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Abstract

Natural and man-made brittle layers embedded in a weaker matrix and subjected
to layer-parallel extension typically develop an array of opening-mode fractures with
a remarkably regular spacing. This spacing often scales with layer thickness, and
it decreases as extension increases until fracture saturation is reached. Existing an-
alytical one-dimensional (1-D) ’full-slip’ models which assume that interfacial slip
occurs over the entire length of the fracture-bound blocks predict that the ratio
of fracture spacing to layer thickness at saturation is proportional to the ratio of
layer tensile to interface shear strength (T/τ). Using 2-D discontinuum mechanical
models run for conditions appropriate to layered rocks we show that the validity
and consequent applicability of these 1-D models depends on T/τ . High T/τ ratios
(ca. > 3.0) promote interfacial slip and yield results that, in terms of fracturing and
interfacial slip evolution, provide a good fit to a 1-D shear lag model, which, in the
limit, becomes the ’full-slip’ model. At lower T/τ ratios, however, interfacial slip
is suppressed and the heterogeneous 2-D stress distribution within fracture-bound
blocks controls further fracture nucleation. Our models suggest that 1-D approx-
imations for predicting the spacing of fractures in layered materials are erroneous
for low T/τ ratios.
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1 Introduction1

Opening-mode fractures are extremely common phenomena in natural and man-made2

materials. In geosciences they are referred to as joints (Mandl, 2005) and in engineer-3

ing they are termed cracks (Nairn, 2000). In mechanically layered materials, such as4

sedimentary rock sequences or laminates, these fractures typically form perpendicular to5

the layer boundaries and are often best, or exclusively, developed in the stiffer and more6

brittle layers (Fig. 1a), although under some circumstances fractures may first form in7

the weaker beds (Bourne, 2003). Studies of these fractures in layered rocks (Ladeira and8

Price, 1981, Huang and Angelier, 1989, Narr and Suppe, 1991, Ji and Saruwatari, 1998,9

Ji et al., 1998, Gillespie et al., 2001, Iyer and Podladchikov, 2009), physical experiments10

(Garrett and Bailey, 1977, Mandal et al., 1994, Wu and Pollard, 1995) and numerical mod-11

els (Tang et al., 2008) have revealed that fracture spacing increases with layer thickness.12

A wide variety of mechanisms have been suggested for the origin and scaling relations13

of layer-confined opening-mode fractures (Bourne, 2003, Mandl, 2005). In the present14

study, we focus on one of the most commonly used boundary conditions for investigating15

the mechanics of opening-mode fractures in layered materials: fracturing due to layer-16

parallel extension under constant layer normal stress. For this case, experimental work17

has revealed that fracture spacing decreases approximately as the inverse of the applied18

layer-parallel strain (Manders et al., 1983, Parvizi and Bailey, 1978). This is because new19

fractures form in-between existing fractures, a process referred to as sequential infilling20

(Bai et al., 2000, Bai and Pollard, 2000b). Eventually no new fractures form, irrespective21

of any further increase in applied strain, a condition called fracture saturation (Wu and22

Pollard, 1995, Bai et al., 2000, Bai and Pollard, 2000b, Dharani et al., 2003).23

The earliest and most commonly invoked mechanical explanation for fracture satura-24

tion is that the fracture spacing reaches a critical value (relative to the layer thickness, t)25

at which maximum tensile stresses within the fracture bound blocks are too low to yield26

further fracture. This explanation is based on the concept of frictional coupling between27

the fractured layer and the ambient material or ’matrix’ (Fig. 1b). The layer/matrix28
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interface has a frictional strength τ given by the Coulomb limit stress σnµ, where σn is29

the interfacial normal stress and µ is the interfacial friction coefficient (Mandl, 2005). The30

static balance of mechanical forces requires that a constant interfacial shear stress, τ , is31

balanced by a constant layer-parallel average stress gradient, dσx/dx (Fig. 1b). If slip32

occurs over the entire length of a fracture-bound block (full-slip conditions), the layer-33

parallel normal stress (σx) distribution between two traction free fractures is triangular,34

with the maximum tensile stress occurring in the block centre (Fig. 1b). This central35

maximum tensile stress is, however, limited by the tensile strength of the layer, T . The36

critical fracture spacing (sc) is therefore defined as the spacing below which the maximum37

tensile stress can not reach the layer strength, i.e. sc = Tt/τ (Fig. 1b).38

The above equation is known as Price’s model in the geologic literature (Price, 1966,39

Mandl, 2005) and as the Kelly-Tyson equation in material sciences (Kelly and Tyson,40

1965, Tripathi and Jones, 1998). For laminates and fibre composites, it is widely applied41

to estimate interfacial shear strength from fragment length measurements (Tripathi and42

Jones, 1998). This full-slip model is the most commonly applied end-member of a suite of43

models referred to as shear lag models (Cox, 1952, Hobbs, 1967, Piggott, 1978, Lloyd et al.,44

1982, Berthelot et al., 1996, Ji and Saruwatari, 1998, Ji et al., 1998, Berthelot, 2003, Jain45

et al., 2007). Different shear lag models vary in the assumed modes of transfer of tensile46

stress across the layer/matrix interface, e.g. the full-slip model is the limit solution (at47

infinite layer extension; e→∞) for a cohesionless frictional interface. Although differing48

in detail, shear lag models all predict that sequential infill fractures should form midway49

between existing fractures, such that the range of fracture spacing at a particular strain50

varies by a factor of two, i.e. 0.5sc, < s < sc. The average fracture spacing is hence given51

by s̄ = 0.75sc, an expression sometimes referred to as the Ohsawa et al. equation (Ohsawa52

et al., 1978, Tripathi and Jones, 1998).53

Despite their successful application in material science (Berthelot et al., 1996, Berth-54

elot, 2003), the limitations of shear lag models are manifest in a variety of ways. For55

example, whilst physical experiments without any clear evidence for interfacial slip can56
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attain fracture saturation (Garrett and Bailey, 1977), shear lag models with inhibited in-57

terfacial slip (τ →∞) predict fracturing ad infinitum (Bai et al., 2000). In addition, they58

are unable to account for fracture clustering in ’corridors’ (Olson, 2004) or ’crack families’59

(Groves et al., 1987) and for the formation of splay, i.e. branch, fractures. This is because60

the feature common to all shear lag models is that they are based on stresses averaged61

over the thickness of the layer, i.e. they are effectively 1-D treatments. Consideration of62

layer-normal σxx variations and the near crack tip stress field on fracturing is thus absent.63

Figure 164

An alternative explanation for fracture saturation in the absence of interfacial slip65

is that segment-bounding fractures become sufficiently closely spaced such that a layer-66

parallel compressive normal stress arising between the existing fractures prevents the67

insertion of new fractures (Altus and Ishai, 1986). This is referred to as compressive68

stress criterion (CSC; Dharani et al., 2003) or stress-transition theory (Bai et al., 2000,69

Bai and Pollard, 2000b). The CSC is based on 2-D numerical (Bai et al., 2000, Bai and70

