including those that incorporate
covariates are discussed in Section 2.1.

Clustering methods are used when it is believed that a heterogeneous population of
judges consists of a collection of homogeneous subpopulations and these subpopulations
are unknown and need to be characterized. Clustering methods tend to be either algo-
rithmic (eg. hierarchical or k-means clustering) or based on statistical models (eg. Fraley
and Raftery, 2002). In the model-based approach to clustering, the population is modeled
as a finite collection of homogeneous groups that are modeled individually using appro-
priate statistical models; that is, a finite mixture model is used to model the data. In this
work a model-based approach is taken, where the Plackett-Luce (or exploded logit) model
for rank data is employed within each group to model the way in which group members
rank preferences. Thus, a mixture of Plackett-Luce models is employed as an appropri-
ate statistical model for the population of judges, where each component in the mixture
represents a group of judges with a specific parameterization of the Plackett-Luce model.
A more detailed outline of the mixture of Plackett-Luce models is given in Section 2.2.

Mixture of experts models (Jacobs et al., 1991) provide a framework in which covariates
are included in mixture models. In these models, covariates are included through the
mixing proportions and through the parameters of component densities using generalized
linear model theory. In Section 2.3, a mixture of experts model for ranked preference data
is developed by combining a mixture of experts model and a mixture of Plackett-Luce
models. Particular attention is given to the manner in which covariates enter the model.

The model parameters are estimated via the ‘EMM’ algorithm, a hybrid of the Expectation-
Maximization (EM) and the Minorization-Maximization (MM) algorithms. Model selec-
tion procedures are employed to select both the manner in which covariates enter the
model and to select the optimal number of groups within the population. This approach
provides a framework where the manner in which covariates influence a clustering is se-
lected in a unified, statistically principled manner. Details of model fitting and selection
are given in Section 3.

In this paper, two applications are used to illustrate the proposed methodology for
clustering ranked preference data in the presence of covariates: a marketing data set
collected through the 1996 Menu Census Survey conducted by the Market Research Cor-
poration of America and an Irish election data set where voters rank electoral candidates
in order of their preference. In both examples, data have been collected from a hetero-
geneous set of judges who have expressed their preferences. Interest lies in establishing
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the existence of homogeneous subgroups of judges in the population who have similar
preferences. Covariates associated with the judges are also available and there is interest
in establishing if the covariates provide information about the clustering. The data sets
are described in detail in Section 4.

The results of applying the mixture of experts model for ranked preference data to the
illustrative examples are given in Section 5. The results indicate that mixture modeling
using covariates can be insightful when examining a population of judges who express
preferences.

Section 6 concludes with a discussion of the proposed model and the results of its
application in the illustrative examples.

2 A Mixture of Experts Model for Ranked Prefer-

ence Data

The mixture of experts model (Jacobs et al., 1991) accommodates clustering and covariate
modeling in a single modeling framework. In this section, we develop a mixture of experts
model for ranked preference data, so that covariates can be used in conjunction with
ranked preference data for clustering purposes.

2.1 Models for Ranked Preference Data

Many models have been proposed for ranked preference data. Examples of models include
distance-based models (Critchlow, 1985; Mallows, 1957) where the probability of a ranking
decreases as the distance from a central ranking increases, order statistic (random utility)
models (Chapman and Staelin, 1982; Luce and Suppes, 1963; McFadden, 1974; Thurstone,
1927) where the ranking reflects the ordering of latent scores given to each object and
multistage ranking models (Benter, 1994; Fligner and Verducci, 1988; Plackett, 1975)
where the ranking is modeled as a sequential process of selecting the next most preferred
object. Detailed reviews of models for ranking data are given by Critchlow et al. (1991),
Fligner and Verducci (1993) and Marden (1995) and references therein.

In this paper, the Plackett-Luce model (or exploded logit model) (Chapman and
Staelin, 1982; Plackett, 1975) for ranked preference data is used to model data within
a homogeneous set of judges. Suppose that data are collected from M judges who list
their preference ordering for a set of N objects. Let c(i, j) denote the object ranked
in jth position by judge i. Then xi = (c(i, 1), c(i, 2), . . . , c(i, ni)) is an ordered list of
the objects as recorded in the ranked preference of judge i, where ni is the number of
preferences expressed by this judge. The Plackett-Luce model with support parameter
p = (p1, p2, . . . , pN) is of the form

P(xi|p) =
pc(i,1)∑N

s=1 pc(i,s)

·
pc(i,2)∑N

s=2 pc(i,s)

· · ·
pc(i,ni)∑N

s=ni
pc(i,s)

=
ni∏

t=1

pc(i,t)∑N
s=t pc(i,s)

, (1)
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where c(i, ni+1), . . . , c(i, N) is any permutation of objects not listed in the judge’s ranked
preference; the choice of this ordering does not influence the probability. In order to make
the parameter p identifiable, it is usual to restrict

∑N
j=1 pj = 1; under this restriction,

the support parameter pj can be interpreted as the probability of selecting object j in
first place, out of the currently available choice set. Under the Plackett-Luce model the
ranking of objects by a judge is modeled as a set of independent choices by the judge,
conditional on the cardinality of the choice set being reduced by one after each choice is
made.

The Plackett-Luce model can be interpreted as either an order statistic (random
utility) model or a multistage model (cf. McFadden, 1974). In particular, let the util-
ity that voter i selects candidate j be Uij = − log pj + ϵij, where the ϵij are inde-
pendent identically distributed according to an extreme value distribution. Then, the
P(xi|p) = P(Uic(i,1) > Uic(i,2) > · · · > Uic(i,ni)) and can be written in the same form as (1)
(eg. Train, 2003, Section 7.3.1).

The Plackett-Luce model can accommodate covariates using a multinomial logit struc-
ture, as proposed in Chapman and Staelin (1982) and Train (2003, Chapter 7). Let
wi = (wi1, wi2, . . . , wiL) be the covariates for observation i. The support parameters are
modeled as a logistic function of the covariates,

log

(
pj(wi)

p1(wi)

)
= γj0 + γj1wi1 + γj2wi2 + · · · + γjLwiL = γT

j
wi.

