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Abstract 10 

Empirical rock properties and continuum mechanics provide a basis for defining 11 

relationships between a variety of mechanical properties, such as strength, friction 12 

angle, Young’s modulus, Poisson’s ratio, on the one hand and both porosity and crack 13 

density, on the other. This study uses the Discrete Element Method (DEM), in which 14 

rock is represented by bonded, spherical particles, to investigate the dependence of 15 

elasticity, strength and friction angle on porosity and crack density. A series of 16 

confined triaxial extension and compression tests was performed on samples that were 17 

generated with different particle packing methods, characterised by differing particle 18 

size distributions and porosities, and with different proportions of pre-existing cracks, 19 

or uncemented grain contacts, modelled as non-bonded contacts. The 3D DEM model 20 

results demonstrate that the friction angle decreases (almost) linearly with increasing 21 
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porosity and is independent of particle size distribution. Young’s modulus, strength 22 

and the ratio of unconfined compressive strength to tensile strength (UCS/T) also 23 

decrease with increasing porosity, whereas Poisson’s ratio is (almost) porosity 24 

independent. The pre-eminent control on UCS/T is however the proportion of bonded 25 

contacts, suggesting that UCS/T increases with increasing crack density. Young’s 26 

modulus and strength decrease, while Poisson’s ratio increases with increasing crack 27 

density. The modelling results replicate a wide range of empirical relationships 28 

observed in rocks and underpin improved methods for the calibration of DEM model 29 

materials. 30 
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1 Introduction 35 

Knowledge of the mechanical properties of rocks is fundamental for both Earth 36 

scientists and engineers. Failure envelopes and elastic parameters are crucial for 37 

modelling a wide range of geomechanical problems, including wellbore failure, slope 38 

stabilities and the stability of underground excavations [1]. Rock properties are 39 

obtained from in-situ tests and more commonly in the laboratory from samples that 40 

are loaded using stress and/or displacement controlled experiments. These tests have 41 

given many insights into the behaviour of rock and have shown, for example, that the 42 

elastic parameters and strength depend on porosity and cement content, though the 43 

details of these dependencies are also partly controlled by mineral composition (e.g. 44 

carbonate vs siliciclastic rocks; [2,3]). Obtaining core samples from depth for 45 

laboratory testing is both time-consuming and expensive. Hence rock physical 46 

properties are often estimated using empirical relations, such as the correlation 47 

between Young’s modulus and sonic velocity, or that between unconfined 48 

compressive strength and porosity [4]. Rock is, however, a heterogeneous material 49 

and even multiple samples obtained from a single slab of rock can exhibit significant 50 

compositional variability and hence mechanical behaviour [3]. Therefore some of the 51 

above mentioned empirical rock property relations are poorly constrained. One of the 52 

principal aims of this work is to investigate these empirical property relations in 53 

numerical rock analogues where the effects of compositional heterogeneity can be 54 

isolated. 55 

Numerical modelling offers a new avenue to better understand material 56 

property relations. An advantage of numerical modelling is that the user can examine 57 

systematically the effect of varying individual input parameters while keeping all 58 

other parameters constant; this is rarely possible with laboratory measurement. The 59 



Discrete Element Method (DEM), where rock is represented as an assemblage of 60 

particles (spheres, ellipsoids, blocks) that interact with each other, is ideal for 61 

investigating mechanical property relations since the user predefines microproperties 62 

(particle and cement properties) and determines macroproperties (elastic and strength 63 

parameters) using numerical lab experiments [5]. The mechanical behaviour of the 64 

model material is not predefined, as in continuum approaches, but emerges from the 65 

interaction of particles and cement [6]. 66 

The aim of this study is to investigate the impact of particle size distribution, 67 

porosity and cement content (i.e. proportion of bonded contacts) on the mechanical 68 

properties (elasticity, strength, ratio of unconfined compressive strength to tensile 69 

strength and friction angle) of DEM model materials in 3D. In the next section we 70 

provide a brief review of rock property relations which are relevant for this study. In 71 

the following sections we describe the results of the various numerical mechanical 72 

experiments conducted on samples generated using a range different packing methods 73 

and compare the observed failure envelopes, failure criteria and rock mechanical 74 

property relations (cement content, porosity) with those of rocks. 75 

 76 

2 Rock property relations and failure envelopes 77 

In this study we numerically investigate relations between porosity, cement content 78 

and rock mechanical properties. Here we summarise the most important empirical 79 

relations obtained from lab experiments (see Fig. 1), which provide the essential 80 

backdrop to the numerical modelling presented in Section 4. 81 

Probably the most commonly used failure criterion for rock is the Coulomb 82 

criterion, which, expressed in terms of the principal stresses σ1 and σ3 (σ1 > σ3 and 83 

compressive stresses positive throughout this paper), is written as  84 
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 87 

where UCS is the unconfined compressive strength and ϕi is the angle of 88 

internal friction, the tangent of which is called the coefficient of internal friction µi 89 