Pollard, 2000b, Korach and Keer, 2002, Li and Yang, 2007) and analytical (Schoepp-71

ner and Pagano, 1999, Adda-Bedia and Amar, 2001) modelling of the stress distribution72

between two predefined fractures. For a fracture spacing to layer thickness ratio of ap-73

proximately one, this modelling reveals that a region of compressive layer-parallel normal74

stress σxx develops right across the central area of the fracture-bound block (Bai et al.,75

2000, Bai and Pollard, 2000b, Fig. 1c). This central compression belt will inhibit further76

fracturing, although numerical analysis indicates that tensile stresses adjacent to the in-77

terface (Fig. 1c) may be sufficient to cause propagation of vertical fractures across this78

belt from interface-flaws mid-way between the two existing fractures (Bai and Pollard,79

2000a). Fracture saturation occurs when a limiting fracture spacing to thickness ratio is80

reached, at which fractures can not propagate across the compressive belt. For identical81

layer and matrix elastic properties, this limit is s/t = 0.546, such that smin/t for a fracture82

set at complete infilling would be 0.273 (Bai and Pollard, 2000a). This predicted range is83

referred to as the 2-D infill criterion.84
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Whilst the CSC theory provides a rationale for fracture saturation without interfacial85

slip, unlike the shear lag models, it is limited because it does not include such slip. Exper-86

imental studies on fibres (Huang and Young, 1995, van den Heuvel et al., 1997, Tripathi87

and Jones, 1998) and laminates (Berthelot, 2003), for example, have shown that during88

extension interfacial slip, or, in the presence of cohesion, interface debonding, occurs.89

Analysis of plume lines on joint faces also suggests that interfacial, e.g. bedding parallel,90

slip or matrix yielding must sometimes occur during joint growth (Savalli and Engelder,91

2005). Moreover, and importantly, the CSC theory does not account for observations of92

fracture saturation at s/t ratios in excess of one.93

The above considerations suggest that a fuller explanation of fracture scaling relation-94

ships for the wide range of naturally occurring and man-made interface properties requires95

a more complete model definition, ideally one which incorporates behaviours explained by96

both theories illustrated in Fig. 1. Here we describe discontinuum numerical models that97

explicitly replicate fracturing of a layer in response to layer-parallel extension and to 2-D98

stress distributions within fracture blocks. We consider a range of layer/matrix interface99

properties and compare our model results with those of shear lag and CSC theories.100

2 Methods101

2.1 Model geometry and boundary conditions102

In our discontinuum models the layer and matrix are represented as an assemblage of103

bonded circular particles (Fig. 2; Potyondy and Cundall, 2004). The bonds between104

particles comprising the central layer fail if their strength is exceeded and the linkage of105

those broken bonds leads to the formation of fractures. The particles and bonds do not106

represent sand grains and cement, respectively; they merely provide a numerical material107

that mimics the mechanical response of brittle materials (see Appendix A for details). A108

drawback of discretisations using randomly placed particles is that the simulated fractures109

are jagged, whereas rock joints are often remarkably smooth. This aesthetic shortcoming110

will in the future be resolved by the generation of progressively higher resolution models,111
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with smaller particle sizes. Discontinuum models with regular (e.g. cubic) particle packing112

also permit the formation of straight fractures, but would however inhibit the formation113

of non-planar fractures, which, as shown later, are an important feature in some of our114

models.115

Figure 2116

In all our models the first fracture forms wherever the layer is weakest (discontinuum117

models have heterogeneous strength distributions; see Appendix A) when the average118

tensile stress within the layer reaches ∼ 6.5 MPa (see Fig. A1), a tensile strength typical119

for sedimentary rock (e.g. limestone, sandstone; Lockner, 1995). Failure within the matrix120

is prevented so that matrix yielding and fracturing does not affect fracture within the121

central layer. Layer-matrix interface geometries and frictional properties are represented122

through a so-called ’smooth-joint’ contact model (Itasca Consulting Group, Inc., 2008,123

Mas Ivars et al., 2008) that implicitly replaces the irregular geometry of an interface124

between domains within a particle assemblage with a planar discontinuity (Fig. 2). After125

uniaxial confinement this three-layer model is extended horizontally with a velocity low126

enough to assure quasi-static conditions, while maintaining a constant vertical stress of -5127

MPa which, under lithostatic conditions and for an overburden density of 2500 kg/m3, is128

equivalent to a depth of ∼ 200 m (Fig. 2); our results are however applicable to a broader129

range of confining pressure and tensile strength because the controlling factor is T/τ (see130

below). Further details of the modelling are given in Appendix A.131

We present results from four models with non-cohesive interfaces with friction coeffi-132

cients µ of 0.2, 0.3, 0.5 and 0.8 and one model with a welded interface. All models attain133

a finite strain of 0.008 and fracture saturation. The friction coefficients used in this study134

cover the wide range reported by Byerlee (1978) for confining pressures of < 5 MPa, at135

which the large variation in friction is due to variation in surface roughness. Although ex-136

perimental constraints on the frictional properties of lithological interfaces (e.g. bedding137

planes) are very sparse, we consider that the broad range, and in particular the lower138

values, used in this study are appropriate. A range of interfacial shear strengths was139
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achieved by varying the interfacial friction coefficient, rather than the confining pressure,140

because the latter would also cause variations in both elastic properties and strength due141

to their pressure dependence (e.g. Schöpfer et al., 2009). The role of the interfacial friction142

in our models is simply to limit the interfacial shear stress; whether this is achieved in143

a natural system by interfacial slip and/or plasticity of the matrix layers depends on a144

wide range of extrinsic and intrinsic parameters. In fact, if the interfacial shear strength145

is greater than the shear strength of the matrix then the strength of the (plastic) matrix146

in shear is the controlling factor in determining fracture spacing (Kelly and Tyson, 1965).147

2.2 Graphical representation148

The model evolutions and their differences can be explored by generating the three types149

of plot presented in Fig. 3 for different models at different stages of their evolution.150

Animations of these plots of the five different models presented in this paper are provided151

as an electronic supplement. Each of these three forms of output are outlined below:152

(i) Broken bonds and interface slip diagram: Shows the locations of sliding ’smooth-153

joint’ contacts and broken bonds. If sliding occurs on a ’smooth-joint’ contact, it is154

drawn as a horizontal line at the contact location, with a length equal to the area of155

the ’smooth-joint’. A sliding contact is defined as a contact where |Fs| > 0.99Fnµ,156

where Fn and Fs are the contact normal (+ve) and shear force, respectively. Each157

broken bond, or ’crack’, is drawn as a black line (Figs. 3 and 4) half-way between158

the two initially bonded particles, with a length equal to the average diameter of159

the two particles and perpendicular to a line joining the particle centres.160

(ii) Horizontal normal stress plot: Shows the average horizontal normal stress (σx) dis-161

tribution within the central layer (as defined by Eq. C.1). The stress is normalised162

by the minimum layer tensile strength Tmin, defined as the stress at which the first163

fracture forms (Fig. A1). If the layer strength and horizontal stress (σxx) distribu-164

tions were homogeneous, then subsequent fracturing would occur at the same stress165

level. However, the particulate nature of the model makes the material intrinsically166
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heterogeneous, so that the average horizontal normal stress can exceed Tmin, i.e.167