Object 1 is the baseline category, with γ
1

= (0, . . . , 0), in order to assure identifiability of
the model parameters. This leads to the exploded logit model of the form,

P(xi|p(wi)) = P(xi|γ, wi) =
exp(γT

c(i,1)
wi)∑N

s=1 exp(γT
c(i,s)

wi)
·

exp(γT
(i,2)

wi)∑N
s=2 exp(γT

c(i,s)
wi)

· · ·
exp(γT

c(i,ni)
wi)∑N

s=ni
exp(γT

c(i,s)
wi)

=
ni∏

t=1

exp(γT
c(i,t)

wi)∑N
s=t exp(γT

c(i,s)
wi)

. (2)

In this case, the model corresponds to a random utility model with Uij = γT
j
wi +ϵij where

the ϵij are iid according to an extreme value distribution.

2.2 Mixture Models

The mixture model (also known as a latent class model (LCM)) assumes that a popula-
tion can be modeled as a finite collection of subpopulations, where each subpopulation
can be characterized by a suitable probability density. Mixture models have been used in
a wide range of applications where data are collected from heterogeneous sources. Latent
Class Analysis (LCA) (Lazarsfeld and Henry, 1968) uses a mixture model to investigate
the dependence between categorical variables, thus providing a discrete version of factor
analysis for categorical data. General reviews of mixture modeling are given by Titter-
ington et al. (1985), McLachlan and Basford (1988) and McLachlan and Peel (2000). In
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addition, Fraley and Raftery (2002) provide a review of the use of mixture models for
clustering.

Suppose that a population consists of K subpopulations and that the probability
of belonging to subpopulation k is πk. The probability density for observation xi from
subpopulation k is f(xi|θk), where θk are the parameters of the model for subpopulation
k. Then the model for an observation of unknown subpopulation is of the form

P(xi) =
K∑

k=1

πkf(xi|θk), (3)

that is a K component mixture model. The πk values are known as mixing proportions,
f(xi|θk) are called component densities and θk are the parameters of the component
densities.

Mixture models have been successfully applied to the analysis of ranked preference
data in Stern (1993), Vigneau et al. (1999), Murphy and Martin (2003), Gormley and
Murphy (2006, 2008a), Busse et al. (2007) and Meilă and Bao (2008) amongst others.
The mixture of Plackett-Luce models,

P(xi) =
K∑

k=1

πkf(xi|pk
) =

K∑
k=1

πk

ni∏
t=1

pkc(i,t)∑N
s=t pkc(i,s)

, (4)

where p
k

is the parameter of the Plackett-Luce model that characterizes subpopulation
k, is applied to ranked preference data by Gormley and Murphy (2006) who analyze Irish
college applications. Additionally, Gormley and Murphy (2008a) analyze Irish election
data using both a mixture of Plackett-Luce models and a mixture of Benter models (Ben-
ter, 1994). In this article, the mixture of Plackett-Luce models is extended to facilitate
the inclusion of covariates. The mixture of Plackett-Luce models has some connections
with Latent Class Analysis, in that a mixture model is being used to model the data,
but the motivation is quite different. In this work, the mixture modeling framework is
being used to find clusters in the data, whereas in Latent Class Analysis the emphasis is
to study dependence between variables. However, both approaches use a discrete latent
variable to study structure in the population.

2.3 Mixture of Experts Models

Jacobs et al. (1991) introduce the mixture of experts (MoE) model as an extension of the
standard mixture model to include covariates. Covariates are incorporated in the mixture
model through the use of generalized linear models (GLMs) (Dobson, 2002; McCullagh
and Nelder, 1983; Nelder and Wedderburn, 1972). GLMs are used to model both the
relationship between the outcome variable and covariates and the relationship between
the mixing proportions and covariates. Hence, the general MoE model is of the form

P(xi|wi) =
K∑

k=1

πk(wi)f(xi|θk(wi)) (5)
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where the relationship between the mixing proportions and covariates, for example, is
modeled as a multinomial logistic regression model of the form

log

(
πk(wi)

π1(wi)

)
= βk0 + βk1wi1 + · · · + βkLwiL = βT

k
wi. (6)

The mixture of experts model originates from the machine learning literature and
the terminology used for this model is different from mixture modeling. The mixing
proportions πk(wi) are called gating networks and the component densities f(xi|θk(wi))
are called expert networks.

The MoE model (5) generalizes the mixture model (3) by allowing both the mixing
proportions and the component densities to be functions of the covariates. In this paper
four possible models are proposed by either allowing or not allowing terms in the model
to depend on the covariates. Specifically, the general MoE model in (5) models both
the mixing proportions and the component density parameters as functions of covariates.
The mixture model is a special case of the general MoE model in which neither the
mixing proportions nor the component density parameters are influenced by covariates.
The expert network MoE model allows the component density parameters to depend on
the covariates, but not the mixing proportions while in the gating network MoE model
covariates influence the mixing proportions but not the component density parameters.

In the context of modeling ranked data, the mixture model has been proposed pre-
viously by Gormley and Murphy (2006, 2008a) and the gating network MoE model was
proposed by Gormley and Murphy (2008b). In other contexts, Hurn et al. (2003) used
the expert network MoE model in the special case where the model reduces to a mixture
of regression models. Thompson et al. (1998) used the general MoE model to evaluate
diagnostic criteria for diabetes. A unified framework in which the optimal model is chosen
using model selection techniques has not been employed in any of these applications.

In the MoE model for ranked preference data, for example, the general MoE model
allows both the component densities (or expert networks) and the mixing proportions (or
gating networks) depend on the covariates. Explicitly,

P(xi|wi) =
K∑

k=1

πk(wi)f(xi|θk(wi))

=
K∑

k=1

exp(βT

k
wi)∑K

r=1 exp(βT
r
wi)


ni∏

t=1

exp(γT
kc(i,t)

wi)∑N
s=t exp(γT

kc(i,s)
wi)

 , (7)

which arises from substituting equations (2) and (6) into (5). The mixture model, the
gating network MoE model and the expert network MoE model are special cases of (7)
where the mixing proportions and/or the component densities are treated as constant
with respect to the covariates.

