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Abstract 

The adsorption equilibrium of a wide range of phosphorus species by an aluminium-based water 

treatment sludge (Al-WTS) was examined in this study. Four kinds of adsorption-isotherm models, 

namely Langmuir, Freundlich, Temkin and Dubinin-Radushkevich, were used to fit the adsorption 

equilibrium data. In order to optimise the adsorption-isotherm model, correlation coefficient (R
2
) 

and four error functions were employed to facilitate the evaluation of fitting accuracy. Experiments 

have demonstrated that the Al-WTS may be an excellent raw material to adsorb P in polluted 

aqueous environment with adsorption ability in the order of KH2PO4 (ortho-P) > Na(PO3)6  (poly-

P) > C10H14N5O7P·H2O (organic-P). More importantly, this study provides an entire comparison of 

the four isotherms in describing the P adsorption behaviour. By considering both the standard least-

square based R
2
 and the results of four error functions analysis, this study reveals that the 

Freundlich isotherm appears to be the best model to fit the experimental equilibrium data. Langmuir 

and Temkin isotherms are also good models in current experimental conditions while Dubinin-

Radushkevich isotherm poorly described the adsorption behaviour. The error analysis in this study 

provides vital evidence to reflect its role in facilitating the optimisation in adsorption isotherm study. 

Obviously, R
2
 seems inadequate in optimising multi-isotherm models due to its inherent bias 

resulting from the least-squares linearisation.    
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reuse, wastewater treatment 
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1. INTRODUCTION 

The generation of coagulant residual sludge may remain unavoidable with the current water 

treatment technologies. Aluminium based water treatment sludge (Al-WTS) is generated at those 

water treatment plants where aluminium sulphate is used as the primary coagulant together with 

organic polymer as co-coagulant. Such sludge contains removed colour, turbidity and humic 

substances from source water, plus added aluminium sulphate and residual polymers. Due to the 

differences in the quality of the raw water and the varied treatment chemicals and processes in 

practice, Al-WTS can significantly vary in their characteristics (1, 2).  

 

At present, no EU legislation is specifically concerned with Al-WTS and it is yet to be classified as 

hazardous under any EU legislation including the EU directive, 91/271/EEC (3). However, the 

increasing amounts of Al-WTS produced daily are triggering considerable environmental and 

economic concerns as well as disposal issues. In Ireland alone, the current estimated annual 

production of 15,000 to 18,000 tonnes of the dried solids is predicted to be doubled by the end of 

the next decade. As in most European countries, Al-WTS is currently being treated as a landfill 

waste in Ireland and it has become mandatory for water companies to dispose of the sludge 

appropriately. However, the options for recovery/recycling of Al-WTS are generally not well 

developed as economically viable options for application in Ireland (4). Thus, the search for cost 

effective and eco-friendly disposal option(s) becomes an urgent priority.  

    

On the other hand, the targets of phosphorus (P) control set by Phosphorus Regulation (1998) of 

Irish Environmental Protection Agency (Water Quality Standards for Phosphorus, 1998 (SI 258 of 

1998); www.epa.ie) remain a very considerable challenge for the vast majority of local authorities 

although the monitoring indicated that the majority of Ireland’s rivers and lakes are not polluted. 

There is evidence to suggest that problems remain in a number of rivers as a result of municipal 

pollution and ineffective wastewater treatment especially P removal facilities (5). 
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Interestingly, it is noted that, due to the feature of generation of Al-WTS, aluminium hydroxides 

become the important composition of the sludge once it has been dewatered. This makes a 

possibility of reusing such kind of sludge as a valuable material for P control since aluminium ion 

in Al-WTS has shown a strong affinity and can enhance adsorption and chemical precipitation 

processes. Past studies particularly in recent years have extensively demonstrated the P adsorption 

ability of Al-WTS (6-10). According to Ippolito et al. (11), a high phosphorus-binding capacity of 

approximate 12.5 g P/kg Al-WTS was reported while Dayton and Basta (12) claimed a capacity 

ranged from 10.4 to 37.0 g P/kg Al-WTS by examining 18 WTS in the U.S. Zhao et al. (13) studied 

the possibility to reuse of dewatered Al-WTS cakes as the main substrate in a reed bed system for 