1.0 in the graph. Most importantly, if the heterogeneous σxx distribution controls168

fracture, as in the high interfacial strength models, then fracture can occur at stress169

levels which are significantly lower than the average layer strength.170

(iii) Interfacial shear stress plot: Shows the interfacial shear stress distributions, ex-171

pressed as the ratio of shear to normal stress, τxy/σyy, for each ’smooth-joint’ con-172

tact, with clockwise shear couples taken to be positive (Fig. 3). In case of the173

cohesionless, frictional interface models the maximum value of this ratio is limited174

by the friction coefficient, µ. We therefore plot τxy/σyy/µ (i.e. τxy/(µσyy)), so that175

the data plotted range from -1.0 to 1.0. Values of -1.0 or 1.0 hence indicate that176

anti-clockwise and clockwise interfacial slip occurs, respectively.177

Figure 3178

3 Results179

The fracture spacing and interfacial slip evolution of the discontinuum models with various180

interfacial friction coefficients are shown in Figs. 4 and 5. The discontinuum model results181

are compared with predictions based on a shear-lag model with interfacial slip which, in182

the limit, yields a finite fracture spacing equivalent to the full-slip model (see Appendix183

B and Appendix C).184

Figure 4 & 5185

3.1 Low interfacial friction models (µ = 0.2 and µ = 0.3)186

For µ = 0.2 and µ = 0.3 (Fig. 5) there is good agreement between discontinuum and187

shear-lag model predictions for the evolution of fracture spacing and reasonable agreement188

for the proportion of slip (which is defined as the ratio of the sum of sliding ’smooth-joint’189

contact areas to the sum of all ’smooth-joint’ contact areas). This similarity of results190
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occurs because the dominant process in both models is mid-point fracture (Figs. 3 and191

4).192

The stress evolution in the low friction models is in close agreement with theoretical193

considerations (Fig. 3; see also Appendix B). Once a fracture forms the average layer-194

parallel normal stress at this location drops to zero and interfacial shear stresses develop195

adjacent to the fracture. If the interfacial shear stress exceeds the shear strength interfacial196

slip commences. In each fracture-bound block the shear sense is symmetric across a197

horizontal mirror plane through the centre of the layer and a vertical mirror plane through198

the centre of the block (Fig. 3a). The length of the slip regions decreases with increasing199

interfacial shear strength (see first row in Fig. 4) and the vertical shear stress gradient200

is balanced by a horizontal normal stress gradient, which is constant in the slip regions.201

Fracture saturation in the low friction models occurs when slip occurs along the entire202

interface as predicted by the full-slip model (compare Figs. 1b and 3b)203

3.2 High interfacial friction models (µ = 0.5 and µ = 0.8)204

For µ = 0.5 and µ = 0.8 (Fig. 5) there is poor agreement between discontinuum and205

shear-lag model predictions (the deviation from the shear lag prediction is greater for the206

higher friction model). The discontinuum modelling yields a much larger range of fracture207

spacings during system evolution than the factor of 2 variation predicted by the shear lag208

model and it produces a much lower average spacing at saturation.209

Figure 6210

Both of these discrepancies arise because 2-D heterogeneous stress distributions within211

fracture-bound blocks, which are unaccounted for in the 1-D shear lag model, exert im-212

portant controls on fracturing in the discontinuum models with high interface frictions.213

Fracture saturation in the µ = 0.8 discontinuum model arises largely by the same process214

as described for the 2-D infill criterion (compare Figs. 1c and 6b), i.e. infill fractures can215

not propagate across a belt of compressive stress at the centre of a fracture block once a216
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critical s/t ratio is achieved (this critical s/t is� 1.0 in our models). However, the wider217

range of fracture spacing than the factor of 2 variation prediction by mid-point fracture218

throughout the evolution of the µ = 0.5 and µ = 0.8 discontinuum model is due to the219

formation of new fractures close to existing fractures in blocks with s/t � 1 (Fig. 4).220

Neither the shear lag nor CSC theories predict these new fractures, but their formation is221

consistent with the commonly observed clustering of fractures in real layered materials. In222

our models, the new fractures nucleate at interfaces and either propagate across the layer223

to form through-going fractures or link with existing fractures to form splays/branches224

(Fig. 6). They form when the maximum principal (least compressive) stress near the225

interface is located in close proximity to the existing fractures (Groves et al., 1987, Hu226

et al., 1993), rather than mid-way between them as predicted by 1-D analyses. The new227

fractures propagate along curved principal stress trajectories that are convex towards the228

earlier fracture (Fig. 6a). Such curved fractures are indeed observed in some laminates229

(Groves et al., 1987, Hu et al., 1993).230

3.3 Reconciliation of fracture saturation theories231

Fracture spacings at saturation as predicted by the 1-D full-slip model (Price’s or Kelly-232

Tyson equation), the compressive stress criterion (CSC) and the 2-D infill criterion, and233

as observed in discontinuum modelling, are compared in Fig. 7. There is good agreement234

between the full-slip model and the discontinuum models at friction coefficients of µ < 0.4235

(Fig 7a). At higher friction coefficients, however, the discontinuum modelling predicts a236

wider range of fracture spacing than the full-slip model and a lower average spacing.237

Instead, the discontinuum model spacings here overlap with predictions of the alternative238

2D infill criterion, which is thus shown to become more appropriate as welded interface239

conditions are approached. Moreover, and in contrast to the unrealistic zero spacing240

predicted by the full-slip model, the discontinuum model predicts spacings at saturation241

in close agreement with the 2-D infill criterion at T/τ ratios approaching zero (i.e. a242

welded interface; Fig 7b).243
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We presume that the T/τ value limiting the validity of 1-D approximations will be244

greatly controlled by the size of existing flaws and may therefore vary widely as a function245

of material heterogeneity (Tang et al., 2008).246

Figure 7247

4 Discussion248

Distinct Element Method modelling of the fracturing of a brittle layer embedded in a249

weaker matrix provides a rationale for the wide range of fracture characteristics observed250

in nature (e.g. Sagy and Reches, 2006). With increasing layer parallel extension, new frac-251

tures form in-between existing fractures, a process referred to as sequential infilling, until252

no new fractures form when fracture saturation is reached. The resulting fracture dis-253

tributions are often scale-dependent, with approximately regular fracture spacing which254

scales with layer thickness, features which are typical of natural and man-made fracture255

systems. Fracture spacing at saturation does, however, vary with the layer tensile to256

interface shear strength ratio (T/τ) and is therefore not, as previous work has suggested,257

an indicator of fracture system maturity or saturation (all models shown in the lowest258

row in Fig. 4 are saturated). Conclusions about fracture saturation arising from numer-259

ical models with predefined fractures that do not explicitly permit fracture nucleation,260

propagation and associated interfacial slip (Bai and Pollard, 2000b) can, therefore, be261

misleading. Variations in layer tensile to interface shear strength ratios (T/τ) can also262

