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ABSTRACT

Antimicrobial peptides (AMPs) are naturally occurring entities with potential as
pharmaceutical candidates and/or food additives. They are present in many organisms
including bacteria, insects, fish and mammals. While their antimicrobial activity is
equipotent with many commercial antibiotics, current limitations are poor
pharmacokinetics, stability and potential toxicology issues. Most elicit antimicrobial
action via perturbation of bacterial membranes. Consequently, associated cytotoxicity in
human cells is reflected by their capacity to lyse erythrocytes. However, more rigorous
toxicological assessment of AMPs is required in order to predict potential failure at a
later stage of development. We describe a high-content analysis (HCA) screening
protocol recently established for determination and prediction of safety in pharmaceutical
drug discovery. HCA is a powerful, multi-parameter bioanalytical tool that amalgamates
the actions of fluorescence microscopy with automated cell analysis software in order to
understand multiple changes in cellular health. We describe the application of HCA in
assessing cytotoxicity of the cytolytic a-helical peptide, melittin, and selected structural
analogues. The data shows that structural modification of melittin reduces its cytotoxic

action and that HCA is suitable for rapidly identifying cytotoxicity.
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INTRODUCTION

Antimicrobial peptides (AMPs) are an emerging group of natural host-defence peptides
that have clinical potential as novel antibiotics for treatment of systemic, enteric or
topical microbial infections [1], and at the same time have use as food additives, mostly
as preservatives of canned food (e.g. Nisin; Danisco, UK) [2]. There have been a number
of candidate AMPs in clinical development for microbial infections (reviewed in [3]).
One such example is Pexiganin® (Magainin Pharmaceuticals, USA), a magainin
analogue, although it failed a Phase Il trial as a topical agent for treatment of diabetic
foot ulcers [4, 5]. Literature describing novel antimicrobial peptides have typically
outlined their isolation, synthesis and physicochemical properties, as well as their
spectrum of antimicrobial action and with mechanistic study of cell membrane
perturbation [6]. Assessment of AMP cytotoxicity potential is usually determined by
measuring their capacity to perturb neutral and cationic model membranes or
erythrocytes, as well as their role in regulation of host immunity [7]. Although such
assays are pertinent because some AMPs are thought to act exclusively through
perturbation of phospholipid bilayers [8], subtle cytotoxicity should also be examined in
mammalian cells in order to understand how AMPs act on a range of cellular processes in
sub-lethal concentrations, and not just by their ability to cause cytolysis. This is important
because determination of drug safety is multi-factorial and depends on maintenance of

virtually all cellular events [9].

Selecting the right candidate for further pre-clinical and clinical development is often

challenging, especially from large synthetic peptide libraries or where rational structural



modification of an AMP can lead to large groups of candidate peptides with potent
antimicrobial action [10], all with variable degrees of cytotoxicity to human cells. For
example, structure activity studies on the AMP, melittin, have generated large numbers of
structural analogues [11]. Melittin is an amphipathic cationic linear 26-mer o-peptide that
has cell penetrating activity as well as well-known cytotoxicity in erythrocytes [12] and
enterocytes [13] and other mammalian cells [14]. Alongside phospholipase A2, it is a
major constituent of the venom of Apis Mellifera, and has been found to cause apoptosis
and necrosis in different cells [15, 16], as well as agonist and antagonist actions on many
cellular proteins including phospholipase A2 and ATPases (reviewed in [14]). Melittin
itself cannot be used clinically as an antimicrobial because it is equally damaging to
mammalian cells. Single amino acid modifications of melittin significantly reduced
hydrophobicity, amphipathicity and helicity, all of which reduced the peptide’s hemolytic

action, but did not have as significant an effect on its antimicrobial activity [11, 17, 18].