P-enriched wastewater treatment. In addition, Chu (14) investigated the dye removal from textile 

industrial effluent using Al-WTS. Basibuyuk and Kalat (15) reported the use of waterworks sludge 

for the treatment of vegetable oil refinery industry wastewater. In order to enhance particulate 

pollutant removal in primary sewage treatment, the feasibility of reuse Al-WTS was studied by 

Guan et al. (16). The concept lies in the utilization of large portion of insoluble aluminium 

hydroxides in the sludge as a coagulant in chemical coagulation/flocculation. More recently, Makris 

et al. (17, 18) investigated the use of Al-WTS as sorbent for perchlorate and arsenic removals.  

 

Although adsorption of P by Al-WTS had been well documented, it is noted that P adsorption has 

been studied predominately in orthophosphate while information on the adsorption behaviour of 

other different species of P are evidently lacking in literature. Furthermore, with regard to the 

description of P adsorption process by Al-WTS, there is limited information in the literature to 

study the application of different isotherms although the Langmuir isotherm was widely used (1, 19, 

20). In this study, three phosphate species (orthophosphate, polyphosphate and organic phosphate) 

commonly found in municipal wastewater were studied for equilibrium adsorption using an Irish 

Al-WTS. Adsorption ability of these three phosphates was investigated. Four adsorption isotherms, 

i.e. the Langmuir, the Freundlich, the Temkin, and the Dubinin-Radushkevich isotherms, were 
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employed to fit the experimental equilibrium data to describe how different species of phosphorus 

interact with the Al-WTS (sorbent). In order to optimize the most appropriate correlation for the 

equilibrium curve, adsorption isotherms were evaluated by error analysis with four error functions. 

The significance of this study lies in providing experimental evidence in Al-WTS to aid in P 

pollution control with optimal adsorption isotherm. 

 

 

2. MATERIALS AND METHODS 

2.1 Al-based WTS 

An aluminium-based water treatment sludge was used as adsorbent in this study. Initially, the 

dewatered Al-WTS cakes were collected from the dewatering unit of the Ballymore-Eustace Water 

Treatment Plant located in Co. Kildare, South Dublin, Ireland. The plant uses aluminium sulphate 

as coagulant to treat reservoir water via the traditional processes of flocculation, sedimentation, 

filtration and disinfection, to produce about 230,000 m
3
/d of potable water for Dublin city. The raw 

water with a colour of 105 Hazens flows through a series of tunnels under gravity from the 

Poulaphuca reservoir, 1.5 km away from the plant. The dosage of aluminium sulphate is ranged 42-

60mg/l. Water treatment sludges from sedimentation tank together with back washing stream from 

filtration tank were thickened and then conditioned with organic polymer and finally dewatered by 

filter press to produce sludge cakes for landfill as final disposal. The major elemental components 

of the dewatered Al-WTS used in this study as determined by ICP-analysis were 46% Al2O3, 1.2% 

Fe2O3, 1.2% CaO and 10% humic acids classified as TOC (10). The collected chunk Al-WTS cakes 

(with moisture content of 72-75%) were air-dried and then ground and sieved of various sizes to 

prepare the testing Al-WTS samples. Two kinds of samples of the sieved sludge with different sizes 

were used in this study, i.e. the sample with size range of 0.06-0.13mm (regarded as fine Al-WTS) 

and 0.25-0.45mm (regarded as coarse Al-WTS), respectively. The moisture content of the prepared 

sludge samples (air-dried) was 23.4-23.7%.  
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2.2 Phosphorus Aqueous Solutions   

The phosphorus aqueous solutions used for batch adsorption tests were prepared by dissolving 

carefully weighed out phosphorus salts in distilled water. Three types of phosphate suspensions 

were prepared separately; orthophosphate (potassium dihydrogen phosphate: Riedel De Haen 