[1]. Experimental data and theoretical models [7] suggest, however, that a linear 90 

failure criterion is only valid over a limited range of confining pressures and that a 91 

non-linear failure envelope concave towards the minimum principal stress axis (in a 92 

σ1 vs σ3 plot) may prove to be the rule rather the exception [2]. An additional 93 

limitation of both linear and non-linear failure criteria is that they are often 94 

independent of the intermediate principal stress, σ2 (Mohr criteria), whereas data from 95 

polyaxial tests suggests that many rock types exhibit a σ2 dependence of strength 96 

[3,8]. Consequently peak stress data and associated failure envelopes obtained from 97 

triaxial extension and triaxial compression tests exhibit a mismatch, where the former 98 

plots above the latter in a σ1 vs σ3 plot (Fig. 1a). Under some circumstances this 99 

mismatch can be eliminated by using a criterion that takes the impact of σ2 into 100 

account (Fig. 1b). Finally very few experimental data exist within the tensile field (σ3 101 

< 0; Fig. 1a) to define the transition from tensile to shear failure [9], though a 102 

parabolic failure envelope is most commonly used [10]. 103 

Laboratory tests of rocks indicate that strength, angle of internal friction and 104 

Young’s modulus decrease with increasing porosity ([4,11-14]; Fig. 1c, d and e). 105 

Additionally the presence of pre-existing cracks, which have been simulated in the 106 

laboratory by cyclically heating the rock specimen before loading [15,16], has a 107 

significant impact on rock mechanical properties (Fig. 1f, g and h). For example, 108 

strength, the unconfined compressive strength, tensile strength (UCS/T) and Young’s 109 



modulus decrease with increasing number of heating cycles, which can be related to 110 

the proportion of non-cohesive grain-grain contacts or crack density. 111 

 112 

3 Methods 113 

3.1 Discrete Element Method 114 

The results in this paper have been obtained using two different 3D implementations 115 

of the DEM for spherical particles, the Particle Flow Code (PFC3D; [5,17]) and 116 

ESyS-Particle (formerly LSMearth; [18,19]). Both codes implement a linear force-117 

displacement contact law with Coulomb friction and a particle-particle bond model 118 

that transmits both force and moment. The majority of the results presented in this 119 

paper were obtained using PFC3D and the microproperties used are given in Table 1. 120 

The details of the contact and bond law implementation are slightly different in ESyS-121 

Particle, hence only UCS/T ratios are given and compared to those obtained from 122 

PFC3D. 123 

As stated earlier, in a DEM model microproperties are defined and the 124 

macroproperties are obtained using numerical lab experiments, details of which are 125 

given in Section 3.3. The user therefore varies the microproperties systematically until 126 

the material exhibits the desired macroscopic mechanical behaviour. There are, 127 

however, two problems with calibrating DEM models consisting of spherical particles 128 

to match the response of real rock: (i) The (internal) friction angle of both cohesive 129 

and non-cohesive materials is typically too low, irrespective of the contact (i.e. 130 

particle-particle) friction coefficient [20]. Previous attempts to increase the friction 131 

angle have included modifications to the standard DEM approach including the use of 132 

clumped [5,21,22] or elliptical particles [23], implementing a rolling resistance [24] 133 

and explicitly prescribing the macroscopic failure criterion using hybrid methods [25]. 134 



(ii) The ratio of unconfined compressive strength to tensile strength (UCS/T) of DEM 135 

models of cohesive rock is too low (ca 3-4) compared to rock (> 10), an issue that has 136 

only recently been addressed in 2D [22,26]. We show later that both the low friction 137 

angles and low UCS/T ratios obtained in previous studies were partly a consequence 138 

of the particle packing methods used, which lead to porosities that were too high to 139 

achieve realistic properties without modifying the standard DEM. In this study, we 140 

show that different particle packing methods, and hence different particle size 141 

distribution and model porosity, combined with different proportions of bonded 142 

contacts can replicate the range of friction angles and UCS/T ratios associated with 143 

rocks. 144 

 145 

3.2 Model Generation and Packing Methods 146 

There are two end-member methods for generating random dense packing of spheres 147 

for DEM simulations, constructive and dynamic [27]. For this study we used one 148 

constructive method, the particle insertion method [28], one dynamic method, the 149 

specimen genesis procedure widely used by PFC3D users [5], and a hybrid of these 150 

two (Fig. 2). 151 

The dynamic specimen genesis procedure used for this study, which is 152 

described in detail in Ref. 5, is based on a four-step process. (i) Particles with radii 153 

chosen randomly from a uniform size distribution are randomly generated within a 154 