HCA screening to determine drug-induced toxicity is a recently established pre-clinical
cell-based technology platform that is used to understand subtle changes in cell health in
discovery programmes, with the aim of reducing toxicity-associated attrition in the clinic
[19, 20]. Unlike conventional cytotoxicity assays such as the 3-(4,5-dimethylthiazol-2-
yl)-2,5 diphenyltetrazolium bromide (MTT) conversion assay, which detects overt, gross
cytotoxicity, HCA provides pre-lethal toxicity assays that have high sensitivity and
specificity [9, 19, 21]. HCA combines flow cytometry with automated fluorescence
microscopy and advanced image analysis software, permitting quantitative analysis of

multiple cellular events in single cells (Fig. 1). The HCA instrument reads metrics in



individual cells in multiwell plate formats with sensitive fluorescent dyes, inverted
fluorescent microscopy and suitable software to quantify changes in fluorophore staining.
Sensitivity of HCA for detection of cytotoxicity was an order of magnitude greater than
that of the MTT assay in assessing cytotoxicity of the polymer,  poly((2-
dimethylamino)ethyl methacrylate) (pDMAEMA) in Caco-2 and U937 cells [22]. For
the HCA cytotoxicity protocol for AMPs, we used methodology developed by O’Brien et
al (2006) [21]. Screening involved detecting changes in cell number (CN), nuclear area
(NA), nuclear intensity (NI), mitochondrial membrane potential (MMP), plasma
membrane permeability (PMP) and intracellular calcium (IC). These parameters measure
selected cellular metabolic events and were optimised for HCA because they are

hallmarks of cell health [9, 19].

In order to better understand the structural activity relationships (SARS) involved in the
cytotoxic effects of this AMP, and also to illustrate the capacity of HCA as a tool for the
rapid delineation of such SARs, we examined the cytotoxicity of melittin and four
structural analogues in Caco-2 cells after 24 and 72 hours. The duration of exposure was
chosen to encompass acute and chronic exposure because 75% of molecules typically do
not express acute cytotoxicity [9]. Human intestinal Caco-2 cells were selected for
assessment because of current interest in use of AMPs both to treat enteric infections and

as potential food additives.

MATERIALS AND METHODS



Peptide synthesis, purification and characterisation

Coupling reagents, Fmoc-protected amino acids, and Rink Amide MBHA resin were
purchased from Novabiochem (Merck, UK). All other reagents and solvents were
purchased from Sigma-Aldrich (Ireland). Peptides were prepared by standard solid-phase
peptide synthesis [23] according to the Fmoc-t-Bu strategy [24] with HBTU/HOBt/DIEA
coupling chemistry in NMP solvent. Single coupling cycles (except for L13, double
coupling cycle) using a 10-fold excess of Fmoc-amino acid derivatives to resin bound
peptide were used. The side chain protecting groups were t-Bu for Ser and Thr; Trt for
GlIn; Boc for Lys and Trp; Pbf for Arg. The syntheses were carried out on a 1.0 x10* mol
scale. Assembly of the amino acid sequences, starting from a Rink Amide MBHA resin,
was carried out on an automated peptide synthesizer (Applied Biosystems 433A).
Peptides were deprotected and cleaved from the synthesis resin using a mixture of 82.5%
trifluoroacetic acid (TFA), 5% water, 5% triisopropylsilane, 5% thioanisole, 2.5% EDT,
at room temperature for 2.5 hours. The peptides were precipitated and washed three times
with 10 ml aliquots of diethyl ether. They were then dried, dissolved in distilled water
and lyophilized. Chromatographic analysis and purification were performed on a
BioCAD SPRINT Perfusion Chromatography Workstation (PerSeptive Biosystems)
using Gemini columns (Phenomenex, 110 A, 5um, C18, 4.6mmx250mm,
250mmx100mm, for the analytic and semi-preparative columns, respectively). Buffers
used were mobile phase A: 0.1% TFA in HPLC grade water; mobile phase B: 0.1% TFA
in acetonitrile with a gradient: 2-60% B in 18 column volumes (analytical) or 5 column
volumes (semi-preparative) with a flow rate: 1ml/min (analysis) or 5ml/min (semi-

preparative) and single wavelength detection at 214 nm. Following purification by



preparative RP-HPLC, each peptide was dried by lyophilisation, weighed on an analytical
balance and reconstituted in sterile ultrapure water for purity analysis by analytical RP-
HPLC, in which the purity of each peptide exceeded 95%. Purified peptides were finally
characterised by matrix-assisted laser desorption/ionization Time-of-flight (MALDI-

TOF) mass spectrometry using the a-cyano-4-hydroxy-cinnamic acid matrix.