This paper provides an unifying framework for mixture of experts modeling for ranked
preference data by including all four models and allowing the most appropriate model to
be selected using model selection criteria. This framework addresses the question of how
and where covariates can be used in the clustering of ranked preference data.
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3 Model Fitting and Selection

3.1 Model Fitting

The mixture of experts model for ranked preference data can be fitted in a maximum like-
lihood framework using an Expectation-Maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997). The methods for fitting the model closely follow
the methods outlined in Gormley and Murphy (2006, 2008a,b); model fitting details for
the more general model are outlined in this paper.

Let γ = (γ
1
, γ

2
, . . . , γ

N
) and β = (β

1
, β

2
, . . . , β

K
) be the unknown parameters in the

general MoE model for ranked preference data (7). The likelihood function is of the form,

L(β,γ) =
M∏
i=1

 K∑
k=1

exp(βT

k
wi)∑K

r=1 exp(βT
r
wi)


ni∏

t=1

exp(γT
kc(i,t)

wi)∑N
s=t exp(γT

kc(i,s)
wi)


 . (8)

This likelihood function (8) is not easy to maximize directly, due to the conditional
mixture form of the likelihood. As a result, an EM algorithm is used for model fitting.

The EM algorithm is used to provide maximum likelihood parameter estimates when
some of the data under study is (treated as) missing. In this case a latent indicator
variable zi = (zi1, . . . , ziK) is imputed which records the unknown group membership of
observation i, where zik = 1 if observation i comes from group k and zik = 0 otherwise.
The complete data likelihood (i.e. the likelihood of both the missing and observed data)
is then of the form,

LC(β,γ) =
M∏
i=1

K∏
k=1

 exp(βT
k
wi)∑K

r=1 exp(βT
r
wi)


ni∏

t=1

exp(γT
kc(i,t)

wi)∑N
s=t exp(γT

kc(i,s)
wi)


zik

, (9)

giving the complete data log-likelihood

lC(β, γ) = log LC(β, γ) =
M∑
i=1

K∑
k=1

zik log

 exp(βT

k
wi)∑K

r=1 exp(βT
r
wi)


ni∏

t=1

exp(γT
kc(i,t)

wi)∑N
s=t exp(γT

kc(i,s)
wi)




=
M∑
i=1

K∑
k=1

zik log

 exp(βT
k
wi)∑K

r=1 exp(βT

r
wi)


+

M∑
i=1

K∑
k=1

zik

ni∑
t=1

log

 exp(γT
kc(i,t)

wi)∑N
s=t exp(γT

kc(i,s)
wi)

 . (10)

The EM algorithm is an iterative algorithm in which each iteration consists of two steps —
an expectation step and a maximization step. At the expectation or E step the expected
value of the complete data log-likelihood is estimated; in this case the E step reduces to
estimating the expected value of the missing data z. At the maximization or M step the
expected complete data log-likelihood is then maximized with respect to the model param-
eters, producing on convergence (at least local) maximum likelihood parameter estimates.
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At the M step of the EM algorithm, maximization of an equation of the form (10) can
be achieved by noticing that the first term is of the same form as a multinomial logistic
regression likelihood and the second term is of the same form as the likelihood for fitting
an exploded logit mixture model. The two terms involve independent parameters, so they
can be maximized independently at the M step. A Minorization-Maximization (MM) al-
gorithm (Hunter, 2004; Hunter and Lange, 2004; Lange et al., 2000) is used here as a more
efficient way to implement the M step of the EM algorithm. A Minorization-Maximization
algorithm proceeds by iteratively maximizing a minorizing surrogate function which ap-
proximates the original objective function to be maximized. Full details are provided in
Appendix C for the expert network MoE model. Extra details for the implementation of
the M step for the other models are contained in Gormley and Murphy (2008a,b).

Approximate standard errors for the model parameters are computed from the empir-
ical information matrix as outlined in McLachlan and Krishnan (1997) and McLachlan
and Peel (2000), after the EM algorithm has converged.

Given the definition of the latent variables zi the structure of the different forms of
the MoE model for rank data can be clarified, as illustrated using a graphical model in
Figure 1.

3.2 Model Selection

In the unifying framework developed here, all of the MoE models for ranked preference
data are fitted over a range of values for K. The Bayesian Information Criterion (BIC)
(Kass and Raftery, 1995; Schwartz, 1978) is used for model comparison; this criterion
is a penalized likelihood criterion which rewards model fit but penalizes unparsimonious
models. The BIC value is defined to be

−2 × (maximized log-likelihood) + log(M)(number of parameters),

where the first term measures model fit and the second term penalizes for complexity.
Small BIC values indicate an optimal model. The use of BIC for model selection in
mixture models is supported by theoretical results concerning consistency (Keribin, 2000;
Leroux, 1992) and by practical performance (eg. Fraley and Raftery, 2002; Gormley and
Murphy, 2008a; McNicholas and Murphy, 2008; Murphy and Martin, 2003). There are
a number of other model selection methods available including the Akaike Information
Criterion (AIC) (Akaike, 1973), Integrated Completed Likelihood (ICL) (Biernacki et al.,
2000) and cross-validated likelihood (Smyth, 2000). Yang and Yang (2007) discuss the use
of BIC and other information criteria in the separation of latent classes and conclude that
care is advised when separating a large number of latent classes when sample size is small.
Additionally Yang and Yang (2007) comment that the inclusion of informative covariates
improves the performance of information criteria when separating latent classes. In the
applications examined here, we found that BIC gave good clustering results that closely
correspond to the findings in Gormley and Murphy (2008a).