volume bound by planar, frictionless walls. (ii) The system is allowed to adjust by 155 

particle movement under zero friction. (iii) A low isotropic stress is installed by 156 

modifying the radii of all particles simultaneously. (iv) The radii of particles that have 157 

less than three contacts are modified iteratively, so that these particles have at least 158 

three contacts (over 99% of particles have 4 or more contacts in the final model) and 159 



their mean contact normal force is low in relation to the mean contact force of the 160 

assembly. Models generated with the dynamic method had a uniform PSD with 161 

rmax/rmin of 1.66 (Fig. 3) and a porosity of ~37% (model i in Fig. 2). 162 

For the particle insertion method ‘seed’ particles are first generated within 163 

the specimen domain. The specimen is then filled up by iteratively inserting particles 164 

so that each new particle touches four neighbours. The filling-up of the specimen is 165 

completed when no further particles can be inserted. The number of particles and the 166 

final porosity that can be achieved with this method are a function of the predefined 167 

particle size range (rmax/rmin). Models generated with the particle insertion method had 168 

a power-law particle size distribution (PSD) with an exponent of ~3.0 (Fig. 3) and a 169 

porosity of ~23% if the maximum to minimum particle radius ratio (rmax/rmin) is 10 170 

(model ii in Fig. 2). 171 

Porosities between 23 and 37% were achieved in three different ways (Fig. 172 

2): (i) systematic deletion of the smallest particles from a power-law PSD model with 173 

23% porosity (2nd row in Fig. 2), (ii) direct generation of an assembly with power-law 174 

PSD using rmax/rmin < 10, and (iii) insertion of particles into a uniform PSD assembly 175 

with an initial porosity of 37% using the particle insertion method referred to above 176 

(1st row in Fig. 2). All specimens were rectangular parallelepipeds with a square base 177 

and a height to width ratio of 2. 178 

The average coordination numbers (i.e. number of contacts per particle) of 179 

the models range from 7.3 to 5.8, where the low porosity models have both a greater 180 

average and a greater range of coordination numbers. The average coordination 181 

numbers of the different PSD models are almost identical (within 10%) for a given 182 

porosity, though the range of coordination numbers is greater in the power-law PSD 183 

models than in the uniform/bimodal PSD models. For example, the greatest 184 



coordination number in the 23% porosity power-law model is 131, whereas in the 185 

bimodal model with identical porosity it is 56. The mode of coordination numbers in 186 

all models is 4 (which is the value for a newly inserted particle in the particle insertion 187 

method explained above), except in the 37% porosity model with uniform PSD, in 188 

which the mode is 5. In summary, the average coordination numbers decrease slightly, 189 

whereas the range of coordination numbers decreases significantly with increasing 190 

porosity. A possible explanation for the observed relationship between mechanical 191 

properties and porosity is that the reduction in the number of contacts which 192 

accompanies an increase in porosity gives rise to an increase in the tortuosity of 193 

remaining force chains, causing a decrease in Young’s modulus, and an increase in 194 

the load they transmit causing a decrease in sample strength. 195 

While the model porosity values cannot be compared directly to those of real 196 

rocks, which are typically composed of non-spherical grains that can be packed better 197 

than spheres, and the effect of finite sized cement using bonds was not taken into 198 

account in the porosity calculations, the model results provide a means of exploring 199 

general mechanical consequences of porosity changes and cementation. 200 

 201 

3.3 Compression and Extension Tests 202 

Confined triaxial compression tests (σ1 > σ2 = σ3) were performed by shortening the 203 

specimen along its long axis with top and bottom platens using a constant velocity 204 

that is slow enough to ensure quasi-static conditions, whilst maintaining a constant 205 

confining pressure between 0.1 and 40 MPa using servo-controlled lateral platens. 206 

The failure envelopes were constructed using the peak stress (σ1) value of the stress 207 

strain curve at a given confining pressure (σ3) and the angle of (internal) friction was 208 

calculated from the slope of the principal stress data (Eq.1). 209 



Confined triaxial extension tests (σ1 = σ2 > σ3) were performed using 210 

particles to apply boundary forces and velocities. The sample was first confined to the 211 

desired confining pressure using servo-controlled platens. Then particles touching the 212 

platens are identified, the platens are removed, one calculation cycle is performed, and 213 

the out-of-balance forces of the boundary particles are replaced by applied forces with 214 

the same magnitude but opposite direction. Particles of the upper and lower 10% of 215 

the sample are then combined to form two non-breakable clumps which are then 216 

pulled apart while the lateral forces are kept constant. Since a velocity is applied to all 217 

particles within the upper and lower portions of the model, stress concentrations that 218 

would arise if the model would be extended using clamps are eliminated. The 219 

stableness of the boundary condition used is supported by the fact that macroscopic 220 

failure never occurred along the edge of the clumps, but within the central part of the 221 

model, most likely due to elastic necking. The axial stress (σ3) is computed by 222 

dividing the average out-of-balance force of the clumps by the cross-sectional area of 223 

the sample. Preliminary results suggest that comparison of the tensile strength values 224 

obtained from the direct tension tests with those derived from Brazilian disc tests is 225 

not straightforward, since the Brazilian strength values are sensitive to both disc 226 

thickness and the width of the loaded section, and disc failure occurs at the edge of the 227 

models, rather than in the centre of the disc, as predicted for materials with low 228 