Cell culture

Caco-2 cells were purchased from the European Collection of Animal Cell Cultures (UK)
and cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with foetal
bovine serum (10% (v/v)), L-glutamine (2mM), penicillin (100U) / streptomycin
(100pg/ml) and 1 % (v/v) non-essential amino acid cocktail. Cells were maintained in
vented 75 cm? flasks in a humidified cell culture incubator with 5% CO, at 37°C.
Viability of cells at the point of seeding onto plates exceeded 99%, as determined by

haemocytometry with trypan blue dye exclusion.

HCA screening assay

Cytotoxicity of melittin and its structural analogues on Caco-2 cells was examined in a
HCA protocol that has been validated in the sensitive and selective in vitro assessment of
hepatotoxicity [21]. Caco-2 cells were seeded in 96-well cell-culture plates at a density of
3 x10° cells for 24 hours to adhere, and subsequently treated with ten concentrations (0.1-
50uM) of melittin or peptide analogues (diluted two-fold), in duplicate for 24 and 72
hours in an incubator (37°C, 5% CO,/95% 0O,). Positive controls including carbonyl

cyanide p-trifluoromethoxy-phenylhydrazone (FCCP) (a mitochondrial membrane



uncoupler, 100pM), ionomycin (a calcium ionophore, 20uM) and Triton® X-100 (a
detergent, 0.05% (v/v)), were included [21]. Prior to data acquisition, each well was
incubated with a dye cocktail mixture containing a final concentration of Hoechst
(0.8uM) (measure of CN, NI and NA), Fluo-4 AM (1uM) (measure of IC), TOTO®-3
iodide (1uM) (measure of PMP) and tetramethyl rhodamine methyl ester (TMRM;
20nM) (measure of MMP) for 60 min at 37°C and protected from light. Data were
captured for each plate at 10x (for cell counts) and 20x (for all other cytotoxic metrics)
objective magnification in the selected excitation and emission wavelengths of Hoechst
(ExX/Em 360/460nm), Fluo-4 AM (Ex/Em 480/535nm), TMRM (Ex/Em 535/600nm) and
TOTO®-3 iodide (Ex/Em 620/700nm). Exposure times were optimized for Caco-2 cells
for Hoechst (150 ms), Fluo-4 AM (500 ms), TMRM (600 ms) and TOTO®-3 iodide (200
ms). For each well, six random field-of-view images were acquired to examine each
parameter except cell number, where ten fields of view were used. Data for CN, NA, NI,
MMP, PMP and IC were acquired on an In Cell® 1000 High Content Analyzer (GE
Healthcare, UK). This instrument analyses epifluorescence of individual cell events using
an automated micro-plate reader analyzer interfaced with a PC (Dell XW6200

Workstation).

Statistical analysis
All experiments were carried out with technical replicates on three independent
occasions. Data exported from the In Cell® 1000 workstation software were illustrated

using GraphPad 5.0® Prism software, and expressed as the mean = SEM. Statistical



analysis was carried out in GraphPad® by analysis of variance (ANOVA) with P < 0.05

selected as the criterion of statistical significance.

RESULTS

Synthesis, characterisation and purification of melittin analogues

Purity of each synthetic peptide was > 95% and their integrity was confirmed by matrix-
assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectroscopy (data
not shown). Peptide analogue-1 (PA-1) had an alanine deletion at position 15; analogue-2
(PA-2) had a tryptophan deletion at position 19, while analogue-3 (PA-3) was a double
substitution of heptadic leucine at positions 6 and 13 with alanine. Analogue-4 (PA-4)
was truncated at its 11 N-terminal residue (Table I). Peptide synthesis was validated by
inclusion of commercially obtained melittin purified by chromatography (Serva,
Germany); both the native and synthetic melittin had identical cytotoxicity in MTT assay

(data not shown).