KH2PO4, AnalaR grade), polyphosphate (sodium hexametaphophate: BDH (NaPO3)6, no grade) and 

organic phosphate (adenosine monophosphate: Fluka C10H14N5O7P·H2O, AnalaR grade). The 

concentrations of the prepared solutions, which tend to simulate the similar concentrations of 

phosphates in typical municipal wastewater (21), are as follow, orthophosphate at 14.6 mg-PO4
3-

/l, 

polyphosphate at 10.8 mg-PO4
3-

/l and organic phosphate at 3.4 mg-PO4
3-

/l. 

 

2.3 Batch Adsorption Tests 

Adsorption isotherms were studied by a series of batch adsorption tests. Different weight of 

prepared Al-WTS ranging between 0.1g to 0.5 g and 100 ml of each P aqueous suspensions were 

poured into 100ml plastic bottles and the pH values of the mixed suspensions were adjusted to 4.0, 

5.5, 7.0 and 9.0 respectively by adding 0.1M sulphuric acid and 0.01M sodium hydroxide. The 

mixed samples were placed on a Stuart Orbital Shaker (SSL 1, Bibby Sterilin Ltd.)  and agitated at 

200 rpm for 24 hours for equilibrium to be achieved although different equilibration times of 17 

hours (19), 24 hours (8, 11), 48 hours (10), 6 days (12) and up to 80 days (2) with initial P 

concentration ranged from 5.0 to 3,500 mg P/L were reported in similar studies. Preliminary 

experiments over the P concentrations used in this study indicated that the adsorption equilibrium 

was reached in 24 hours. There was no further appreciable decrease of P concentrations in the bulk 

solution up to 4 days. Thus, the duration of the adsorption equilibrium isotherm experiments was 

chosen to be 24 hours. After 24 hours, the samples were removed from the shaker and filtered using 

a 0.45 Millipore membrane filters to separate the solids from the liquid for P residual monitoring. 

 

2.4 Phosphorus Species Analysis 
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The residual P concentration was determined according to molybdovandate method 8114 (HACH) 

using a HACA DR-2400 spectrophotometer. Orthophosphate was determined by colorimetric 

method after reaction with vanabdomolybdate reagent. Polyphosphate was determined after its 

conversion to reactive phosphate by heating the sample at 105
o
C with sulphuric acid. Total 

phosphate was converted to reactive phosphate by heating at 105
o
C with sulphuric acid and 

potassium persulphate salts. 

 

 

3 ADSORPTION ISOTHERMS 

3.1 Langmuir Isotherm 

Langmuir isotherm (22) is most widely used for the sorption of a pollutant from a liquid solution 

(20, 23, 24). The model assumes that the sorption takes place at specific homogenous sites within 

the adsorbent, i.e. once a sorbate molecule occupies a site, further adsorption at this site is 

impossible. The equation of Langmuir is represented as follows: 
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where qe is the mass of P adsorbed on adsorbent at equilibrium (mg/g); Ce is the equilibrium 

concentration of P solution (mg/l); Q0 is the maximum adsorption capacity (mg/g); b is a Langmuir 

constant (l/mg) related to the energy of adsorption. Physically, b is a measure of the affinity of the 

adsorbate for the adsorbent. The linear form of Langmuir isotherm is:   
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Hence a plot of Ce/qe versus Ce or 1/qe versus 1/Ce gives a straight line to solve the isotherm 

parameters. 
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3.2 Freundlich Isotherm 

Although Freundlich isotherm (25) is an empirical equation to describe heterogeneous adsorption 

systems, it is the earliest known relationship describing the adsorption equation (24). This isotherm 

is given as: 

)3(
/1 n

eFe CKq   

 

A linear form of the Freundlich expression is: 

)4(log
1

loglog eFe C
n

Kq   

where KF is the Freundlich constant (l/g) related to the bonding energy; and 1/n is the heterogeneity 

factor in which n is a measure of the deviation from linearity of the adsorption. The value of n 

indicates the degree of non-linearity between P solution concentration and adsorption as follows: if 

the value of n is equal to unity, the adsorption is linear; if the value is below to unity, this implies 

that adsorption process is chemical; and if the value is above to unity, adsorption is a favorable 

physical process (26). The plot of logqe vs logCe was employed to generate the intercept value of KF 

and the slope of 1/n. 