UCS/T values [35]. 229 

Young’s modulus and Poisson’s ratio were obtained from uniaxial strain tests 230 

(e1 ≠ 0, e2 = e3 = 0) by fixing the lateral platens and shortening the sample vertically 231 

(e1 > 0) until the first bond breakage occurs. The elastic parameters were calculated 232 

using the final stresses acting on the platens by [1] 233 

 234 
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where λ and G are Lame’s constants. 237 

 238 

4 Results and Discussion 239 

The models replicate a wide range of behaviours observed in laboratory deformation 240 

of rock, in terms of the stress-strain behaviour, the shapes of the failure envelopes and 241 

their dependence on the numbers of non-bonded contacts (cracks) and porosity. These 242 

aspects of the model results are discussed in sequence in the following sections. 243 

 244 

4.1 Stress-Strain Curves 245 

Stress difference and volumetric strain (volume decrease taken as negative) vs axial 246 

strain curves of the two end-member models (framed in Fig. 2) at various confining 247 

pressure are shown in Fig. 4. These curves show a variety of differences in 248 

mechanical behaviour between the high and low porosity models. The most obvious 249 

difference is that the slopes of the stress-strain curves and the peak stress values are 250 

much greater in the low porosity model. The slope of the stress-strain curve of a 251 

triaxial compression test is Young’s modulus (dσ1/de1 = E) and the slope of the 252 

volumetric strain curve is a function of Poisson’s ratio (dev/de1 = 2ν-1). The curves in 253 

Fig. 4 therefore show that, Young’s modulus is strongly dependent on porosity, 254 

moderately dependent on the percentage of bonded contacts and weakly dependent on 255 

confining pressure. The first two dependencies are discussed later; the pressure 256 

dependence of Young’s modulus is shown in Fig. 5a, together with the results 257 

obtained from uniaxial strain tests. Poisson’s ratio, however, is only weakly 258 

dependent on porosity and the percentage of bonded contacts, but very sensitive to 259 



confining pressure. Especially at low confinement, Poisson’s ratio is much greater 260 

than the values obtained from the uniaxial strain tests (Fig. 5b). This pressure 261 

sensitivity of Poisson’s ratio is even more pronounced in partially bonded materials, 262 

which exhibit volume increase from the onset of axial shortening (dotted curves in 263 

Fig. 4b and e), hence Poisson’s ratios of >0.5 are obtained. These high values 264 

obtained from triaxial compression tests at low confinement are, however, not 265 

representative and therefore uniaxial strain test results are given throughout the paper. 266 

The stress-strain curves of the high and low porosity models do share, 267 

however, a number of similarities, e.g. the stress-difference and strain at failure 268 

increases with increasing confinement (Fig. 4). Additionally, the stress-drop after 269 

failure decreases and becomes less abrupt with both, increasing confinement and 270 

increasing number of non-bonded contacts, i.e. the material becomes less brittle. It is 271 

important to note, however, that Young’s modulus, strength and stress-drop can be 272 

increased by increasing both the particle stiffness and the bond strength without 273 

significantly modifying the friction angle and UCS/T as long as a load-bearing 274 

framework exists within the model. In the non-bonded models hardly any stress-drop 275 

is observed and these materials deform at an approximately constant stress-difference 276 

(although not constant volume) after an initial non-linear stress increase (Fig. 4c and 277 

f). 278 

Stress-strain curves obtained from unconfined compression tests on the ten 279 

models shown in Fig. 2 are plotted in Fig. 6 (for fully bonded models). These curves 280 

illustrate that porosity has a strong impact on both peak stress and Young’s modulus. 281 