Effect of melittin analogues on viability of Caco-2 cells measured by HCA

Compared to untreated control, FCCP decreased the MMP of Caco-2 cells by 30%
following 10 min incubation (P<0.0001) (Fig. 2a, b). Triton X-100 and ionomycin
likewise increased PMP and IC by 3- and 5- fold, respectively (P<0.0001) (Figs. 2 c, d
and e, f, respectively). These data indicate that Caco-2 cells respond to an expected
exogenous challenge by positive control drugs. None of the peptides significantly altered

CN after 24 hours incubation (Fig. 3, Table I1). The parameters significantly affected by
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low concentrations of native melittin were NA and MMP (1.6puM; P<0.05). At the higher
concentration of 3.1uM, NI, IC and PMP were significantly increased. Representative
Images depicting melittin-induced changes to each cell metric are illustrated in Fig. 4a-c.
Upon addition of melittin (3.1uM, Fig. 4b), there was a noticeable increase in IC (green)
and PMP (magenta) compared with control (Fig. 4a). After further increases in melittin
concentration (6.3uM; Fig. 4c), there were even more significant morphological changes
to cell shape and NA as well as more obvious increases in PMP (magenta) and IC
(green), and decreases in the MMP (red) (Fig 4c). The data for the 24 hour incubation
indicate that melittin alters each cell metric in a concentration dependent fashion, except

for CN.

The effects of PA-1-to-PA-4 on Caco-2 cell viability are summarised in Table Il. The
initial metrics to change in cells treated with PA-1 for 24 hours were NA, NI and PMP
(6.3uM) (Fig. 3). The effect of PA-1 on IC was only noted at the highest concentration
(100uM) (Fig. 3, Table II). In the case of PA-2, MMP of Caco-2 cells was reduced at
3.1uM after 24 hours, and all other parameters were significantly changed at 12.5uM,
which was a 4-fold higher concentration than native peptide (Fig. 3, Table II). The
actions of PA-3 on parameters measured in Caco-2 cells broadly varied from changes in
IC (6.3uM) to changes in MMP (100uM), and its affects on each parameter were greater
than native melittin, PA-1 and PA-2 (Fig. 3, Table II). PA-4 did not affect most
parameters measured even at the highest concentration (100puM) (Fig. 3, Table 11). Fig. 4c
illustrates modest effects of PA-4 on cell parameters following 24 hour incubation. These

data indicate that PA-1-to-PA-3 cause a concentration-dependent alteration in most cell
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parameters at 24 h, and that the trend follows the order of PA-1=PA-2>PA-3>PA-4. In
summary, PA-1 induced similar changes in cell parameters to native melittin, whereas the

other analogues had reduced cytotoxic actions at lower concentrations.

72 hour incubation of cells with melittin (3.1uM) and PA-1 (3.1uM), PA-2 (12.5uM) and
PA-3 (25uM) led to a significant decrease in CN (P< 0.001) (Fig. 4, Table II). PA-4 had
no effect on CN up to a concentration of 100pM. The initial cellular metrics that melittin
affected at 72 hours were NI and IC (both 1.6pM) followed by CN, NA, PMP (all
3.1uM), and then MMP (6.3uM) (Fig. 4). Fig. 3e-g illustrates the effect of melittin on
each parameter after 72 hours. The most noteworthy effects of melittin (3.1-6.3 pM) are
decreased CN and MMP, increased IC as well as alteration in cell and nuclear shape. The
effect of the peptides on CN decreased in the order melittin = PA-1<PA-2<PA-3<PA-4
(Table I1). Such a trend was also observed for all other parameters with the exception of
IC, which was affected to a similar extent by each PA (Table II). At 72 hours exposure,
PA-4 did not affect CN, PMP, NA, NI or MMP. However, although it altered NI (6.3uM)
and IC (0.2uM), the effects were concentration-independent and significant only at two
outlying concentrations. Fig. 4h is a representative image showing that PA-4 had no
effect on each parameter even at the highest concentration (100uM). In summary, 72
hour treatment with melittin also led to a concentration dependent decrease in each of the
cell metrics, including CN. Similar to the shorter incubation time, the concentration
required to effect each measured metric increased in the order of melittin>PA-1>PA-