 

3.3 Temkin Isotherm 

The Temkin isotherm has been used in the following form (27, 28): 

)5()ln( e

T

e AC
b
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A linear form of the Temkin isotherm can be expressed as: 

)6(lnln e
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b

RT
A

b
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q   

where RT/bT=B; R is the gas constant (8.31J/mol K) and T is the absolute temperature. The sorption 

data can be analyzed according to Eq. (6). Therefore a plot of qe versus lnCe enables one to 

determine the constants A and bT.  
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3.4 Dubinin-Radushkevich isotherm 

The Dubinin-Radushkevich (29) isotherm assumes that there is a surface area where the adsorption 

energy is homogeneous. The Dubinin-Radushkevich equation has the following form: 

 

)7(
2 eqq me  

 

A linear form of Dubinin-Radushkevich isotherm is: 

 

)8(lnln 2 me qq  

 

where qm is the Dubinin-Radushkevich monolayer capacity (mg/g), β a constant related to sorption 

energy, and ε is the Polanyi potential which is related to the equilibrium concentration as follows 
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1
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The constant β gives the mean free energy, E, of sorption per molecule of the sorbate when it is 

transferred to the surface of the solid from infinity in the solution and can be computed using the 

relationship (27, 30): 
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3.5 Error Analysis 

For the purpose of quantitatively comparing the applicability of different adsorption isotherms in 

fitting to data, the following four error functions were employed for error analysis: 

1. The sum of the squares of the errors (SSE) (26): 
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2. The sum of the absolute errors (SAE) (26): 
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3. The hybrid fractional error function (HYBRID) (26): 
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4. Normalized percentage standard deviation (NPSD) (31): 
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where qe,exp and qe,cal are respectively the experimental values and calculated values by adsorption 

isotherm; n and p refer to the number of data points and the number of isotherm parameter, 

respectively.    

 

4 RESULTS 

The equilibrium adsorption data according to the linear plotting of Langmuir model (Eq. (2)), 

Freundlich model (Eq. (4)), Temkin model (Eq. (6)), and the Dubinin-Radushkevich model (Eq. 

(8)) are shown in Fig. 1 to 4, respectively. The fitting parameters and the magnitude of the 

correlation coefficient (R
2
) values as well as the error analysis results for both coarse and fine Al-

WTS in adsorption of three P species used in this study are summarised in Table 1.     

 

 

[Fig. 1  Langmuir isotherm (Eq. (2)) of three model P species sorbed  

on coarse and fine Al-WTS at pH 7.0] 

 

 

[Fig. 2  Freundlich isotherm (Eq. (4)) of three model P species sorbed  

on coarse and fine Al-WTS at pH 7.0] 
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[Fig. 3  Temkin isotherm (Eq. (6)) of three model P species sorbed  

on coarse and fine Al-WTS at pH 7.0] 

 

 

 

             

[Fig. 4  Dubinin-Radushkevich isotherm (Eq. (8)) of three model P species sorbed  

on coarse and fine Al-WTS at pH 7.0] 

 

 

 

 

[Table 1 Isotherm parameters with error analysis for P species adsorption 

on coarse and fine Al-WTS at pH 7.0] 

 

 

 

It is seen from Fig. 1 that Langmuir equation fits the experimental data well for both the coarse and 

the fine Al-WTS. By inspecting Table 1, the R
2
 of Langumir fitting shows the highest of all the 

different isotherms employed in this study. The values of Q0, which represents the maximum 

adsorption capacity, were in decreasing order of ortho-P > poly-P > organic-P with higher values 

for fine Al-WTS. As b values reflect the affinity property of the adsorption process, it is known 

from Table 1 that ortho-P has maximum affinity while poly-P has minimum affinity for both coarse 

and fine Al-WTS tested.  