The particle size distribution (uniform/bimodal and power-law, Fig. 6a and b, 282 

respectively) has an impact on the elastic properties, where slightly higher Young’s 283 

moduli and (for low confinement) higher Poisson’s ratios are observed in the power-284 



law material. A more quantitative description of these mechanical properties/porosity 285 

relations is given in Section 4.5. 286 

 287 

4.2 Shape of Failure Envelopes 288 

Failure envelopes were constructed using peak stress values (dots in Figs. 4 and 6) 289 

and are plotted in principal stress diagrams in Fig. 7. The failure envelopes for the 290 

non-bonded materials are straight, i.e. the cohesionless materials exhibit Coulomb-291 

type behaviour. The envelopes obtained from triaxial compression tests on bonded 292 

model materials are concave towards the minimum principal stress axis (the data 293 

points at σ3 = 0 are the UCSs). Therefore, the addition of cohesion (i.e. cement) does 294 

not simply shift the straight failure envelope of the non-bonded material towards 295 

higher strength (σ1) values, but also introduces a non-linear pressure strength 296 

dependence. As a consequence the angles of internal friction of the various bonded 297 

materials decrease non-linearly with increasing confinement, to values which are 298 

lower than the interlocking/sliding friction of the non-bonded material (Fig. 7c). Our 299 

model results are therefore in agreement with theoretical considerations [7], which 300 

suggest that the phenomenon of internal friction and the non-linearity of failure 301 

envelopes for rock can be explained by the frictional resistance to sliding offered by 302 

the fractured volume that comprises part of the incipient fault plane. 303 

The failure envelopes in the tensile field (σ3 < 0) are non-linear and are 304 

‘overturned’ at low confining pressures (Fig. 7a and b). This strengthening effect is 305 

neither predicted from critically stressed crack theory (Griffith criterion) nor is it 306 

observed in lab experiments on low-porosity, crystalline rock [9,10]. However, an 307 

increase in tensile strength at low confining pressures was observed in confined 308 

triaxial extension tests on Berea sandstone (φ = ~19%; Fig. 1a [29]), which was 309 



deformed using the same procedure as described in Ref. 9. The model failure 310 

envelopes shown in Fig. 7a and b illustrate that the strengthening effect becomes more 311 

pronounced with increasing porosity and increasing percentage of non-bonded 312 

contacts suggesting it is confinement related. 313 

The unconfined biaxial strength (σ1 = σ2 > 0, σ3 = 0), which is the intercept 314 

of the triaxial extension failure envelope with the σ1 axis, is greater than the UCS (σ1 315 

> 0, σ2 = σ3 = 0). This strength difference is due to a σ2-dependence of strength; 316 

hence Mohr criteria cannot be used for fully describing failure envelopes of cohesive 317 

DEM materials, and more complicated criteria that take the effect of the intermediate 318 

stress on strength into account need to be considered, details of which are given in the 319 

next section. 320 

 321 

4.3 Failure Criterion 322 

The misfit between the triaxial extension and triaxial compression failure envelopes in 323 

Fig. 7a and b indicates that a Mohr criterion, where the maximum principal stress at 324 

failure is a function of the minimum principal stress only, can not be used to fit our 325 

model data. A variety of polyaxial criteria have been proposed in the past [3,8]: Here 326 

we use the Mogi 1967 empirical criterion [30] for quantifying the σ2-dependence of 327 

strength, which is written as 328 

 329 
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 331 

 where β is a constant smaller than 1 that reflects the σ2-dependence in 332 

strength, i.e. the criterion reduces to a Mohr criterion if β equals 0. f is some 333 

monotonically increasing function; linear, power-law and parabolic functions are the 334 



most commonly used. The best-fit to our data was obtained using a parabolic 335 

function. Our analysis revealed that the best-fit β-values are independent of the 336 

percentage of non-bonded contacts, but are different for the two end-member porosity 337 

models, and are 0.19 for the 37% and 0.13 for the 23% porosity models (Fig. 8). 338 

Interestingly a parabolic function with a β-value of 0.14 gives a good fit to the triaxial 339 

extension and triaxial compression test results of Berea sandstone (φ = ~19%; Fig. 340 

1b). Those results provide some indication that porosity has an important control on 341 

the β-value. Additionally no polyaxial data, where all principal stresses are different, 342 

were used for determining the best-fit failure criterion in this study and it is likely that 343 

polyaxial data will reveal that a different criterion to that used here needs to be 344 

considered for fully describing the 3D failure envelope of cohesive DEM materials. 345 

 346 

4.4 Impact of Non-Bonded Contacts, or Pre-Existing ‘Cracks’ 347 

From the failure envelopes shown in Fig. 7 and 8 it is clear that the strength of the 348 

model material not only depends on porosity but also on the relative abundance of 349 

non-bonded contacts. These non-bonded contacts could be considered to be analogous 350 

to non-cemented grain contacts in rock or perhaps more generally to closed, pre-351 

existing cracks, where sliding occurs if a critical shear stress given by Coulomb 352 

friction is exceeded. The percentage of non-bonded contacts, which is the measure 353 

used throughout this paper to describe the proportion of cement, is clearly related to 354 

crack density as used in micromechanical models [1], but a direct quantitative 355 

comparison is difficult and beyond the scope of this study. Although we follow earlier 356 

analytical and laboratory studies by describing model results in terms of crack 357 