2>PA-3> PA-4. The only exception was IC which was affected by each peptide analogue,

12



suggesting structural changes do not alter the ability of melittin to interfere with calcium

homeostasis.

DISCUSSION

The ability of a membrane-active, cationic AMP to lyse erythrocytes is a relevant initial
assay that is aimed at understanding their capacity to kill mammalian cells, but falls short
of predicting overall cytotoxicity of AMPs. No single parameter can be used to define the
cytotoxicity of a drug. The ideal properties of optimally effective assays have been
reviewed [19]: the assay must be sensitive enough to detect lethal and sub-lethal
cytotoxicity for a wide range of concentrations; it must predict acute and chronic
cytotoxicity, and it should measure multiple parameters. The current HCA screen was
established and optimised in Pfizer (USA), where subtle hepatotoxicities of 243 drug
substances were evaluated and compared to known human toxicity [21]. Comprehensive
assessment of cytotoxicity combined with automation and high throughput are suited to
drug discovery and permit drug prioritisation and optimisation during drug screening.
The number of natural peptides listed in AMP databases is into the thousands, and
increases year-on-year [25, 26], and there is potential for even larger numbers of AMPs
to arise from synthetic AMPs generated rationally or by serendipity from recombinant
micro-organisms (e.g. of lantibiotics [27]) or from synthetic combinatorial libraries [28].
Because efficacy of these AMPs can be rapidly determined in multi-well HTS assays

(e.g. National Clinical Laboratory standards), it is paramount that such an equally rapid
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cytotoxicity screen can be employed to detect selective toxicity for bacterial over human

cells

Cytotoxicity of melittin is well established in a range of mammalian cells, notably
erythrocytes [12]. Its toxicity has also been detected in hepatocytes [16], enterocytes [13],
intestinal goblet cells [13], and astrocytomas [29]. Incubation of Caco-2 cells for 24
hours with melittin caused a concentration-dependent decrease in PMP and MMP, the
former suggesting it could cause cellular necrosis, similar to findings in human intestinal
goblet cells (HT29) using annexin-5-FITC/Propidium iodide staining [15]. The only
parameter not significantly affected after 24 hours by the AMP was CN; however, this
was also the case with the non-ionic surfactant and cell-penetrant, Triton X-100. It is not
uncommon for such membrane perturbants to reduce cell viability by first altering plasma
membrane permeability [30]. After lysis, the subsequent actions of a surface active agent
are solubilisation of the lamellar bilayer structure into mixed micelles and only then is the
cell structure disbanded [30, 31]. We previously hypothesized that cationic melittin
could more readily dissipate the anionic mitochondrial membrane compared with that of
the more neutral cell-plasma membrane leading to induction of apoptosis [15]. This
process can be followed by phosphatidylserine (PS) translocation from the inner leaflet of
the phospholipid bilayer to the outer leaflet, reducing the charge on the cell membrane,
and ear-marking the outer membrane for subsequent lysis by extracellular peptide.
Chronology of the data indicated that melittin altered Caco-2 MMP before PMP, and