 

Freundlich isotherm was illustrated in Fig. 2 and the regression parameters are also listed in Table 

1. As can be seen from Fig. 2 Freundlich isotherm is also a good model along with Langmuir 

isotherm for P adsorption process by Al-WTS. Among the three P species tested, the R
2
 values in 

Table 1 indicate that the Freundlich isotherm is more suitable to describe the adsorption behaviour 

of poly- and organic-P in case of fine Al-WTS adsorption although it gives a comparatively lower 

R
2
 as compared with the Langmuir model in all the cases of P adsorption. The values of KF increase 

with the decrease of sludge particle size for all the P species tested while 1/n shows an irregular 
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increase. It is noted that the 1/n values in Table 1 are all small than 1, indicating adsorption being 

favourable. Yang et al., (10) has claimed that the dewatered alum sludge takes up P species on a 

heterogeneous surface by ligand-exchange process.  

 

The constants A and B of Temkin equation are listed in Table 1 and the theoretical plot of this 

isotherm is shown in Fig. 3. The R
2
 is also listed in Table 1 and is more or less lower than the 

Langmuir and Freundlich values but higher than Dubinin-Radushkevich values. Therefore, the 

Temkin equation only represents a better fit of experimental data than the Dubinin-Radushkevich 

equation but not in the cases of both Langmuir and Freundlich equations. 

 

The results plotted in Fig. 4 tend to suggest that the Dubinin-Radushkevich equation also provide a 

reasonable description and analysis of experimental data. However, by comparison of R
2
 values 

with that from all other three isotherms, it is fair to say that, in all cases, Dubinin-Radushkevich 

equation represents the poorest fit of experimental data than the other three isotherm equations. The 

values of adsorption capacity, qm, in Dubinin-Radushkevich equation exhibit the same trend (see 

Table 1) as obtained from Langmuir equation for both coarse and fine Al-WTS of P species 

adsorption, but with considerably decreased magnitude.    

 

 

5 DISCUSSION 

Adsorption equilibrium data are important to determine the adsorption parameters using adsorption 

isotherms. These fundamental data should be useful in designing and predicting adsorption process 

in practice. Generally, the most widely used approach to determine the isotherm parameters is by 

linear regression with R
2
 value nearer to unity being deemed to provide the best fit. This method 
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appears to give an acceptable fit to the experimental data in this study. However, due to the inherent 

bias resulting from linearisation, R
2
 is not the unique criterion to evaluate the best fit. Studying 

cadmium sorption on tree fern, Ho (24) pointed out that the commonly used R
2
 is not appreciate to 

compare the best fit between Langmuir and Freundlich isotherms. Some error functions are often 

used to integrated evaluate the fit (23, 24, 26). In this study, four different error functions are used 

in all cases of adsorption to participate the evaluation of data fit of four isotherms and the results are 

presented in Table 1. By comparing each error function in four adsorption isotherms’ fitting for a 

phosphorus type, a rank of the four adsorption isotherms for the adsorption of P can be made in the 

order of the best (corresponding to the lowest value of error function) to the poorest (return to 

highest value of error function), which is in turn marked as 1
st
, 2

nd
, 3

rd
 and the 4

th
 position in the 

rank among the four isotherms tested. By considering all the P species of the coarse and fine Al-

WTS adsorption, 24 comparisons could be made in each error function, thus 96 comparisons were 

done in total for the four error functions. Accordingly, the individual isotherm in the rank can be 

accounted for. This leads to the plotting of each isotherm in the rank in numbers, as shown in Fig. 5. 