lead to changes in both fracture spacing populations and fracture geometries. At high T/τ263

ratios fractures are straight, fracture spacings are quasi-periodic and fracture spacing to264

layer thickness ratios at saturation range down to ca. 2 (Fig. 7), values which are typical265

of many fracture systems. At lower T/τ , by contrast, fractures become more curved and266

branched, clustered fracture patterns emerge and fracture spacing to layer thickness ra-267

tios at saturation are often less than 1. Whilst existing analytical one-dimensional (1-D)268

full-slip models are in good agreement with higher T/τ models, at lower T/τ interfacial269

slip is surpressed and 2-D stress distributions within fracture-bound blocks controls fur-270
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ther fracture nucleation. Detailed analysis of the precise nature of fracture distributions271

and shape, and how they change with mechanical parameters, such as T/τ ratio and layer272

properties, is beyond the scope of this study but could have significant scientific and prac-273

tical benefits. Our modelling shows, for example, that fracture branching and clustering274

is not necessarily an indicator of either dynamic crack propagation (Sagy and Reches,275

2006) or sub-critical crack growth (Olson, 2004). Branches and curved fractures in our276

models nucleate at the layer interface and propagate towards existing straight fractures, a277

scenario which was envisaged, but not investigated, in a study on fracture stepping across278

interfaces (Cooke and Underwood, 2001). Perhaps the analysis of plume lines on natural279

joint faces may reveal whether branched fracture geometries arise from either fracture280

bifurcation or fracture linkage.281

Our models reproduce many aspects of the geometry and evolution of fracture patterns282

in single layers and also provide a basis for considering the potential impact of some other283

factors:284

(i) Confining pressure and strength: In this study we have explored the impact of285

interfacial friction coefficient on fracturing in a three-layer system under a constant286

confining pressure (Fig. 7a), defined by a constant layer-normal stress of -5 MPa287

which is equivalent to ∼ 200 m depth for lithostatic conditions and an overburden288

density of 2500 kg/m3. In a horizontally layered sequence the interfacial shear289

strength τ of cohesionless interfaces is the product of the vertical stress σv and the290

friction coefficient µ, such that |τ | = σvµ. We expect, therefore, that similar relations291

to those shown in Fig. 7 will arise for constant µ and for variable σv, which under292

lithostatic conditions is given by γh (where γ is the specific weight of a rock column293

extending down to a depth of h). If pore water is present then the effective vertical294

stress is given by σ′v = σv(1− λv), where λv is the ratio of pore fluid pressure pf to295

vertical stress σv (Sibson, 1998, Mandl, 2005). Under normal hydrostatic conditions296

(λv = 0.4) an effective vertical stress of -5 MPa would hence be equivalent to a297

depth of 340 m. The above relationships mean that for a constant interfacial friction298
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coefficient and layer tensile strength, a decrease in fracture spacing at saturation is299

expected with increasing depth; the actual depth depends on overburden density and300

pore pressure (Fig. 8). At certain depths, however, confining pressure inhibits the301

formation of opening-mode fractures and there is a transition to shear fracturing302

(Sibson, 1998, Ramsey and Chester, 2004, Schöpfer et al., 2007). By the same303

token, in a sequence which is deformed at a constant confining pressure a systematic304

decrease of fracture spacing will accompany a decrease in layer strength, until at a305

certain strength a transition to shear failure will occur (Fig. 8).306

(ii) Interface cohesion: The layer/matrix interfaces in our models are cohesionless,307

a simplification which cannot always be justified in a natural system. We expect308

that cohesion will decrease fracture spacing and that Price’s full-slip model could309

potentially overestimate saturation fracture spacing. Indeed, our ongoing discontin-310

uum modelling of cohesive interfaces suggests that the layer-parallel normal stress311

profiles (Fig. 3ii) exhibit a central convex upwards region (corresponding to the312

intact interface) which at the cusps exhibit a steeper slope than in the slip region313

(Piggott, 1997). The tensile stress within this central region can be higher than for314

a cohesionless interface and can hence cause further fracturing.315

(iii) Elastic properties and layer/matrix thicknesses: Our modelling verifies Price’s316

full-slip model for cohesionless interfaces and high layer tensile to interface shear317

strength ratios (T/τ). Because Price’s model is solely based on a balance of me-318

chanical forces under interfacial full-slip conditions, elastic properties and matrix319

thicknesses have no impact on fracture spacing at saturation (the detailed evolution320

of fracture spacing is theoretically dependent on these properties). The 2-D stress321

distribution within fracture bound blocks under no-slip conditions is, however, sensi-322

tive to the elastic properties (Bai and Pollard, 2000b) and layer/matrix thicknesses.323

Consequently we expect slightly different results at low T/τ ratios for models with324

different elastic properties and thickness ratios, though future work is required to325
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verify the nature of these dependencies.326

(iv) Multilayers: Our models are for simple three-layer systems rather than the more327

complex multilayered systems often found in nature. Geological studies suggest, for328

example, that fracture pattern scaling may be hierarchical perhaps reflecting the329

stacking patterns and mechanical amalgamation of fractured layers (e.g. Gillespie330

et al., 2001). Experimental work on composite materials has shown that a fracture331

in one layer can raise the stress in the adjacent layers and hence can lead to fracture332

alignment, in particular when the matrix layers are thin (van den Heuvel et al.,333

1997). The fracture-related interactions between different mechanical layers in a334

layered sequence and their impact on fracture systematics could be the subject of335

future studies using the same basic modelling approach described in this paper.336

Figure 8337

5 Conclusions338

Our discontinuum models of fracture of single layers with various interfacial shear strength339

suggests the following principal conclusions:340

1. The validity and consequent applicability of Price’s full-slip model, and similar341

1-D approximations, depends on the ratio of layer tensile strength to interface shear342

strength (T/τ).343

(a) High T/τ ratios (ca. > 3.0 in our models) promote interfacial slip and yield344

results that provide a good fit to a 1-D shear lag model.345

(b) At lower strength ratios interfacial slip is suppressed and the heterogeneous346

2-D stress distribution within fracture-bound blocks controls further fracture347

nucleation (curved fractures, infill fractures).348

2. In systems with high T/τ ratios the range of fracture spacing varies by a factor of two349

because the dominant fracture mode is mid-point fracturing. Systems with lower350
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strength ratios exhibit a wider range of fracture spacing with a bimodal spacing351

distribution due to the formation of curved fractures close to existing fractures.352