therefore this could be an initial process in cell membrane perturbation.
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The effects of melittin on calcium homeostasis are well established. It increased IC in
osteoblast-like cells [32], fibroblasts [33], hepatocytes [16, 34] and mast cells [35]. In
human osteoblasts, melittin increased IC levels only when calcium was present
extracellularly and not from intracellular stores [32]. Melittin also inhibits Ca**-ATPase
in the sarcoplasmic reticulum, suggesting modulation of IC is not just related to cell
membrane perturbation [36]. The peptide (1.8-3.5uM) did not alter membrane integrity of
HepG2 cells when stained with annexin-FITC/PI dual staining, indicating an apoptotic
process rather than necrosis [16]. Further assessment indicated that melittin increased 1C
followed by activation of a signaling cascade involving CAMKII-TAK1-MKK-JNK/p38.
The authors also noted a decrease in MMP, activation of caspase-3, capase-9 and PARP
in HepG2 cells, as well as release of cytochrome c from isolated mitochondria,
suggesting involvement of the mitochondrial oxidative pathway. The lack of effect on
membrane permeability in liver cells contrasted from our data with Caco-2 cells. In
another report, melittin did not lead to DNA fragmentation in a range of cell types, even
at concentrations where there was a significant loss of plasma membrane integrity and an
increase in IC [37]. Apoptosis was not detected in intestinal goblet cells by four methods
for detecting programmed cell death [15], but did however detect necrosis by annexin-
FITC/PI dual staining. There are multiple studies showing different effects of melittin in
different cell types (reviewed in [14, 38]). What is clear is that the actions of micromolar
concentrations of melittin are mediated, in part, through increases in 1C, decreased MMP
and loss of membrane integrity, which may lead to concentration-, time- and cell type-

dependent induction of cell death.
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Activation of phospholipase A2 was not investigated in this study. However, the
cytotoxicity profile of melittin, which was inhibited by gangliosides, was
pharmacologically separated from melittin’s stimulatory action on phospholipase A2
[35]. Furthermore, the cytotoxicity of melittin appears to be separate from its capacity to
activate Go; and Ga,, and appears to be a direct action of melittin since it has been
observed in cell free systems [39]. Our results do not preclude contributions to cell

damage via other pathways and some of these may act in synergy [40].

Structural modification of melittin attenuated its cytotoxicity in Caco-2 cells after both 24
and 72 hours. The selected modifications did not have the same affect on the
antimicrobial action of melittin and therefore such findings encourage the molecular
engineering of AMPs to generate non-toxic peptides which retain antibiotic function [41].
PA-1 had a comparable minimum inhibitory concentration (MIC) against S. aureus [11];
PA-2 had 4-fold higher MIC against S. aureus [11]; PA-3 had the same MIC as the native
peptide when tested against E. coli, B. subtilis and S. aureus [18] and PA-4 had 3-7 times
lower MIC against E. coli, B. subtilis and S. aureus [17]. For most metrics, there was a
reduction in cytotoxicity in the order of melittin>PA-1>PA-2>PA-3>PA-4, correlating
with reduction in hydrophobicity index (see Table | and reference [42]) but different to
the order that antimicrobial activity changes suggesting different modes of membrane
perturbation for bacterial and mammalian cells. Altering hydrophobicity, amphipathicity
and/or helicity of melittin reduces the cytolytic action of melittin on mammalian
membranes [11, 18, 43, 44]. PA-1 and PA-2 are deletion analogues that had 8-fold and

124-fold less hemolytic activity than native melittin [11], are less hydrophobic and
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demonstrate lower cytotoxicity by MTT assay [42]. Similarly, PA-1 was also less
sensitive than melittin in three of the six measured parameters in HCA screening of Caco-
2 cells after 24 and 72 hours. Reduced cytotoxicity of each PA correlated with reduced
hydrophobicity. There were however, signs that these analogues could still have
undesired cellular effects because they also increased IC at 72 hours [18]. Disruption of
the leucine zipper motif in PA-3 reduced the a-helical content from 75% to 8% which
was reflected in the significant attenuation in cytotoxicity in Caco-2 cells. PA-4 had 300-
fold reduction in hemolytic activity compared with native melittin [17, 45], and it was the
least cytotoxic analogue tested here. Similar to PA-1-to-PA-3, the reduced capacity of
PA-4 to form a-helical and multimeric structures abrogated its cytolytic action. The PA-4
truncation also reduced the hydrophobicity of melittin by the greatest percentage as
measured by elution from a reverse phase HPLC separation (Table | and [42]). Melittin
has also been investigated as a drug delivery agent that can boost permeation of poorly
absorbed drugs across the intestinal epithelium [46]. The same structural modifications
reduced its capacity to promote drug permeation through transcellular pathways. The
current data corroborates these findings, since PMP changes are characteristic of agents

that act transcellularly [42].