The space of potential MoE models for ranked preference data is very large, once
variable selection for the covariates entering the mixing proportions and mixture com-
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Figure 1: Graphical model representation of the four mixture of experts models: (a) in the
mixture model, the ranking distribution depends on the latent variable z and the model
is independent of the covariates w; (b) in the gating network MoE model, the ranking
distribution depends on the latent variable z and the distribution of the latent variable
depends on w; (c) in the expert network MoE model, the ranking distribution depends
on the covariates w and the latent variable z; the distribution of the latent variable is
independent of the covariates; (d) in the general MoE model, the ranking distribution
depends on the covariates w and the latent variable z and the distribution of the latent
variable also depends on the covariates.

ponents is considered. Here only models where covariates enter all mixture components
or all mixing proportions are considered in order to restrict the size of the model search
space. In fact, even for this reduced model space, there are K × 2L × 2L possible models
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to consider.
A forwards covariate selection procedure was used to find the optimal model within

each type of MoE model. Initially all possible models incorporating a single covariate
were fitted. The covariate in the optimal model, as determined by BIC, is then retained.
The remaining covariates are then added in turn to the optimal model selected at the
first stage, and the best model from this set is selected using BIC. This process continues
until all covariates are included. All models can then be compared via the BIC.

4 Illustrative Applications

Clustering preference data in the presence of covariates is illustrated through the use of
two applications — the first involves clustering a set of respondents from a food preference
survey, while the second involves clustering members of the Irish electorate.

4.1 The Hamburger Preparation Quiz

In 1996 the Market Research Corporation of America carried out an extensive national
mail survey called the Menu Census Survey. The aim of the survey was to conduct an
in-depth study of consumer food safety behavior. As a supplement to the Menu Census
Survey respondents were required to complete a ‘Hamburger Preparation Quiz’. In this
supplement respondents detailed their preferences for hamburgers. Typical survey items
involved respondents stating their preferred hamburger order in a restaurant and their
taste preferences for hamburger styles. Demographic information such as the age, the
population size of their residential area, ethnicity and the gender of each respondent was
also recorded, as was the type of diet (if any) that the respondent was currently following.
The Hamburger Preparation Quiz (HPQ) was completed by 1133 individuals, of which
594 provided complete responses to the demographic questions. The adult with the most
recent birthday in each household completed the HPQ. Appendix A provides full details
of the source of the HPQ data.

Interest lies in determining if groups (or clusters) of people with similar preferences
for hamburgers exist within the population. If such groups do exist, interest lies in deter-
mining the types of preferences within each cluster. Moreover, given that demographic
information is available, examining the influence demographic factors may have on the
clustering structure of the population and/or on the preferences within clusters is of in-
terest.

Question twelve from the HPQ asks respondents to rank hamburger patties in terms
of their taste. Specifically, respondents were asked to rank rare (R), medium-rare (MR),
medium (M), medium-well (MW) and well-done (WD) patties in order of their prefer-
ence. A ‘don’t know/not sure’ option was also offered to respondents but no respondents
availed of this choice. In this application the response to question twelve is treated as the
rank response observation from each respondent. These data were previously analyzed in
Ralston et al. (2002) and Bao and Meilă (2008). Details of the demographic information
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or covariates recorded are provided in Table 1.

Table 1: Demographic information recorded in the Hamburger Preparation Quiz. The
levels of each demographic covariate are detailed as appropriate.

Age Residential area population size Diet Ethnicity Gender
— Farm Not on diet Black Female

< 2500 Diet for medical reasons White Male
2,500–9,999 Diet to gain weight Other
10,000–49,999 Diet to maintain weight
50,000–99,999 Diet to reduce weight
100,000-249,000 Diet for other reasons
250,000-499,999
500,000-999,999
1 million – 2 million
> 2 million

4.2 Irish Election Data

Both governmental and presidential elections in Ireland employ a preferential voting elec-
toral system known as ‘proportional representation by means of a single transferable vote’
(PR-STV). Under this system voters rank, in order of their preference, some or all of the
electoral candidates. The counting process which results in the election or elimination
of candidates is an intricate procedure which involves the transfer of votes between can-
didates as specified by the rank ballots of the voters. Full details of the mechanics of
the PR-STV electoral system are given in Sinnott (2004). Further details on the Irish
political system in general are given in Coakley and Gallagher (2004) and Sinnott (1995).

In this article the electorate from the 1997 Irish presidential election is analyzed.
In 1997 five candidates ran for the office of President of Ireland. Mary Banotti was
endorsed by the political party Fine Gael who were the main government opposition
party in 1997. She was deemed to be a liberal candidate and was popular throughout the
electoral campaign. Mary McAleese was backed by the current government party Fine
Fáil and was known as a conservative candidate. McAleese was widely believed to be the
favorite for the presidency throughout the campaign and she was subsequently elected
as President of Ireland on October 30th 1997. Derek Nally was a late contender for the
post, only being nominated as a potential candidate one month prior to election day. He
ran on an independent ticket and received the least number of first preference votes on
polling day. Adi Roche’s involvement in the Irish presidential campaign in 1997 was the
most unstable. Roche was backed by another government opposition party, the Labour
party, and began the campaign as joint favorite for the presidency along with McAleese.
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Her liberal campaign contrasted with McAleese’s conservative campaign, but Roche’s
popularity began to dramatically decline after negative publicity regarding her work affairs
emerged in the media. As the campaign developed her support ratings dropped. The
fifth candidate Rosemary Scallon was an independent, conservative, candidate. Scallon’s
support pattern during the campaign was the reverse of Roche’s. Scallon began the
campaign with an extremely small support base, but as the campaign wore on she emerged
as a capable candidate and finished in a respectable third place, behind the favorites
McAleese and Banotti. Table 2 summarizes the candidates’ details. A full treatment of
the vote counting process in the 1997 Irish presidential election, and further details, can
be found in Gormley and Murphy (2008b). Additionally, a detailed account of the 1997
Irish presidential election campaign is provided by Marsh (1999).

Table 2: Information about the five candidates who ran for the office of President of
Ireland in 1997.

Name Mary Banotti Mary McAleese Derek Nally Adi Roche Rosemary Scallon
Endorsing party Fine Gael Fianna Fáil Independent Labour Independent

Irish Marketing Surveys (IMS) completed a survey one month prior to the 1997 pres-
idential election. At this time, Roche was still a major contender in the election and
Nally had only started his campaign a few days earlier. In the IMS poll, a sample of 1100
potential voters were asked to list the candidates in order of preference (as if they were
voting on that day); seventeen people who were sampled said that they did not intend
to vote, so they were excluded from this analysis. In addition to the voting preferences,
a number of socioeconomic variables were recorded for each person sampled in the poll;
these are listed in Table 3. Further details on this poll and the covariates are provided in
Appendix B and in Gormley and Murphy (2008b).