3. The compressive stress criterion (CSC), or stress transition theory, appears not to353

be valid since further infill fractures nucleate at the layer/matrix interfaces and354

propagate through the centre of the fracture-bound blocks, hence the 2-D infill355

criterion is more appropriate.356

4. Fracture saturation spacing decreases non-linearly with increasing interface shear357

strength and therefore decreases with increasing effective layer normal stress, e.g.358

overburden pressure.359

5. In a layered sequence that permits interfacial slip, fracture spacing is not an indicator360

of fracture system maturity, or saturation, i.e. a fracture spacing to layer thickness361

ratio of � 1 does not imply that the system is unsaturated.362
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Notation370

d thickness of matrix layers

Ef Young’s modulus of fractured layer

e model strain

em matrix strain

ep pre-strain

g average layer-parallel normal stress gradient

Gm shear modulus of matrix

L half-length of fracture-bound block

Lc critical half-length of fracture-bound block

m fraction of no-slip region

s fracture spacing

t thickness of fractured layer

T tensile strength of fractured layer

α fraction of area occupied by particles

β load transfer parameter

µ interfacial friction coefficient

σp pre-stress

σx average layer-parallel normal stress in fractured layer

σxx layer-parallel normal stress component

σp
xx layer-parallel normal stress component of particles

σy interfacial normal stress

τ interfacial shear strength

τx interfacial shear stress

371
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Appendix A Distinct Element Method372

A.1 Particle properties and boundary conditions373

The modelling in this study was performed with the PFC-2D software, which implements374

the Distinct Element Method (DEM). The models were generated using the sample gen-375

eration procedure detailed in Potyondy and Cundall (2004). The model boundaries are376

rigid and frictionless. Particles have a uniform size distribution with a particle size range377

of 0.0015-0.0025 m and comprise a model area fraction of 0.84. All particle contacts have378

a contact friction coefficient of 0.5 and are assigned a linear contact model. Particle and379

bond Young’s moduli are equal and are 50.00 and 16.67 GPa within the central layer380

and matrix, respectively. The particle and bond normal to shear stiffness ratio is 2.5 and381

the modulus-stiffness scaling relations given in Potyondy and Cundall (2004) are applied.382

Bonds between particles comprising the matrix have infinite bond strength and bonds383

within the central layer have a tensile and shear strength of 20 MPa. Despite the con-384

stant bond strength parameters, variations in local strength arise from changes in local385

particle packing, with the resulting heterogeneity being an intrinsic feature of bonded386

particle models. Accelerating motion is damped with a damping constant of 0.7. After a387

bonded-particle model is generated with an initial isotropic stress of -0.1 MPa, contacts388

between particles comprising the layer and matrix are assigned a ’smooth-joint’ model,389

which simulates the behaviour of a horizontal interface regardless of the local contact390

plane orientations along the interface (Fig. 2). The area of each ’smooth-joint’ contact391

is scaled so that the sum of all contact areas is equal to the total length of the interface392

represented as ’smooth-joints’. The model is then confined vertically, with zero interfacial393

friction, until the desired confining pressure of -5 MPa is reached. If during confinement394

or later extension a new contact between a matrix and layer particle is formed (e.g. due395

to shear displacement) this contact is assigned a ’smooth-joint’ model, otherwise spurious396

contact forces would develop due to asperity lockup. After confinement particles touching397

the lateral boundaries and their neighbours (black particles in Fig. 2) are assigned a hor-398
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izontal outward finite velocity of 0.005 m/s (this finite velocity is reached incrementally399

in order to minimize dynamic effects) and the model specific ’smooth joint’ friction and400

cohesion are assigned. During extension the vertical confinement is maintained using a401

servo-algorithm.402

Figure A1403

A.2 Mechanical properties of central layer404

Average stresses and strains are measured in three circular regions within the central layer405

using so-called measurement circles (Itasca Consulting Group, Inc., 2008, Potyondy and406

Cundall, 2004, see inset in Fig. A1). These average stress data are used for determining407

the macroscopic mechanical properties (modulus, strength) of the central layer. A plot408

of average layer-parallel stress within these three measurement circles vs. model strain is409

shown in Fig. A1. For each model, various parameters were determined using the average410

of the three measurement circle data, and are summarised in Table A1. Initial uniaxial411

confinement (σy = -5 MPa) leads to a horizontal pre-stress σp due to Poisson’s effect412

(Poisson’s ratio under uniaxial loading and plane-stress conditions is ν = σp/σy). Model413

extension causes an increase in horizontal stress until the first fracture develops. The stress414

level at which the first fracture develops is interpreted to be the minimum layer tensile415

strength, Tmin, under homogeneous stress conditions. The fact that the three curves in Fig.416

A1 are basically identical until fracturing commences indicates that the stress distribution417

is initially homogeneous. However, the stress-strain curves change their slopes when σx418

becomes tensile, at a pre-strain ep, and hence suggest that Young’s modulus depends on419

the sign of the least compressive stress. Young’s modulus, under plane-stress conditions,420

is the slope of the stress-strain curve, ∆σx/∆ex. When all stresses are compressive, the421

secant Young’s modulus is Ep = −σp/ep, whereas when the least compressive stress is422

tensile Young’s modulus is Ef = Tmin/∆e, where ∆e = e− ep. We use the latter modulus423

for fitting the shear lag model.424

Table A1425
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It is important to note that formulation of the shear lag model described in Appendix426

B predicts zero stress for zero matrix strain. In the fitting procedure given in Appendix427

C we therefore use em = e − ep, i.e. the pre-strain is subtracted from the model strain.428

In the plots shown in Fig. 5, this pre-strain is then added to the shear lag prediction.429

Appendix B Shear lag model430

B.1 Geometry and boundary conditions431

Consider a periodically layered sequence of alternating ’soft’ (so-called ’matrix’) and432

’strong’ materials which are fractured (Fig. B1a). The matrix layers have a thickness433

d and a shear modulus Gm. The fractured layers have a a thickness t and a Young’s mod-434

ulus Ef . The fractures are equally-spaced with a spacing s, but because of the symmetry435

of the problem we use the half-length L throughout this Appendix.436

Figure B1437

The boundary conditions acting on a ’unit-cell’ are schematically illustrated in Fig.438

B1a. A layer-parallel axial stress is induced in the system by displacing the ends of the439

matrix layers, while keeping the fractures traction free. The average strain in the matrix440

is em. This boundary condition leads to a layer-parallel tensile stress within the fracture-441

bound block, with a maximum in the centre. An interfacial shear stress also develops, as442

indicated with half-arrows in Fig. B1a, which decreases in a vertical direction and becomes443

zero along horizontal lines centred in the matrix layers. Because the shear stresses acting444

along one interface are opposite in sign on either side of the fracture-bound block (Fig.445

B1a), the shear stress along a vertical line centred in the block must vanish.446

To approximate this 2-D problem, stresses and strains are interpreted in an average,447

rather than local sense, so that the shear lag model is a 1-D approximation. The average448

horizontal, or layer-parallel, normal stress σx within a layer of thickness t centred at y0 is449

defined as (e.g. Iyer and Podladchikov, 2009)450
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σx(x) =
1

t

y0+t/2∫
y0−t/2

σxx(x, y) dx (B.1)

where σxx is the horizontal normal stress component. The shear stress within the451

fractured layer varies approximately linear with y (Fig. B1a). Mechanical equilibrium452

demands that a gradient in horizontal normal stress, dσx/dx, within the layer is balanced453

by an interfacial shear stress, τx.454

dσx
dx

+
τ topx − τ botx

t
= 0 (B.2)

The superscripts refer to the shear stress acting on the top and bottom layer interface.455