In a recent HCA toxicity assessment we also evaluated the cytotoxicity of patulin,
another toxin that has been found to alter permeability in Caco-2 cells [47]. Patulin is a
small polyketide that is structurally distinct from melittin, yet comparison is relevant in
the context of antimicrobial action and effects on intestinal permeability [47, 48]. The

same concentrations of melittin and patulin affected PMP, IC and NA, but melittin
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perturbed MMP at a 2-fold lower concentration. Patulin reduced CN at nearly 4-fold
lower concentrations than melittin, indicating that the mycotoxin is more cytotoxic than

melittin in Caco-2 cells [47].

Direct comparison of HCA cytotoxicity assessment with MTT in Caco-2 can be made for
melittin, PA-1 and PA-2. Their respective ICs values in the MTT assay were 2.5uM,
8.6uM and 11.2uM at 24 hours [42]. This was in contrast to 1.6uM (MMP), 6.3uM
(PMP) and 3.1uM (MMP) by HCA screening at 24 hours. The HCA also highlights that
while the cytotoxicity of each peptide analogue is reduced, they can still influence IC
which suggests they could have undesired effects in vivo; this was something that the
MTT assay did not flag. Also noteworthy is that HCA was more sensitive than the MTT
assay, despite melittin’s actions on mitochondria, the target of enzymes for the MTT
assay. The current HCA assay has also highlighted effects of melittin and its analogues
on cellular parameters at concentrations below those that are hemolytic. Advancement of
these peptides to preclinical assessment based purely on haemolysis is therefore not
recommended and further study is required to establish their therapeutic potential and

safety.

In conclusion, melittin is cytotoxic to Caco-2 cells and uses complex mechanisms
involving dissipation of MMP, elevation of IC and increased PMP. Selected structural
modifications that attenuated the hemolytic action of melittin also reduced its cytotoxicity
in Caco-2 cells. There was evidence from HCA that these analogues do not have as high a

degree of separation between their antimicrobial action and toxicity, as previously
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demonstrated by haemolysis. The data for each peptide indicates that cytotoxicity
primarily involves membrane perturbation. HCA screening is therefore a powerful tool
that permits sensitive and specific detection of cytotoxicity in target cells and aids

understanding of a wide range of cellular processes that could be affected by AMPs.
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Fig. 1: Schematic representation of HCA. Instrumentation exploits the combined power
of high throughput multi-well automation with epifluorescence microscopy as well as the
capability of multi-wavelength fluorescent dye analysis. (a) Cells treated in multiwell

plates and stained with fluorescent dye cocktail, (b) plate is docked in the live cell
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chamber at 37°C for kinetic analysis, (c) images are acquired at 10x or 20x magnification,
(d-e) images are then subjected to segmentation analysis and large volumes of
quantitative data are generated for both individual cells and cell populations; this is used

in tandem with the fluorescent micrographs taken during acquisition.
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Fig. 2: (a-b) ionomycin (20uM), (c-d) Triton X100 (0.05% (v/v)) and (e-f) FCCP
(100uM) for determination of optimal fluorescence exposure times during HCA method
validation and within each experiment to verify the cell capacity to respond to each
measure metric. Panels (a, c, e) are representative photomicrographs and (b, d, f) are
collated, quantitative fluorescence intensity (y-axis) data processed for each field of
measurement. Each fused fluorescent micrograph was acquired at 20x objective
magnification and pseudo-coloured accordingly; Hoechst® (nuclear staining; blue), Fluo-
4 AM (green; measure of IC), TOTO®-3 iodine (magenta; measure of PMP) and TMRM
(red; measure of MMP). Each value represents the mean fluorescence intensity + SEM.