Table 3: Covariates recorded for each voter sampled in the IMS poll

Age Area Gender Government Marital Social
satisfaction status class

— City Housewife Satisfied Married AB
Town Non-housewife Dissatisfied Single C1
Rural Male No opinion Widowed C2

DE
F50+
F50-
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In this application interest lies in determining if groups (or ‘voting blocs’) of voters
with similar preferences for the electoral candidates exist within the electorate. If the
electorate is heterogeneous, interest lies in determining the preferences for the candidates
within each voting bloc. Examining the influence the recorded socioeconomic variables
may have on the clustering structure and/or on the preferences within voting blocs is also
of interest.

5 Application results

The proposed MoE model for ranked preference data was applied to the illustrative ex-
amples in order to determine if and how the covariates enter the model and how their
inclusion affects the clustering results.

5.1 The Hamburger Preparation Quiz

All of the MoE models for ranked preference data were fitted to the Hamburger Prepara-
tion data (Section 4.1) with K = 1, 2, . . . , 10. The forwards selection strategy for selecting
covariates outlined in Section 3.2 was utilized and the model with the highest Bayesian
Information Criterion (BIC) was found within each type of MoE model. The results of
this analysis are shown in Table 4.

Table 4: The model with the smallest BIC within each type of the mixture of experts
model for ranked preference data applied to the Hamburger Preparation Quiz data.

BIC K Covariates
The mixture model 3677 6 —

The gating network MoE model 3722 6 πk: Ethnicity

The expert network MoE model 3922 5 p
k
: Gender

The general MoE model 4682 2 πk: Ethnicity
p

k
: Area size

Based on the BIC, the optimal model in this case (the mixture model) suggests that
there are six groups of judges in the population and that none of the recorded covariates are
informative in the modeling. The difference in BIC values indicates very strong support
(Kass and Raftery, 1995, Section 3.2) for the fact that the covariates are noninformative.
The mixing proportions and support parameters of the optimal model are detailed in
Table 5 and shown using a mosaic plot (Emerson, 1998; Hartigan and Kleiner, 1981) in
Figure 2. In the mosaic plot, the width of the bar shows the mixing proportion for each
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1 2 3 4 5 6
Rare

Medium−rare
Medium

Medium−well

Well−done

Group Group Group Group Gp Gp

Figure 2: For the Hamburger Preparation Quiz data, a mixture model with 6 groups was
deemed the optimal model according to the BIC (see Table 4). A mosaic plot representa-
tion of the mixture model parameter estimates is given — the width of a bar illustrates
the mixing proportion for each group and the division of a bar shows the support param-
eter values within each group. Parameter estimates and standard errors are detailed in
Table 5.

component and the division of the bar shows the support parameter values within each
component.

Intuition on the suitability of the modeling techniques employed can be provided
through model diagnostics. Here a comparison is made between the expected number
of first preferences for each choice category, given the estimated model parameters, and
the observed number of first preferences for each choice category. The resulting χ2 test
statistic (detailed in Table 6) demonstrates the suitability of the employed modeling
techniques (p-value = 0.56).

Interestingly, the six groups found in this analysis correspond closely to the six groups
discovered by Bao and Meilă (2008) using a different modeling framework. It is also
notable that within each group the support parameters take large values for a contiguous
subset of the available choices. This is intuitive as there is a natural ordering to the
tastes being ranked. Also, support only tends to be high for one, two or three tastes
within each component suggesting that there are precise preferences within each group.

14



Table 5: Mixture model support parameter estimates (given as percentages) for the Ham-
burger Preparation Quiz data. Standard errors are given in parentheses. Figure 2 provides
an illustration of the estimates.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Rare 0 (< 1) 0 (< 1) 0 (< 1) 30 (< 1) 2 (< 1) 0 (< 1)

Medium-rare 0 (< 1) 25 (< 1) 0 (< 1) 45 (< 1) 6 (< 1) 100 (< 1)

Medium 0 (< 1) 61 (< 1) 38 (< 1) 24 (< 1) 8 (< 1) 0 (< 1)

Medium-well 25 (< 1) 14 (< 1) 62 (2) 1 (< 1) 19 (< 1) 0 (< 1)

Well-done 75 (< 1) 0 (< 1) 0 (< 1) 0 (< 1) 65 (4) 0 (< 1)

Mixing
39 (3) 22 (2) 17 (2) 17 (2) 3 (< 1) 2 (< 1)

proportion

Table 6: Observed and expected number of first preferences for each choice category in
the Hamburger Preparation Quiz data. The χ2 statistic with four degrees of freedom is
not significant, suggesting a good model fit.

Rare Medium Medium Medium Well
rare well done

Observed number
36 75 148 149 186 χ2

4 = 2.99
of first preferences
Expected number

31 87 146 144 186 p = 0.56
of first preferences

Ralston et al. (2002) examined the Hamburger Preparation Quiz respondents’ cooking
and food ordering habits and found that the covariate “area size” had a significant effect
on ordering, with respondents from large cities having a higher probability of ordering
lightly cooked burgers; this analysis did not find this effect in the taste preference data.
The analysis in Ralston et al. (2002) uses the taste preference data as a predictor for
cooking and food ordering habits rather than as an outcome variable.

5.2 The Irish Presidential Election

All of the MoE models for ranked preference data were fitted for K = 1, 2, . . . , 5 and
the forwards covariate selection method was employed when selecting the optimal model
using the BIC. The optimal models for each type of MoE model are reported in Table 7.

Based on the BIC values, the optimal model overall is a gating network MoE model
with four components where ‘age’ and ‘government satisfaction’ are important covariates
for determining group or ‘voting bloc’ membership. Interestingly, the covariates are not
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Table 7: The model with smallest BIC within each type of the mixture of experts model
for ranked preference data applied to the 1997 Irish Presidential Election data.