If the top and bottom interfacial shear stresses are identical in magnitude, but opposite456

in sign, then Eq. B.2 can be written as457

dσx
dx

= −2τx
t

(B.3)

A positive normal stress gradient hence leads to a negative (counter-clockwise) shear458

stress along the upper interface (Fig. B1a).459

We assume that the maximum interfacial shear stress, τ , is given by a Coulomb limit460

|τ | = σyµ, (B.4)

where σy is the normal stress acting on the interface and µ is the interfacial friction461

coefficient.462

B.2 No-slip solution463

Cox (1952) derived a solution that conforms with the boundary conditions outlined above.464

In the absence of interfacial slip the average layer-parallel normal stress within a fracture-465

bound block is466
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σx(x) = Efem

(
1− cosh(β(L− x))

cosh(βL)

)
(B.5)

where β is the load transfer parameter. For the sake of mathematical brevity the467

origin (x = 0) in Eq. B.5 is located at the left hand fracture. If the shear stress in the468

matrix decreases linearly in a vertical direction from its maximum value at the interface469

to zero midway between two fracturing layers (Fig. B1a) then β is (Ji et al., 1998)470

β =

√
8Gm

Ef td
(B.6)

where Gm is the shear modulus of the matrix. The actual shear stress may decrease471

non-linearly and various analytical solutions have been postulated to take a non-linear472

shear stress decay into account (Ji and Saruwatari, 1998, Jain et al., 2007). We prefer,473

however, to determine the value of β in our models directly as outlined in Appendix C.474

The maximum layer-parallel normal stress within the fractured block, σmax, occurs in475

the centre (x = L) and given by476

σmax = Efem(1− sech(βL)) (B.7)

The shear stress acting on the interface, τx, can be obtained by differentiating Eq. B.5477

and substituting the result into Eq. B.3.478

τx(x) =
t

2
Efemβ

sinh(β(L− x))

cosh(βL)
(B.8)

where the absence of the minus sign indicates that Eq. B.8 describes the shear stress479

distribution along the lower interface. The maximum interface shear stress, τmax, occurs480

at the end of the fractured block (x = 0) and is481

τmax =
t

2
Efemβ

sinh(βL)

cosh(βL)
(B.9)

Average normal stress and interfacial shear stress profiles that were calculated using482
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these solutions are plotted in Fig. B1bi.483

If we assume that the average normal stress in the fracturing layer cannot exceed the484

tensile strength, T , then a limiting, or critical half-length Lc, below which no fracturing485

can occur at a particular matrix strain, exists (Lloyd et al., 1982). The critical half-length,486

Lc, can then be obtained by replacing σmax in Eq. B.7 with T and solving for L487

Lnoslip
c =

1

β
asech

(
1− T

Efem

)
(B.10)

where the superscript noslip denotes that this is the critical half-length for a welded488

interface. For infinite matrix strain Eq. B.10 becomes489

lim
em→∞

Lnoslip
c = 0

which is clearly not possible, but sometimes used as an argument against the shear490

lag model (Bai et al., 2000). However, interfacial slip will occur if the maximum interface491

shear stress, τmax, exceeds the shear strength of the interface, τ (Ji et al., 1998, Jain492

et al., 2007). The matrix strain at which interfacial slip commences can be obtained by493

substituting the critical half-length for a welded interface (Eq. B.10) as L into Eq. B.9494

and replacing τmax with τ . Solving for em and simplifying gives495

esliponsetm =
4τ 2 + (Tβt)2

2EfT (βt)2
(B.11)

From this point onwards the interface is comprised of two regions, (I) slip, or plastic,496

regions near the fractures and (II) a no-slip, or elastic, region in the centre of the fractured497

block (Fig. B1bii). In the limit, the entire interface will be sliding (Fig. B1biii).498

The critical half-length at the onset of slip can be obtained by substituting the matrix499

strain at the onset of slip given by Eq. B.11 into Eq. B.10 and is500

Lsliponset
c =

1

β
asech

(
4τ 2 − (Tβt)2

4τ 2 + (Tβt)2

)
(B.12)
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Eq. B.12 indicates that the interfacial shear strength τ must have a certain minimum501

value (the numerator in the inverse hyperbolic secant term must be > 0), otherwise the502

entire interface will slip as soon as the first fracture appears and no further fracture is503

possible.504

τ >
Tβt

2
(B.13)

This inequality can alternatively be obtained by the condition that the matrix strain505

at the onset of fracture must be less than the strain at the onset of interfacial slip (Eq.506

B.11), i.e. esliponsetm > T/Ef .507

B.3 Full-slip solution508

If the normal stress acting on the interface, σy, remains constant and uniform while slip509

occurs, then the shear stress acting on the interface is also constant and given by Eq. B.4.510

As a consequence the gradient of the layer-parallel normal stress within the fracture layer511

is constant, i.e. the layer-parallel stress profile is a triangle (Eq. B.3; see Fig. B1biii).512

The normal stress is, however, limited by the tensile strength, T , so that dσx/dx in Eq.513

B.3 can be replaced by T/L. The critical half-length of the fractured block, below which514

no further fracture can occur, is therefore given by515

Lfullslip
c =

Tt

2τ
(B.14)

Eq. B.14 is known as Price’s model in Earth Sciences (Price, 1966, Mandl, 2005) and516

as Kelly-Tyson equation in Material Sciences (Kelly and Tyson, 1965, Tripathi and Jones,517

1998).518

B.4 Partial-slip solution519

It is clear that the two models outlined above, i.e. the no-slip and the full-slip solution,520

are end-member scenarios. The onset of interfacial slip is derived above and given by Eq.521
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B.11. An increase in extension leads to a progressive increase of the length of the slip522

region until, in theory, the entire interface is sliding.523

Here we use a Piggott model (Piggott, 1978, Huang and Young, 1995, van den Heuvel524

et al., 1997) where a linear stress build-up (Eq. B.3) in the slip region is immediately525

followed by an elastic stress build-up according to Cox’s shear lag model (Eq. B.5).526

σx(x) =


2τ

t
x = gx 0 ≤ x ≤ xt

gxt + (Efem − gxt)
(

1− cosh(β(L− x))

cosh(β(L− xt))

)
xt ≤ x ≤ L

(B.15)

where xt is the transition point from the slip to no-slip region and g is the normal527

stress gradient in the slip region, which is a constant, and used here for brevity. Eq. B.15528

is, again, given for the left-hand side of a fracture-bound block with the left-hand fracture529

located at x = 0. Notice that Eq. B.15 becomes Cox’s solution (Eq. B.5) if xt = 0 and530

that the full-slip solution (Eq. B.14) is obtained when em =∞.531

The maximum layer-parallel normal stress occurs at the centre of the bonded region,532

at L, and is given by533

σmax = gxt + (Efem − gxt)(1− sech(β(L− xt))) (B.16)

Analogous to the no-slip case, the shear stress acting on the interface, τx, can be534

obtained by differentiating Eq. B.15 and substituting the result into Eq. B.3.535