By carefully inspecting Fig. 5, it is clear that the Freundlich model appears to be the best fitting (18 

in 1
st
 place, 1 in 2

nd
 place, 1 in 3

rd
 place and 4 in 4

th
 place). It is followed by the Temkin model (4 in 

1
st
 place, 12 in 2

nd
 place, 4 in 3

rd
 place and 4 in 4

th
 place), the Langmuir model (2 in 1

st
 place, 11 in 

2
nd

 place, 11 in 3
rd

 place and none in 4
th

 place), and the Dubinin-Radushkevich model (none in 1
st
 

and 2
nd

 place, 8 in 3
rd

 place and 16 in 4
th

 place).  

 

Similarly, a comparison of R
2
 was made and the position of each isotherm in the rank (among the 

1
st
 to 4

th
) was accounted. Six comparisons could be made in each error function and 24 comparisons 

were conducted in total for the four error functions. The results are illustrated in Fig. 6. It is seen 

that the order of best fitting is the Langmuir model (2 in 1
st
 place, 4 in 2

nd
 place, none in 3

rd
 and 4

th
 

place) > the Freundlich model (2 in 1
st
 place, 2 in 2

nd
 place, 1 in 3

rd
 and 1 in 4

th
 place) > the Temkin 
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model (2 in 1
st
 place, none in 2

nd
 place, 4 in 3

rd
 and none in 4

th
 place) > the Dubinin-Radushkevich 

model (none in 1
st
 and 2

nd
 place, 1 in 3

rd
 place and 5 in 4

th
 place).       

       

[Fig. 5  Comparison of isotherms in the data fitting from error analysis] 

 

[Fig. 6  Comparison of isotherms in the data fitting from correlation coefficient (R
2
)] 

 

By considering both the R
2
 and the error function analysis shown in Fig. 5 and 6, it becomes clear 

that the Freundlich model seems to provide the best description of the adsorption process for all the 

P species tested. However, it should be pointed out that the Freundlich model is not the best for the 

description of the adsorption process of fine Al-WTS adsorption of ortho-P, as can be seen from 

Table 1. The reason remains unclear. A typical plotting of measured and calculated results of coarse 

Al-WTS adsorption of ortho-P is illustrated in Fig. 7. It is noted from the literature that, for 

phosphorus adsorption by Al-WTS, Makris et al., (2) claimed that Langmuir-based P sorption 

capacity were not determined since isotherms exhibited Freundlich behaviour, no obvious 

adsorption plateau being observed when equilibrium data were plotted. Studying P adsorption by 

sand, Rodgers et al., (32) reported that the Freundlich model often fits data better. However, the 

Langmuir model was reported as the more useful model to describe the adsorption processes of 

phosphorus adsorption by 13 kinds of sands when precipitation of phosphates did not occur (20). 

By combining the information from Fig. 5 and 6, it appears that the Dubinin-Radushkevich model 

would be inappropriate to describe the adsorption behaviour in the current study. Overall, this study 

provides a comparison of the four commonly used adsorption isotherms models to best describe P 

adsorption onto Al-WTS. It should be noted that past studies have extensively demonstrated the 

effectiveness of Al-WTS for P immobilization (1, 7-11). Therefore, the input of this study lies in 

exploring the best isotherm which could be employed in designing and predicting adsorption 

process in future and large scale application.  
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[Fig. 7  Plot of measured and calculated results of coarse Al-WTS adsorption of ortho-P at pH 7.0] 

 

It is also noted from the literature that a lot of studies have shown the P adsorption is affected by the 

pH of the P aqueous solution (8, 10, 33). The general trend is that the P adsorption is favour in the 

acidic environment, compared to the basic. This is confirmed in this study from equilibrium data 

computed by Langmuir model. Table 2 shows the results of the maximum adsorption capacities (Q0) 

for the three P species adsorption at pH of 4.0, 5.5, 7.0 and 9.0, respectively. It is seen that the 

adsorption capacities varied for each phosphate type where orthophosphate has the highest 

adsorption capacities for all pH values tested while organic phosphate removal was the smallest. In 

addition, for each P type, higher adsorption capacities were obtained at lower pH ranges while the 

converse was also true. Overall the adsorption capacities are in the following order: 

orthophosphate > polyphosphate > organic phosphate. 