density, a direct link with uncemented grain-grain contacts is more valid (for example, 358 

high proportions of uncemented grain contacts are features of poorly lithified 359 



sandstones). The model results indicate that the strength of model materials decreases 360 

with increasing number of non-bonded contacts (Fig. 9a). Our models also show that 361 

the presence of non-bonded contacts has a greater impact on tensile strength than on 362 

compressive strength, a feature which reflects the fact that a non-bonded contact can 363 

bear some load in compression but no load in tension. Consequently the ratio of 364 

unconfined compressive strength to tensile strength (UCS/T) increases with 365 

increasing percentage of non-bonded contacts (Fig. 9b). A similar impact of pre-366 

existing cracks on strength and UCS/T for rock was demonstrated in Ref. 16, where 367 

an increase of UCS/T from ~20 for intact sandstone to about 50 for sandstone with 368 

partially disintegrated grain boundaries is reported (Fig. 1f and g). Most importantly, 369 

the UCS/T ratios obtained from only partially bonded model materials are within the 370 

range of those described for rock, which tend to have strength ratios of  ~10 [1]. 371 

Fig. 9b shows that UCS/T also depends on model porosity, with higher 372 

UCS/T values obtained for lower porosity materials. The similarity between the 373 

UCS/T ratios for the 37% porosity PFC3D material used in this study and the 35% 374 

porosity model of Lac du Bonnet granite (see caption) with very different 375 

microproperties and sample shape is consistent with porosity exerting a significant 376 

control on UCS/T. The ESyS data show that UCS/T is, for the range of model sizes 377 

tested in this study, basically independent of model resolution. Low porosity (22-378 

23%) PFC3D and ESyS data, apart from the fully bonded PFC3D model, exhibit 379 

identical ratios and trends, which suggests that the details of the contact and bond 380 

implementations have only marginal affects on UCS/T ratios of models with more 381 

than ca 10% non-bonded contacts. Significant differences of UCS/T for the fully 382 

bonded low-porosity models are only weakly dependent on porosity (Fig. 10b) and 383 



therefore must reflect sensitivities in mechanical behaviour due to contact/bond 384 

implementations. 385 

The presence of non-bonded contacts also has an impact on the elastic 386 

properties (Fig. 9c): Young’s modulus (E) decreases whereas Poisson’s ratio (ν) 387 

increases with increasing percentage of non-bonded contacts. These general trends are 388 

also predicted by various micromechanical models for linear elastic materials 389 

containing randomly oriented, closed cracks (e.g. chapter 10 in Ref. 1) and similar 390 

relations were observed in cyclic loading experiments on granite [31], and 391 

experiments on sandstone with partially disintegrated grain boundaries (Fig. 1h; [16]). 392 

 393 

4.5 Porosity Relations 394 

Both tensile strength (T) and unconfined compressive strength (UCS) decrease with 395 

increasing porosity and are basically independent of the PSD (Fig. 10a). This decrease 396 

in strength with increasing porosity is consistent with empirical rock property 397 

relations (Fig. 1c; [4]). In the models UCS, however, decreases more rapidly than T, 398 

and consequently UCS/T decreases with increasing porosity (Fig. 10b). The UCS/T 399 

ratios of the ESyS models exhibit a similar relation, though the ratios are, for a given 400 

porosity, greater than those obtained from PFC3D models, and also decrease more 401 

rapidly with increasing porosity (Fig. 10b). We believe that these results reflect the 402 

differences of the bond model implementations in PFC3D and ESyS. 403 

The friction angles for non-bonded materials with various PSDs and 404 

porosities are shown in Fig. 10c together with the range of internal friction angles 405 

determined for the fully bonded end-member models (Fig. 7c). The friction angles for 406 

the non-bonded materials decrease (almost) linearly with increasing porosity and are 407 

(almost) independent of the PSD (Fig. 10c). The internal friction angles suggest a 408 



similar relation, though the scatter is significant due to non-linearity of the failure 409 

envelopes, especially at low confining pressures. Nevertheless, this general trend has 410 

also been described for natural rock (Fig. 1d; [4,14]). We believe that the decrease in 411 

friction angles with increasing porosity is due to a decrease of internal roughness, 412 

though future micromechanical studies are necessary to fully understand the relation 413 

of the angle of (internal) friction with porosity. 414 

Young’s modulus decreases significantly with increasing porosity, though 415 

the modulus is greater for the power-law than for the uniform and bimodal PSD 416 

models (Fig. 10d). Poisson’s ratio is (almost) independent of porosity, but higher for 417 

the uniform/bimodal than the power-law PSD models. The decrease in Young’s 418 

modulus with increasing porosity and the porosity-independence of Poisson’s ratio are 419 

consistent with micromechanical models [1], with data obtained from continuum 420 

method models [32], and with empirical rock property relations (Fig. 1e; [4]). 421 