BIC K Covariates
The gating network MoE model 8491 4 πk: Age, Government satisfaction

The general MoE model 8512 3 πk: Age, Government satisfaction
p

k
: Age

The mixture model 8513 3 —

The expert network MoE model 8528 1 p
k
: Government satisfaction

informative within voting blocs, but only in determining voting bloc membership. This
model corresponds to the model applied to these data in Gormley and Murphy (2008b).

The support parameters for the optimal model are presented in mosaic plot form in
Figure 3(a). For comparison purposes, a mosaic plot of the support parameters for the
best mixture model are shown in Figure 3(b).

The support parameter estimates have an interpretation in terms of political party
competition and in terms of a conservative-liberal competition. Voting bloc 1 is the ‘con-
servative voting bloc’ with larger support parameters for McAleese and Scallon. Voting
bloc 2 has large support for the liberal candidate Adi Roche. This voting bloc indicates
that the model has uncovered some of the observed characteristics of the presidential cam-
paign at the time the poll was taken in that Adi Roche has large support. Voting bloc
3 is the largest voting bloc in terms of marginal mixing proportions and intuitively has
larger support parameters for the high profile candidates McAleese and Banotti. Voters
belonging to voting bloc 4 favor Banotti and have more uniform levels of support for the
other candidates. A detailed discussion of this optimal model is also given in Gormley
and Murphy (2008b).

The groups found in the mixture of experts model and the mixture model show some
correspondence. Voting blocs 2 and 4 in the mixture of experts model (Figure 3(a))
appear to be a division of voting bloc 3 in the mixture model (Figure 3(b)). This suggests
that the mixture of experts model for ranked preference data was able to discover a finer
division of the voters into voting blocs than the mixture model.

Table 8 details the odds ratios computed for the mixing proportion (or gating network)
parameters β = (β

1
, . . . , β

K
). In the model, voting bloc 1 (which is the conservative voting

bloc) is the baseline voting bloc. In addition, in the ‘government satisfaction’ covariate,
the baseline was chosen to be ‘no opinion’.

The odds ratios for the mixing proportions parameters also provide intuitive results
within the context of the Irish presidential election. For example, older (and generally
more conservative) voters are much less likely to belong to the liberal voting bloc 2 than
to the conservative voting bloc 1. Also, voters with some interest in government are more

16



Voting bloc 1Voting bloc 2 Voting bloc 3 Voting bloc 4

Banotti

McAleese

Nally

Roche

Scallon

π̂1 = 19 π̂2 = 16 π̂3 = 35 π̂4 = 30

11 (1)

28 (3)

15 (2)

15 (4)

31 (6)

13 (1)

13 (1)

3 (<1)

70 (1)

1 (<1)

17 (<1)

72 (3)

4 (<1)

6 (<1)

1 (<1)

53 (<1)

14 (1)

13 (1)

15 (1)

5 (<1)

(a)The gating network MoE model

Voting bloc 1 Voting bloc 2 Voting bloc 3

Banotti

McAleese

Nally

Roche

Scallon

π̂1 = 23 (8) π̂2 = 55 (13) π̂3 = 22 (8)

28 (1)

14 (3)

18 (3)

25 (2)

15 (5)

4 (3)

28 (2)

10 (1)

25 (2)

33 (1)

1 (2)
3 (1)

3 (<1)

76 (1)

17 (6)

(b)The mixture model

Figure 3: A mosaic plot representation of the support parameters (given as percentages)
for (a) the gating network MoE model for ranked preference data and (b) the mixture
model fitted to the Irish Presidential Election data. The width of each column denotes
the marginal mixing proportions. 17



Table 8: Odds ratios for the mixing proportion parameters in the gating network MoE
model for ranked preference data.

Age Satisfied Not satisfied
Voting bloc 2 Odds ratio 0.01 1.14 2.80

95% CI [0.00, 0.05] [0.42, 3.11] [0.77, 10.15]
Voting bloc 3 Odds ratio 0.95 3.12 3.81

95% CI [0.32, 2.81] [0.94, 10.31] [0.90, 16.13]
Voting bloc 4 Odds ratio 1.56 0.35 3.50

95% CI [0.35, 6.91] [0.12, 0.98] [1.07, 11.43]

likely to belong to voting bloc 3, the bloc favoring candidates backed by large government
parties, than to belong to the conservative voting bloc 1. Voting bloc 1 had high levels
of support for the independent candidate Scallon. The mixing proportions parameter
estimates further indicate that voters dissatisfied with the current government are more
likely to belong to voting bloc 4 than to voting bloc 1. This is again intuitive as voting
bloc 4 favors Mary Banotti who was backed by the main government opposition party,
while voting bloc 1 favors the government backed Mary McAleese. Further interpretation
of the mixing proportion parameters are given in Gormley and Murphy (2008b).

To diagnose the suitability of the modeling techniques employed, a comparison is
made between the expected number of first preferences for each electoral candidate, given
the estimated model parameters, and the observed number of first preferences for each
candidate. For the optimal (in terms of BIC) gating network MoE model, the resulting
χ2 test statistic (detailed in Table 9 (a)) suggests good model fit; this is not the case for
the less preferable mixture model (Table 9 (b)).

6 Discussion

A novel model has been developed to accommodate the use of covariates when clustering
ranked preference data. The model developed offers the flexibility to allow covariates
influence the clustering by allowing covariate dependence to enter different parts of the
model. Efficient model fitting procedures are developed using a hybrid of the EM and
MM algorithms. Optimal models are selected in a statistically principled manner via a
model selection criterion.

In the application of the model to the Hamburger Preparation Quiz data six clusters
were found and the covariates were found to be noninformative in the modeling. However,
in the analysis of the Irish election data the covariates were found to be informative and
their inclusion provided a deeper picture of the voting bloc structure in the electorate
than a standard mixture model does.

In other applications, the covariates may enter the model in different manners and the
resulting models have the potential to provide a deeper understanding of the population
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Table 9: Table (a) details the observed number of first preferences and the expected
number for the gating network MoE model illustrated in Figure 3 (a). Table (b) details
the expected values for the mixture model illustrated in Figure 3 (b). For the gating
network MoE model the χ2 statistic suggests a good model fit; this is not the case for the
suboptimal (in terms of BIC) mixture model.