 

[Table 2  Maximum adsorption capacities (Q0) of three model P at varied pH conditions] 

 

 

6 CONCLUSIONS 

This study focused on the adsorption equilibrium of a wide range of phosphorus species adsorbed 

by an aluminium-based water treatment sludge. Four kinds of adsorption-isotherm models were 

used to fit the adsorption equilibrium data. In order to optimise the adsorption-isotherm model, 

correlation coefficient (R
2
) and four error functions were adopted. The following conclusions can be 

drawn from the present study: 

 Dewatered Al-WTS has exhibited an excellent P immobilization ability with wide range 

of P species simulated using typical concentrations found in municipal wastewater. 

Within the three kinds of P species tested, the highest P adsorption ability is obtained for 
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orthophosphate (say, KH2PO4), followed by polyphosphate (say (NaPO3)6) and finally 

organic phosphate (say C10H14N5O7P·H2O). Therefore, it is believed that such Al-WTS 

may be used as an adsorbent involving various P removal in environmental management. 

However, the adsorption abilities vary with the pH of the P suspension. P adsorption 

process favours acidic suspensions rather than alkaline suspensions for all the three P 

species tested.  

 Different adsorption isotherms, such as Langmuir, Freundlich, Temkin and Dubinin-

Radushkevich isotherms can be used to describe the P adsorption behaviour by Al-WTS. 

However, each isotherm has its own accuracy to describe such adsorption process. By 

means of the R
2
 and especially the error analysis using four different error functions, this 

study reveals that the Freundlich isotherm appears to be the best model to fit the 

experimental equilibrium data. Langmuir and Temkin isotherms are also good models in 

current experimental conditions while Dubinin-Radushkevich isotherm seems 

inappropriate to describe the adsorption behaviour. 

 It has been demonstrated in this study that error analysis is useful tool to facilitate the 

optimisation in adsorption isotherm study. Due to the inherent bias resulting from the 

least-squares linearisation, R
2
 seems inadequate in optimising analysis when multi-

isotherms are applied to the experimental data.     
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Fig. 1  Langmuir isotherm (Eq. (2)) of three model P species sorbed on coarse and fine Al-WTS at 

pH 7.0 
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Fig. 2  Freundlich isotherm (Eq. (4)) of three model P species sorbed on coarse and fine Al-WTS at 

pH 7.0 
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Fig. 3  Temkin isotherm (Eq. (6)) of three model P species sorbed on coarse and fine Al-WTS at pH 

7.0 
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Fig. 4  Dubinin-Radushkevich isotherm (Eq. (8)) of three model P species sorbed on coarse and fine 

Al-WTS at pH 7.0 
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Fig. 5  Comparison of isotherms in the data fitting from error analysis 
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Fig. 6  Comparison of isotherms in the data fitting from correlation coefficient (R
2
) 
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Fig. 7  Plot of measured and calculated results of coarse Al-WTS adsorption of ortho-P at pH 7.0 
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Table 1 Isotherm parameters with error analysis for P species adsorption on coarse and fine Al-

WTS at pH 7.0 

 

Parameter Coarse Al-WTS (0.25-0.45 mm) Fine Al-WTS (0.06-0.13 mm) 