Finally, as stated earlier, some of the Young’s modulus and strength values 422 

of the model materials are greater than those for real rock. However, since E and UCS 423 

(and T) are proportional to particle and bond stiffnesses, and to bond strengths, 424 

respectively, calibration of the model material to that of real rock (e.g. sandstone) 425 

should be straightforward and will be the aim of future studies. 426 

 427 

5 Summary and Conclusions 428 

The mechanical properties of rock and other materials are strongly dependent on 429 

porosity and crack density. In this study we investigate some of these dependencies 430 

using the Discrete Element Method (DEM) in 3D and a selection of results is shown 431 

in Fig. 11. Young’s modulus, strength, UCS/T and angle of (internal) friction decrease 432 

with increasing porosity. The elastic constants, however, also depend on confining 433 



pressure, where Young’s modulus and Poisson’s ratio increase and decrease with 434 

increasing pressure, respectively. The failure envelopes of the cohesive materials are 435 

non-linear and the observed misfit between triaxial extension and compression 436 

envelopes is due to a σ2-dependence in strength, which is more pronounced in the 437 

high porosity materials. Young’s modulus, strength and UCS/T decrease whereas 438 

Poisson’s ratio increases with decreasing cement content (increasing ‘crack’ density). 439 

While we have not attempted to match the range of properties of any 440 

particular rock, our numerical test results replicate both qualitatively and 441 

quantitatively the range of mechanical behaviours observed for brittle rock. Perhaps 442 

most importantly, by varying porosity and the proportion of bonded contacts in DEM 443 

materials comprised of spherical particles, it is possible to achieve the high UCS/T 444 

ratios and the range of angles of internal friction that are observed in rocks. These 445 

high UCS/T ratios and friction angles were previously only reproducible by 446 

modifying the DEM (using irregular shaped particles, or implementing rolling 447 

resistance). 448 

Many low-porosity, crystalline rocks exhibit UCS/T ratios greater than 10, 449 

i.e. greater than those achieved using the particle and bond properties of the present 450 

study. Although UCS/T > 10 can be easily achieved by using a greater proportion of 451 

non-bonded contacts (Fig. 9b), the stress and especially the volumetric strain 452 

behaviour becomes less similar to that observed in brittle rock (though, as expected, 453 

the behaviour does match that of poorly lithified, granular materials). In low-porosity 454 

crystalline rocks that exhibit UCS/T >10, grain interlocking and the resistance to grain 455 

rolling are important mechanisms that increase both friction and UCS/T. Hence it 456 

might be necessary to use irregular shaped particles or a particle rolling resistance 457 

method for modelling such low-porosity rocks. These methods have, however, 458 



associated disadvantages, for example the lateral strains are not matched if 459 

unbreakable clumps are used [5, 22]. The decision as to whether to use these 460 

approaches or the methods outlined in this article depends on which aspects of the 461 

rock mechanical behaviour need to be captured in the model. 462 

Our study highlights the fact that both porosity and the proportion of bonded 463 

contacts (crack density) are important parameters that should be considered during the 464 

calibration of DEM materials to rocks. Including these two parameters provides a 465 

means of modelling a wider range of rock types than was previously possible [33]. 466 

The relationships we observed between these two parameters and a range of 467 

mechanical properties closely replicate the equivalent relationships determined 468 

experimentally for rocks.  469 
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Figure captions 564 

 565 

Fig. 1. Failure envelopes and rock property relations of siliciclastic rocks. (a) Peak 566 

stress data obtained from triaxial extension tests on Berea sandstone at various 567 

confining pressures plotted in principal stress diagram. (b) Data shown in (a) together 568 

with results from triaxial compression tests on Berea sandstone plotted on a maximum 569 

shear stress vs mean stress diagram. Best-fit parabolic Mogi 1967 failure criterion 570 

[30] is shown (Texas A&M data from Ref. 29, Wong et al. data from Ref. 34). (c) 571 

Strength at various confining pressure (labelled curves), (d) friction angle and (e) 572 

Young’s modulus vs porosity for Donetsk sandstone (data in (c) and (d) from Ref. 14, 573 

and data in (e) from Ref. 13). (f) Unconfined compressive and tensile strength (UCS 574 

and T, respectively), (g) UCS/T and (h) Young’s modulus vs number of heating 575 

cycles for Buchberger sandstone (data from Ref. 16). 576 

 577 

Fig. 2. PFC3D models used in this study. The two end-member models (i and ii) are 578 

comprised of ~27,000 particles and their particle size distributions are shown in Fig. 579 