(a)

Banotti McAleese Nally Roche Scallon
Observed number

277 411 89 222 84 χ2
4 = 0.85

of first preferences
Expected number

278 399 94 224 88 p = 0.93
of first preferences

(b)

Banotti McAleese Nally Roche Scallon
Observed number

277 411 89 222 84 χ2
4 = 88.9

of first preferences
Expected number

218 424 129 157 156 p = 0.00
of first preferences

than standard clustering methods that do not incorporate covariates. The proposed model
formalizes the practice of trying to understand the cluster structure using covariates by
including the covariates in the model directly.

The Plackett-Luce model was employed as the rank data model within each homoge-
neous group in the MoE model for ranked preference data. Alternative rank data models
could also be employed in the general MoE model framework developed here. Benter’s
model for rank data (Benter, 1994) is one obvious alternative — Benter’s model is similar
to the Plackett-Luce model in that it is parameterized by the same support parameters,
but it also has an additional dampening parameter. The dampening parameter models
the way in which judges may make choices at different levels within their ranking with
differing amounts of certainty. A mixture of Benter models was employed in Gormley and
Murphy (2008a) to analyze Irish election data; this model could be extended to include
covariates. Many other rank data models are available; see Marden (1995) for further
details.

The MoE models for rank data developed here are ideal for specifically modeling
stated ranked preference data (eg. from surveys). However, these models are essentially
variations on standard discrete choice models, tailored for ranked data. For example, the
expert network MoE model for rank data is simply a mixture of standard logit choice
models which have been tailored to model rank data (Train, 2003); this can also be
thought of a mixed logit model (McFadden and Train, 2000) for rank data where the
mixing density is discrete. Hence, the general framework detailed here can be applied
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to other forms of choice data by changing the component densities f(xi|θk(wi)) to the
appropriate form. The parameters of the appropriate density may then be modeled as a
function of the covariates.

The generalization of the MoE model for rank data to MoE models for any form of
choice data highlights a link with the popular latent class model for choice data. Greene
and Hensher (2003) contrast the latent class model with the mixed logit model using
an illustrative study in which preferences for road environments are recorded. Latent
class models have also been extended to include covariates; for example Dayton and
Macready (1988) develop the concomitant-variable latent class model where covariates
enter both the mixing proportions and the class specific probabilities using a logistic
framework. Reboussin et al. (2008) also incorporate covariates in the latent class model
when modeling data from a large scale survey of under-age drinking.

Preference ranking data arises in a wide range of contexts and the proposed model
has potential applications in these contexts. For example, marketing surveys such as
the Hamburger Preparation Quiz examined in this paper are widespread. The modeling
framework developed here can be employed to not only highlight clusters of consumers,
but also the covariates which influence, or perhaps significantly do not influence, the
clustering structure. The model allows for a detailed analysis of clustering and the effect
of covariates on rankings. However a limitation of the proposed MoE model for rank data
is its unsuitability for evaluating standard choice modeling outputs such as forecasts or
‘willingness to pay’ measures (Hensher et al., 2005). Due to the inherent nature of ranked
data output measures are difficult to evaluate. Moreover, even diagnosing the suitability
of ranked data models poses problems.

The model could be extended to include object covariates as well as covariates for
the judges. This would offer an even deeper understanding of the preference ranking
procedure. In the Irish election context presented here, for example, including candidate
covariates such as their area of residence may provide deeper insight to structure of the
electorate and/or to the electorates’ preferences.

More advanced methods for selecting the covariates could be considered and there
is the possibility of expanding the model space so the covariates only enter some of the
mixing proportions or some of the component densities rather than all; this approach was
used in a different context by Gustafson and Lefebvre (2008).
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A The Hamburger Preparation Quiz Data Source

The Hamburger Preparation Quiz data set was collected in 1996 by the Market Research
Corporation of America through the Menu Census Survey. The Hamburger Preparation
Quiz form and the data set are freely available from
http://www.ers.usda.gov/Data/Hamburger/.

B Irish Election Data Source

The 1997 Irish presidential opinion poll data set was collected by Irish Marketing Surveys
and is available through the Irish Elections Data Archive
http://www.tcd.ie/Political Science/elections/elections.html

which is maintained by Professor Michael Marsh in the Department of Political Science,
Trinity College Dublin, Ireland.

C Mathematical Details for the EMM algorithm

In this section, the expert network MoE model for ranked preference data will be employed
to illustrate parameter estimation via the EMM algorithm. In the expert network MoE
model, the support parameters within each group are modeled as a function of the judges’
covariates. Specifically, for j = 1, . . . , N , k = 1, . . . , K and the covariates of judge i, wi

pkj(wi) = exp(γT
kj

wi)

where γ
kj

= (γkj0, . . . , γkjL) is a vector of parameters. To ensure identifiability in the

expert network MoE model γ
k1

= (0, . . . , 0) meaning pk1 = 1 in all groups. Under this
definition pk1 + · · ·+pkN ̸= 1, but the structure of the Plackett-Luce density ensures valid
probabilities of the final preference orderings.

The complete data log-likelihood for the expert network MoE model is

lC(π, γ) =
M∑
i=1

K∑
k=1

zik

{
log πk +

ni∑
t=1

γT
kc(i,t)

wi −
ni∑

t=1

log
N∑

s=t

exp{γT
kc(i,s)

wi}
}

. (11)

Maximizing the complete data log likelihood (11) via the EMM algorithm provides max-
imum likelihood estimates (MLEs) for π and γ.

The EMM algorithm

The EM algorithm (Dempster et al., 1977) is an iterative algorithm consisting of two
steps per iteration, an ‘E’ or expectation step and a ‘M’ or maximization step. In the
EMM algorithm maximization at the M step is achieved by employing ideas from MM
algorithms (Hunter and Lange, 2004).
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In the E step of the EMM algorithm the expected value of the complete data log-
likelihood is calculated; essentially this step involves calculating the expected value of the
latent variables, z. The form of the E step is independent of the type of MoE model
for ranked preference data; the appendix in Gormley and Murphy (2008a) provides full
details of the E step.