(*** P< 0.0001)
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Fig. 3: Cytotoxicity of melittin and analogues on Caco-2 cells after 24 hour incubation.
Rows are CN, NA, NI, MMP, IC, and PMP. Columns are (i) melittin, (ii) PA-01, (iii) PA-
02, (iv) PA-03 and (v) PA-04. Each value represents the mean fluorescence intensity +

SEM.
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Fig. 4: Selected photomicrographs representing metrics affected by melittin and PA-04
on Caco-2 cells over time. Panels (a-d) show Caco-2 cells treated for 24 hours with (a)
media (b) melittin (3.125uM), (c) melittin (6.3uM), (d) PA-04 (100uM). Panels (e-h)
show Caco-2 cells treated for 72 hours with (e) media (f) melittin (3.125uM), (g) melittin
(6.3uM), (h) PA-04 (100uM). Each fused fluorescent micrograph was acquired at 20x
objective magnification and pseudo-coloured accordingly; Hoechst® (nuclear staining;
blue), Fluo-4 AM (green; measure of IC), TOTO®-3 iodine (magenta; measure of PMP)

and TMRM (red; measure of MMP).
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Fig. 5: Cytotoxicity of melittin and analogues on Caco-2 cells after 72 hour incubation.

Rows are (a) CN (b) NA, (c) NI, (d) MMP, (e) IC and (f) PMP. Columns are (i) melittin,
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(i) PA-01, (iii) PA-02, (iv) PA-03 and (v) PA-04. Each value represents the mean

fluorescence intensity + SEM.

Table I: Properties of melittin and four structural analogues, including; sequence,
molecular weight, designation, relative hydrophobic index and cytotoxic inhibitory
concentration (ICso (UM)) value as determined by MTT assay in Caco-2 cells following
24 hour incubation (modified from [19]).

Molecular Modification Relative 1Cso from
Peptide Sequence Weight (designation) Hydrophobic MTT
(Da) 9 Index (24 h) (M)
GIGAVLKVLTTGLPALISWIKRKRQQ | 2846 S%gﬂ‘tfltr'f 1 2.48
GIGAVLKVLTTGLP—LISWIKRKRQQ | ,77c . (PA) 0.04 8.6
11.2
GIGAVLKVLTTGLPALIS—IKRKRQQ 2660 . PA2) 089
GIGAVAKVLTTGAPALISWIKRKRQQ | 576, o (PA3) 0.84 >12
e >12
GLPALISWIKRKRQQ 1793 . (PA4) 074
* Amino acid deletion

kel Amino acid substitution

Table I1: Comparison of the cytotoxic effect of melittin and four structural analogues on

Caco-2 cells following 24 and 72 hour incubation. Each concentration (uM) represents
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the first concentration where there was an effect on the measured metric. Arrows (1)

indicate the effect was an increase in value (* P < 0.01; ** <0.001 and *** P < 0.0001).

1.6 [3.125[3.125(1) | 1.6(1) |16 |6.25 3.125(1) | 1.6(1) |3.125(1) | 3.125(1) 3.125
Melittin

* *** **k* * * * **k* **k* ** **k* **k*

6.25 | 6.25 | 6.25(1) |6.25(1) | 125 | 12,5 100 0.4(1) |6.25(1) |3.125(1) 3.125
PA-1

3.12

125 [ 125 | 12.5(1) | 12.5(1) 12.5(1) | 1.6(1) | 12.5(1) | 12.5(1) 12.5
PA-2 5 50*

* *** **k* **k*k *** *** **k* **k* **k*

50 |25 12.5(1) | 12.5(1) | 100 | 100 6.25(1) | 1.6(1) | 12.5(1) | 12.5(1) 25
PA-3

6.25(1) 0.2(1)

PA-4 - - - - - - - - -

*

**
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