3. 580 

 581 

Fig. 3. Plot of cumulative number of particles vs particle radius normalised to the 582 

sample width for the two end-member models (framed in Fig. 2). 583 

 584 

Fig. 4. Stress difference and volumetric strain vs axial strain curves obtained from 585 

triaxial compression tests at different confining pressures. Plots in left column are for 586 

high porosity end-member (model i in Fig. 2) and the plots in the right column are for 587 

low porosity end-member (model ii in Fig. 2). Model results in the first row were 588 



obtained from fully bonded models, results in second row from models with half of 589 

the particle-particle contacts bonded, and results in third row from non-bonded 590 

models. The open dots are the peak stress values which were used for constructing the 591 

failure envelopes shown in Fig. 7. 592 

 593 

Fig. 5. (a) Young’s modulus and (b) Poisson’s ratio vs confining pressure obtained 594 

from the slopes of the stress-strain curves shown in Fig. 4a and d (fully bonded 595 

models). Open and filled symbols are data from low and high porosity models, 596 

respectively. Elastic properties were determined at an axial strain of a tenth of the 597 

strain at peak stress. Circles and squares denote tangent and secant moduli, 598 

respectively. The dashed horizontal lines in each graph are the elastic property values 599 

obtained from the uniaxial strain tests. 600 

 601 

Fig. 6. Stress difference and volumetric strain vs axial strain curves obtained from 602 

unconfined compression tests on the models shown in the (a) first and (b) second row 603 

of Fig. 2. Open dots are peak stress values, which are plotted vs porosity in Fig. 10a. 604 

 605 

Fig. 7. (a and b) Failure envelopes of the two end-member models (framed in Fig. 2) 606 

in principal stress diagrams, and (c) friction angle (obtained from the slopes of triaxial 607 

compression failure envelopes) vs average confining pressure. Labels ranging from 10 608 

to 50 are percentages of non-bonded contacts. For clarity envelopes obtained from 609 

triaxial extension tests are cut off at the σ1 axis. The misfit between the triaxial 610 

extension and triaxial compression envelopes is due to a σ2 dependence of strength. 611 

 612 



Fig. 8. Data shown in Fig. 7 plotted in maximum shear stress vs mean stress diagrams 613 

(same line styles as in Fig. 7) for (a) a power-law PSD material with 23% porosity 614 

and (b) a uniform PSD material with 37% porosity. Labels ranging from 10 to 50 are 615 

percentages of non-bonded contacts. The curves are best-fit parabolic functions that 616 

were obtained using a least-square regression and by systematically varying the β-617 

value given in Eq. (3). 618 

 619 

Fig. 9. (a) Unconfined compressive and tensile strength (UCS and T, respectively), 620 

(b) UCS/T, and (c) elastic properties vs percentage of non-bonded contacts. Keys to 621 

the curves are shown: the numbers followed by a k (= thousand) is the approximate 622 

number of particles comprising the models, and φ is the porosity. LdB are UCS/T data 623 

from PFC3D models of cylindrical specimens of Lac du Bonnet granite provided by 624 

David Potyondy (microproperties given in Ref. 5). 625 

 626 

Fig. 10. Plots of (a) unconfined compressive and tensile strength (UCS and T, 627 

respectively), (b) UCS/T, (c) friction angle, and (d) elastic properties vs porosity. Data 628 

in (a, b and d) were obtained from fully bonded materials and data in (c) from non-629 

bonded materials (using the same range of confining pressure as in Fig. 7c). The bars 630 

in (c) indicate the range of internal friction angles obtained for fully bonded materials 631 

(Fig. 7c); arrows point towards increasing confinement. ESyS models (UCS/T data in 632 

b) with various porosities were generated by varying the particle size range for the 633 

particle insertion method (see text for details). 634 

 635 

Fig. 11. Chart summarizing some of the mechanical property relations obtained in this 636 

study. σ = stress/strength, ε = strain, P = confining pressure, E = Young’s modulus, ν 637 



= Poisson’s ratio, ϕ = friction angle, and ρcrks = ‘crack density’ or percentage of non-638 

bonded contacts. Solid curves are for fully or partially bonded materials, dashed 639 

curves for non-bonded materials. The graphs are selected results from Figs. 4, 5, 7 and 640 

9. See text for further explanation.641 



Table 1 642 

PFC3D microproperties 643 

Symbol Descriptiona Value 

Ec, GPa Young’s modulus of particles 50 

kn / ks ratio of particle normal to shear stiffness 2.5 

µc particle contact friction coefficient 0.5 

cE , GPa cement (i.e. bond) modulus 50 

nk / sk  ratio of bond normal to shear stiffness 2.5 

cσ , MPa average tensile bond strength (standard deviation) 100 (20) 

cτ , MPa average shear bond strength (standard deviation) 100 (20) 

λ bond width multiplier 1 

a Definition of microproperties and modulus-stiffness scaling relations are given in 644 

Ref 5. 645 
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