τx(x) =


τ 0 ≤ x ≤ xt

t

2
(Efem − gxt)β

sinh(β(L− x))

cosh(β(L− xt))
xt ≤ x ≤ L

(B.17)

The maximum interfacial shear stress, τmax, occurs at the end of the bonded region536

(x = xt) and is given by537
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τmax =
t

2
(Efem − gxt)β

sinh(β(L− xt))
cosh(β(L− xt))

(B.18)

The critical half-length is determined by limiting the maximum normal stress given538

by Eq. B.16 by the tensile strength T and solving for L.539

Lpartialslip
c = xt +

1

β
asech

(
T − Efem
gxt − Efem

)
(B.19)

For a cohesionless interface (Eq. B.4) the unknown xt can be evaluated by assuming540

stress continuity at the transition point, for which the maximum interface shear stress (Eq.541

B.18) is equal to the shear strength τ . For a cohesive interface stress continuity cannot542

be justified and an interfacial shear stress jump and an associated increase of the average543

layer-parallel normal stress gradient occurs (Huang and Young, 1995, van den Heuvel544

et al., 1997). In the present study, however, the effect of cohesion is not investigated and545

we therefore assume that the interfacial shear strength is provided by friction only.546

Taking τ as τmax in Eq. B.18 and substituting L, as given by Eq. B.19, gives after547

rearrangement.548

2τ − βt
√

(gxt − T )(gxt + T − 2Efem) = 0 (B.20)

Unfortunately a closed form solution for Eq. B.20 does not exist and therefore xt has549

to be determined numerically. The result can then be substituted into Eq. B.19 and the550

critical half-length for the partial-slip case can be obtained. Average normal stress and551

interfacial shear stress profiles that were calculated using these solutions are plotted in552

Fig. B1bii.553

B.5 Implementation554

The critical half-length, Lc and, if slip occurs, the length of the slip region, xt, can be555

calculated as a function of matrix strain using a simple computer program (a MATLAB556

script can be obtained upon request from the corresponding author). The input parame-557
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ters are the layer thicknesses, t and d, the elastic properties, Ef and Gm, the layer tensile558

and interface shear strengths, T and τ , respectively, and the matrix strain, em. The559

algorithm is structured as follows:560

If Efem > T And τ > Tβt/2 (Eq. B.13) Then

If em ≤ esliponsetm (Eq. B.11) Then

Calculate Lnoslip
c (Eq. B.10), xt = 0

Else

Determine xt numerically (Eq. B.20) and calculate Lpartialslip
c (Eq. B.19)

EndIf

EndIf

The first if-statement checks (i) whether the strain is high enough to exceed the tensile561

strength of the layer and (ii) whether the interfacial shear strength is high enough. The562

second if-statement checks whether the strain is less than the onset of interfacial slip or563

not. If no-slip occurs, then the no-slip solution is used, otherwise the partial-slip solution564

is used for calculating Lc and xt.565

A plot of Lc and xt vs. em is shown in Fig. B1c. As expected, the critical-half-length566

decreases with increasing strain and asymptotically approaches the full-slip solution. The567

length of the slip region gradually increases and eventually becomes equal to the full-slip568

half-length. If interfacial slip were inhibited, then Lc asymptotically approaches 0.569

Appendix C Fitting shear lag model to numerical modelling results570

An approximation of the average stress, as given by Eq. B.1, within the particle model is571

obtained by interpolating the horizontal particle stress components, σp
xx, on a square-grid572

with a spacing ∆x = ∆y = 0.0025 and applying Simpson’s rule573

σx(x) ∼= α
1

t

N∑
n=0

σp
xx

(
y0 −

t

2
+

∆y

2
+ ∆yn

)
, where N =

t

∆y
− 1 (C.1)

where α is the fraction of area occupied by particles (α = 0.84 in our models).574
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For each fracture-bound block a shear lag model with partial slip (Section B.4) is575

fitted to the approximate average stress data to obtain an estimate for the load transfer576

parameter β (Fig. 3). First the magnitude and location of the maximum horizontal normal577

stress σmax is calculated by fitting a 2nd-order polynomial to six consecutive points. The578

stress profiles are often asymmetric, hence the best-fit β-value is calculated for the right579

and left hand side separately. Each side has a length of L, which is comprised of a580

slip-region with length xt and a no-slip region with length mL, where m = 1− xt/L.581

Again, we assume stress continuity from the slip to no-slip region, so that the maximum582

shear stress at the ends of the no-slip region τmax is equal to the interface shear strength583

τ . Using 2τ/t instead of g and mL instead of (L−xt) in Eq. B.18 and solving for xt gives584

xt =
Efemt

2τ
− cosh(mLβ)

β sinh(mLβ)
(C.2)

Substitution of Eq. C.2 into Eq. B.16 and using again mL instead of (L− xt) gives585

Efem −
2τ

tβ
cosh(mLβ)

sech(mLβ)

sinh(mLβ)
− σmax = 0 (C.3)

The β-value can be determined numerically from Eq. C.3 and xt can then be calculated586

using Eq. C.2. The best-fit β-value is obtained by iteratively varying m in the range of587

0.0 to 1.0 and minimising the sum-of-squares σx differences between model profile and588

shear lag equation (Eq. B.15).589

It is important to note that the condition τmax = τ can only be justified if interfacial590

slip actually occurs (prior to interfacial slip τmax < τ). In addition β is poorly constrained591

when slip occurs over almost the entire length of a fracture-bound block (e.g. at fracture592

saturation). Hence the best-fit β-value used for predicting the fracture and slip evolution593

(Fig. 5) is the arithmetic mean of all best-fit β-values where 0.1 < xt/L < 0.9. The594

best-fit β-values for all four models are provided in Fig 5a.595
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Schöpfer, M. P. J., Abe, S., Childs, C., Walsh, J. J., 2009. The impact of porosity and crack density
on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling.
International Journal of Rock Mechanics and Mining Sciences 46, 250–261.
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Tables

µ ep σp (MPa) Ep (GPa) Ef (GPa) T (MPa)
0.2 0.0000290 -1.65 56.95 36.18 6.68
0.3 0.0000298 -1.66 55.79 35.35 6.38
0.5 0.0000293 -1.68 57.30 36.47 6.25
0.8 0.0000295 -1.66 56.11 35.42 6.62

Mean 0.0000294 -1.66 56.54 35.85 6.48

Table A1: Material and model parameters obtained from measurement circles (see
Fig. A1) for four models with different interfacial friction coefficients, µ.
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Figure 1: Natural example of layer-confined opening fractures and illustrations of theories
for fracture saturation. a, Field example of rock joints (opening fractures) developed within
limestone beds (pale) embedded in mudrocks (grey) exposed in Lilstock Bay, Somerset, UK.
Rock hammer (circled) is 0.29 m long. b, Full-slip, or frictional coupling, model (Kelly and
Tyson, 1965, Price, 1966). A constant interfacial shear stress τx is balanced by a layer-parallel
normal stress gradient dσx/dx. The normal stress is limited by the layer tensile strength T which
leads to a critical fracture spacing sc below which no further fracture can occur. The dashed lines
indicate that the minimum fracture spacing is 0.5sc. c, Compressive stress criterion (Dharani
et al., 2003), or stress-transition theory (Bai et al., 2000, Bai and Pollard, 2000b). If no interfacial
slip occurs, a region of compressive layer-parallel normal stress σxx (grey areas) that extends
across the central area of the fracture-bound block develops at a fracture spacing to thickness
ratio (s/t) of ∼ 1.0 (modified after Bai and Pollard, 2000a,b)



Figure 2: Numerical model and its boundary conditions used for modelling rock joints. Dark
and light grey particles comprise the matrix and central layer, respectively, and black particles
are lateral boundaries to which a horizontal velocity is applied. Black lines joining particle
centres are bonds and bold horizontal lines at the layer interface are ’smooth-joint’ contacts
(see inset). σy, vertical applied boundary stress. ux, horizontal applied boundary velocity. t,
thickness of central layer.