In the M step of the EMM algorithm the expected complete data log-likelihood derived
in the E step is maximized with respect to the model parameters, π and γ. In the expert
network MoE model for ranked preference data the mixing proportions π are treated as
independent of the voter covariates. The form of the estimate π̂ derived at the M step is
therefore the same as that derived under a mixture of Plackett-Luce models; details can
be found in Gormley and Murphy (2008a).

In the expert network MoE model the Plackett-Luce support parameters p are treated
as functions of the voter covariates with parameters γ. Maximization of the expected value
of (11) with respect to γ is complex due to the intricate form of the Plackett-Luce density.
Ideas from optimization transfer algorithms or ‘MM algorithms’ are therefore employed
to maximize the expected value of (11) with respect to γ.

Constructing linear surrogate functions

Differentiating the expected value of (11) with respect to γkjl for k = 1, . . . , K, j =

2, . . . , N and l = 0, . . . , L is problematic due to the term − log
N∑

s=t

exp{γT
kc(i,s)

wi}. Such

maximization issues may be overcome by implementing an optimization transfer algorithm
in which optimization is transferred from the problematic objective function to a suitable
surrogate function (Lange et al., 2000). Surrogate functions are constructed by exploiting
mathematical properties of (part of) the problematic objective function. One approach
to constructing linear surrogate functions employs the supporting hyperplane property of
a convex function. If f(θ) is a convex function with differential f ′(θ) and θ̄ denotes a
constant value of the generic parameter θ, then

f(θ) ≥ f(θ̄) + f ′(θ̄)(θ − θ̄).

Since − log(·) is a convex function

− log
N∑

s=t

exp{γT
kc(i,s)

wi} ≥ − log
N∑

s=t

exp{γ̄T
kc(i,s)

wi} + 1 −

N∑
s=t

exp{γT
kc(i,s)

wi}

N∑
s=t

exp{γ̄T
kc(i,s)

wi}

where γ̄ denotes a constant value of γ. In practice, this value is the value of the parameter
from the previous iteration of the EMM algorithm. Hence the expected complete data
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log likelihood becomes, up to a constant,

E{lC(π,γ)} ≥
M∑
i=1

K∑
k=1

ẑik

ni∑
t=1


γT

kc(i,t)
wi −

N∑
s=t

exp{γT
kc(i,s)

wi}

N∑
s=t

exp{γ̄T
kc(i,s)

wi}


. (12)

This surrogate objective function still poses challenges (due to the term − exp{γT
kc(i,s)

wi})
when used to provide estimates of γ. Optimization transfer algorithms can be imple-
mented again to simplify the maximization.

Constructing quadratic surrogate functions.

The term − exp{γT
kc(i,s)

wi} is concave and employing a quadratic surrogate function in

this case would improve the approximation of the surrogate function to the objective
function. A concave function g(θ) can be bounded around θ̄ using a quadratic function
via

g(θ) ≥ g(θ̄) + {g′(θ̄)}T (θ − θ̄) + 0.5(θ − θ̄)TB(θ − θ̄)

for negative definite B where B > d2g(θ̄)
dθ2 . Hence

− exp(γT
kj

wi) ≥ − exp(γ̄T
kj

wi) − wT
i exp(γ̄T

kj
wi)(γkj

− γ̄
kj

) − 0.5(γ
kj
− γ̄

kj
)TB(γ

kj
− γ̄

kj
)

where B = wT
i wi. The covariates are constrained such that 0 ≤ wil ≤ 1 for computational

ease. Hence (12) becomes

E{lC(π, γ)} ≥
M∑
i=1

K∑
k=1

ẑik

ni∑
t=1

γT
kc(i,t)

wi −
[

N∑
s=t

exp{γ̄T
kc(i,s)

wi}
]−1 N∑

s=t

{
wT

i exp(γ̄T
kc(i,s)

wi)γkc(i,s)
+

0.5γT
kc(i,s)

(wT
i wi)γkc(i,s)

− γT
kc(i,s)

(wT
i wi)γ̄kc(i,s)

}]
.

This surrogate to the expected complete data log-likelihood is now simply a quadratic
function in γkjl and maximization is straightforward. Maximizing with respect to γkjl for
k = 1, . . . , K and j = 2, . . . , N and l = 0, . . . , L provides the estimate of the MLE γ̂kjl

γ̂kjl =

M∑
i=1

ẑik

ni∑
t=1

wil1{j = c(i, t)} −

∑N
s=t

[
wil exp{γ̄T

kj
wi} − (wT

i wi)γ̄kjl

]
1{j = c(i, s)}∑N

s=t exp{γ̄T
kc(i,s)

wi}


M∑
i=1

ẑik

ni∑
t=1

∑N
s=t{(wT

i wi)}1{j = c(i, s)}∑N
s=t exp{γ̄T

kc(i,s)
wi}

 . (13)
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The EMM algorithm for the MoE model for ranked preference
data

In summary, the steps of the EMM algorithm to estimate the MLEs of the parameters of
the expert network MoE model for ranked preference data are:

0. Let h = 0 and choose initial parameter estimates γ(0) and π(0).

1. E-Step: Compute the quantities z
(h+1)
ik for i = 1, . . . ,M and k = 1, . . . , K as

detailed in Gormley and Murphy (2008a).

2. M-Step:

(a) Compute π
(h+1)
k for k = 1, . . . , K as detailed in Gormley and Murphy (2008a).

(b) Compute γ
(h+1)
kjl for k = 1, . . . , K, j = 2, . . . , N and l = 0, . . . , L as detailed in

(13).

3. If converged, then stop. Otherwise, increment h and return to Step 1.

Convergence is assessed in this case using Aitken’s acceleration (Böhning et al., 1994;
Lindsay, 1995). The M step changes for the gating network MoE model and for the general
MoE model where the mixing proportions π are treated as functions of the covariates; full
details of the calculations required in these M steps are detailed in Gormley and Murphy
(2008b). For the mixture model, an EMM algorithm is also required; details are provided
in Gormley and Murphy (2006).
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