Ortho-P Poly-P Organic-P Ortho-P Poly-P Organic-P 

Langmuir isotherm      

Q0 2.845 1.744 0.975 12.195 6.050 4.699 

b 0.692 0.106 0.413 0.605 0.230 0.426 

R
2
 0.994 0.981 0.984 0.990 0.994 0.994 

SSE 0.01448 0.00034 0.00019 0.18536 0.02675 0.02248 

SAE 0.23112 0.03687 0.02563 0.83495 0.27106 0.22130 

HYBRID 0.20433 0.01074 0.01354 1.18248 0.27655 0.43121 

NPSD (%) 2.55353 0.87606 1.49254 4.26406 2.55871 4.48350 

Freundlich isotherm      

KF 1.715 0.359 0.302 4.361 1.695 1.414 

1/n 0.159 0.403 0.539 0.493 0.393 0.800 

R
2
 0.944 0.969 0.983 0.950 0.996 0.998 

SSE 0.00738 0.00028 0.00017 1.56610 0.01153 0.00270 

SAE 0.14298 0.03197 0.02648 2.48204 0.20326 0.10109 

HYBRID 0.09959 0.00870 0.01265 8.13649 0.09735 0.06635 

NPSD (%) 1.74071 0.78569 1.48766 10.47226 1.36753 2.04499 

Temkin isotherm      

B 0.374 0.418 0.240 2.736 1.388 0.923 

A 75.105 1.156 3.145 5.619 2.054 5.161 

R
2
 0.932 0.964 0.988 0.993 0.993 0.958 

SSE 0.00814 0.07363 0.00019 0.18420 0.01575 0.04647 

SAE 0.15196 0.60544 0.02545 0.82108 0.22267 0.43937 

HYBRID 0.11021 2.38374 0.01325 1.27645 0.15265 1.47939 

NPSD (%) 1.83411 13.18657 1.46732 4.69324 1.83720 11.16165 

Dubinin-Radushkevich isotherm     

qm 2.541 1.267 0.6204 8.430 4.385 2.0146 

β 0.0062 0.0706 0.0035 0.0017 0.0131 0.0012 

R
2
 0.828 0.943 0.979 0.954 0.909 0.938 

SSE 0.02208 0.00051 0.00040 1.47865 0.20960 0.09610 

SAE 0.29399 0.04679 0.03953 2.34656 0.89448 0.54792 

HYBRID 0.29694 0.01604 0.02737 7.41575 1.86341 2.14843 

NPSD (%) 3.00416 1.06796 2.05777 10.15985 6.19832 11.22284 
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Table 2  Maximum adsorption capacities (Q0) of three model P at varied pH conditions 

Phosphate  

type 

Chemical name & 

formula 
pH 

Q0 (mg PO4
3-

/g Al-WTS) 

Coarse (0.25-0.45mm) Fine (0.06-0.13mm) 

Ortho- 

phosphate 

Potassium  

dihydrogen 

phosphate KH2PO4 

4.0 7.32 15.90 

5.5 4.58 14.62 

7.0 2.85 12.20 

9.0 3.23 12.23 

Poly- 

phosphate 

Sodium 

hexametaphophate 

Na(PO3)6 

4.0 3.23 8.99 

5.5 2.59 8.61 

7.0 1.74 6.05 

9.0 1.05 4.99 

Organic  

Phosphate 

Adenosine 5'- 

monophosphoric 

acid monhydrate  

C10H14N5O7P·H2O 

4.0 1.88 6.23 

5.5 1.42 5.52 

7.0 0.98 4.70 

9.0 0.87 4.04 

  Note: Maximum adsorption capacities (Q0) were determined by Langumir model. 
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Figure legend 

Fig. 1  Langmuir isotherm (Eq. (2)) of three model P species sorbed on coarse and fine Al-WTS at 

pH 7.0 

Fig. 2  Freundlich isotherm (Eq. (4)) of three model P species sorbed on coarse and fine Al-WTS at 

pH 7.0 

Fig. 3  Temkin isotherm (Eq. (6)) of three model P species sorbed on coarse and fine Al-WTS at pH 

7.0 

Fig. 4  Dubinin-Radushkevich isotherm (Eq. (8)) of three model P species sorbed on coarse and fine 

Al-WTS at pH 7.0 

Fig. 5  Comparison of isotherms in the data fitting from error analysis 

Fig. 6  Comparison of isotherms in the data fitting from correlation coefficient (R
2
) 

Fig. 7  Plot of measured and calculated results of coarse Al-WTS adsorption of ortho-P at pH 7.0 

 