Figure 3: Average layer-parallel normal stress and interfacial shear stress distribution in dis-
continuum model with low interface friction coefficient (µ = 0.3) at ( a) e = 0.075% and (b)
e = 0.415%. (i) Locations of broken bonds (black) and sliding ’smooth-joint’ contacts (grey).
The sense of shear is indicated with half arrows for one fracture-bound block. (ii) Average hori-
zontal, or layer-parallel, stress in fracture layer (σx) normalised by the minimum tensile strength
(Tmin). Black dots are model stress data and grey lines are best-fit shear lag model profiles. (iii)
Interface shear stress to normal stress ratio (τxy/σyy) normalised by interface friction coefficient
(µ). Black and grey dots are ‘smooth-joint’ contact stress data of the lower and upper interface,
respectively. Solid lines are best-fit shear lag model solutions. Positions of fractures and slip
to no-slip regions are indicated with vertical solid and dashed lines, respectively. See Appendix
C for details regarding the best-fit shear lag model. Animations of graphical representation for
this and a selection of other models are provided as an electronic supplement.
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Figure 5: Plots of (a) fracture spacing to layer thickness ratios (black horizontal lines) and
(b) average proportions of interfacial slip (black lines with dots) vs. layer parallel strain (e).
µ is the interfacial friction coefficient. The start of each horizontal line on the graphs in (a)
represents the formation of a fracture bound block within the model; the termination of one
line coincides with the formation of two new ones. The grey areas are the ranges predicted by
a comparable shear-lag model (see Appendix B and Appendix C). The average best-fit load
transfer parameter β is given for each model in (a).



Figure 6: Details of 2-D stress distribution within the high interfacial friction (µ = 0.8) model.
a, Development of a curved fracture (Groves et al., 1987, Hu et al., 1993) adjacent to an existing
straight fracture within a fracture-bound block with a spacing to thickness ratio of ∼ 1.9. b,
Development of an infill fracture (Bai and Pollard, 2000a) within a fracture-bound block with a
spacing to thickness ratio of ∼ 0.9. The infill fracture propagates again at e = 0.62% to form a
through-going fracture (not shown). Particles within the central layer are coloured according to
their least compressive stress (σ1) in (a) and according to horizontal normal stress component
(σxx) in (b). Matrix particles are dark grey for clarity. Green lines show direction of minimum,
i.e. greatest compressive, principal stress. White and grey lines are locations of broken bonds
and ‘smooth joint’ contacts, respectively. Stars are fracture nucleation points. e, model strain.



Figure 7: Fracture spacing results at a ’fracture-saturated’ model strain of e = 0.8%. Fracture
spacing to layer thickness ratio (s/t) is plotted against (a) interfacial friction coefficient µ and
(b) layer tensile strength to interface shear strength ratio T/τ . Fracture spacing for a model
with a welded interface (i.e. infinite interfacial shear strength ) is plotted in (b) only. The
grey areas are the ranges predicted by the full-slip (Kelly and Tyson, 1965, Price, 1966) and
fracture infill criterion (Bai and Pollard, 2000a). The grey dashed horizontal line at s/t = 1 is
the theoretical fracture spacing when a central layer-parallel compressive normal stress develops
(compressive stress criterion; Bai and Pollard, 2000b).



Figure 8: Tensile strength vs effective overburden pressure graphs for interfacial friction coef-
ficients µ = 0.3 and 0.5 illustrating (i) layer tensile to interface shear strength (T/τ) contours
(which are equivalent to the ratio of maximum, or critical, fracture spacing to layer thickness
under full-slip conditions, sc/t; Fig. 1b), (ii) regimes for which our discontinuum models suggest
that 1-D full-slip predictions are not applicable (T/τ . 3; see Fig. 7), and (iii) the transition
from pure opening mode fracturing to hybrid extensional-shear fractures, which according to
the 2-D Griffith criterion occurs when −σ′v > 3T (e.g. Sibson, 1998). The effective overburden
pressure is σ′v = σv(1−λv), with λv = pf/σv being the ratio of pore fluid pressure pf to vertical
stress σv. Two depth scales are given, one for lithostatic conditions (λv = 0.0) and one where
pore water is present and under normal hydrostatic conditions (λv = 0.4). The dots in each
graph illustrate the tensile strength and overburden pressure of our discontinuum models. These
graphs are strictly speaking only valid for systems with cohesionless interfaces subjected to layer
parallel extension.



Figure A1: Plot of average horizontal stress within three measurement circles (see inset) vs
model strain (for the model with µ = 0.3). After uniaxial model confinement a pre-stress, σp
exists. The strain at which the horizontal stress within the central layer becomes zero is the
pre-strain ep. Tmin is the minimum tensile layer strength and ∆e is the strain difference used
for calculating the layer secant Young’s modulus, i.e. Ef = Tmin/∆e.



Figure B1: 1-D shear lag model used for predicting fracture and interfacial slip evolution
in discontinuum models. a, Periodically layered sequence comprised of fractured layers with
thickness t interbedded with unfractured matrix layers of thickness d. The spacing of the
fractures is s, but due to the symmetry of the problem the half-length L is used. The boundary
conditions acting on a ’unit cell’ are also shown. b, Average horizontal normal stress, σx,
and interfacial shear stress, τx, profiles at different matrix strains, em. The dots indicate the
transition points from the slip to no-slip region. (i), No-slip solution, just at the onset of slip
(em = 0.000224 according to Eq. B.11) (ii) Partial-slip solution (em = 0.0006). (iii) Full-slip
solution (em = ∞). c, Plot of critical half-length, Lc (black curve), and length of slip region,
xt (grey curve), vs log10 matrix strain, em. The onset of fracture and the onset of interfacial
slip are indicated as vertical lines. The full-slip solution (Eq. B.14) is plotted as horizontal
dashed line. The no-slip solution (Eq. B.10) is plotted as thin dashed line for comparison. The
parameters used for obtaining the results in (b) and (c) are: t = d = 0.25 m, Ef = 10 GPa,
Gm = 1 GPa, τ = 1 MPa. The β-value is calculated using Eq. B.6. In (b) the half length L = 1
m is kept constant, whereas in (c) the tensile strength T = 1 MPa is constant.


