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Abstract—Renewable electrical energy grid connection is 

hampered by transmission capacity limitations and public 

opposition to new transmission development. This paper 

presents a methodology to find the optimal positions on an 

existing transmission system network to connect ‘firm’ wind 

capacity to reach desired renewable energy penetration targets 

in a secure, least-cost manner. The methodology accounts for 

geographical statistical dependencies of individual bus load and 

wind farm power outputs, as well as the temporal dependencies 

of the conventional plant unit-commitment process on total 

system load and wind patterns. This is accomplished using a 

probabilistic load flow technique based on DC load-flow and 

recorded load and wind time series. A discretised model of the 

resultant multi-dimensional probability density function is used 

to define line flow constraints in a linear programming 

optimization model. The algorithm objectively allocates wind 

capacity with respect to the wind resource and transmission 

capacity in each area.  

 
Index Terms—linear programming, power system planning, 

power transmission, probabilistic load flow, time series, wind 

energy. 

I.  INTRODUCTION 

he power systems of many countries all over the world 

are currently undergoing a rapid increase in the 

connection of renewable energy. In accordance with efforts 

to reduce carbon dioxide emissions in the global fight 

against climate change, [1], and to diversify the generation 

portfolio for security of supply reasons, many countries have 

recently pledged to achieve clear future targets in the supply 

electric energy consumption from renewable energy, [2]. 

Renewable resource assessments and the relative maturity of 

generation technology suggest that a significant proportion 

of these targets will come from wind energy. This aim, 

coupled with attractive financial incentives, [3], has resulted 

in a major increase in wind power applications for grid 

connection agreements.  

 New generator connection agreements are subject to the 

power transfer capability of the power system’s transmission 

network. Existing transmission system capacity limitations 
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are compounded by the cost of new transmission line 

development, the long lead-times to transmission project 

completion, and the increasingly vocal objections of 

landowners and residents to transmission planning ‘right of 

way’. In an effort to reach renewable energy targets in a 

cost-effective and timely manner, there is a clear need to 

make the optimal use of the existing transmission capacity 

resource throughout the system, even if this requires the 

harnessing of wind energy in areas with less attractive wind 

resources. Previous work has shown the benefit of this 

concept in wind allocation to distribution systems, [4].   

 The power system of Ireland is a particularly interesting 

example of the broader problem. Transmission system 

capacity is limited in the north-western region with the best 

wind resources. A recent government commissioned 

technical report projects that up to 42% of Ireland’s 

electrical energy needs may be harnessed from renewable 

energy by the year 2020, provided that several technical 

problems can be overcome, [5]. One of these main barriers is 

the requirement for extensive transmission system 

reinforcement. In an attempt to clear up the backlog of wind 

connection applications in a more efficient manner, the 

electricity regulator has begun to process applications in 

groups, resulting in the ‘Gate I’ and ‘Gate II’ series of firm 

connection capacity allocations, [6].  

 Allocation of a ‘firm’ connection offer implies secure 

network operation at all times, under all possible first-case 

‘N-G-1’ contingency scenarios, with no generator 

curtailment due to network capacity limitations. The 

traditional transmission system planning methodology 

applied by many transmission system operators (TSO) to 

achieve this is primarily based on the method of ‘incremental 

transfer capability’ (ITC), subject to the ‘N-G-1’ security 

constraint at particularly onerous ‘snapshot’s throughout the 

year. These ‘deterministic’ points are typically the winter 

day peak (WDP), the summer day peak (SDP), and the 

summer night valley (SNV), [7]. This has proven to be a 

generally reliable planning methodology for conventional 

power generation in the past.  A power system network is a 

distributed infrastructural resource however, and the 

cumulatively most stressful instance overall may not 

coincide with the ‘worst-case-scenario’ for individual 

transmission lines. This is particularly true in power systems 

with increased penetration of stochastic energy sources such 

as wind, and the traditional methodologies of old may not be 

suitable for the future challenge of wind power grid 

connection.  The behavior of wind power (fluctuating power 

output levels with a typical capacity factor of 30% in 
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Ireland, and the statistical inter-dependence of 

geographically distinct wind farms) is difficult to integrate 

accurately to this traditional planning methodology. For 

these reasons there is a requirement to develop a more 

advanced methodology for modern power system assessment 

in the probabilistic domain. The new technique proposed in 

this paper is related to the established concept of 

‘probabilistic load flow’ (PLF). 

 The history of probabilistic load flow dates back to the 

early 1970’s. In contrast to traditional power flow, where the 

bus power injections and line flows are a set of single 

numbers, PLF uses random variables, (r.v.’s), with specified 

probability density functions (p.d.f.’s) to describe the 

statistical behaviour of the power injections and the 

subsequent probabilistic power flow in each line. In the 

context of power system planning, the benefit of assessing 

power flows in the probabilistic domain is that the ‘worst-

case-scenario’ (i.e. the very extremes of the line flow p.d.f.) 

may be identified in the case of each line, regardless of what 

time of the year it occurs. This is a powerful advantage in 

the security assessment of future networks with high wind 

energy penetration. A number of PLF analytical techniques 

have been proposed based on the simplistic assumptions of 

the statistical independence, or linear dependence of nodal 

power injections, [8], [9], and Gaussian line flow and/or bus 

power injection probability distributions, [10]. In order to 

account for the true complex multi-dimensional statistical 

dependencies between all bus power injection r.v.’s more 

accurately, ‘Monte Carlo’ simulation (MCS) techniques 

based on random sampling appeared from the 1980’s 

onwards, [11], and such principles have been the mainstay of 

PLF methods since, [12]. 

As the random sampling MCS is essentially a memory-

less process, parameters such as start-up costs, start-up 

times, ramp rate constraints, minimum up-time and down-

time, and energy storage, that are essential to the unit-

commitment process applied over 24 hours in a real power 

system, cannot be modeled. Therefore only simple ‘merit-

order’ dispatch can be applied. To properly account for such 

temporal constraints, a sequential ‘time series’ PLF 

approach has been used in this paper. 

The aim of this paper is to find the optimal locations on an 

intact power system for ‘firm’ wind farm capacity allocation 

in a secure and economic manner. No contingency scenarios 

or transmission system expansion are considered. Section II 

of this paper describes the optimal allocation methodology 

in more detail. Section III describes the characteristics of the 

test system under investigation. Section IV of this paper 

presents the linear programming optimization stage results, 

while Section V discusses the wider implications of this 

methodology in more detail.  

II.  OPTIMAL WIND POWER LOCATION 

A.  Geographical Wind ‘Smoothing’ Assumption 

In order to properly define the correct multi-dimensional 

statistical relationship between the various wind, load and 

(most importantly) conventional plant time series necessary 

for a PLF assessment, it is first required to carry out a study 

of the unit commitment and dispatch process. It is desired to 

integrate wind energy sufficient to serve a certain percentage 

of consumer electrical load energy, ‘δe’. A system wind 

power time series must be generated to carry out the 

dispatch process. As the respective capacity allocations to 

each transmission system bus are not known before the 

optimization process is complete, some assumptions must be 

made with regard to the total system-wind behavior. A 

normalized 1 MW wind farm time series at each of the 

candidate connection buses is available for study. The 

required determination of total system wind ‘name-plate’ 

capacity to achieve this energy penetration is therefore made 

difficult by the different statistical parameters and capacity 

factors of each individual wind site – if transmission 

capacity allows the selection of the best wind sites, then less 

overall wind turbine capacity is required.  

Each transmission system area has a certain limit to 

transfer capacity available however, thus it is unlikely that 

all the wind power capacity will be assigned to one single 

bus. Therefore the anticipation of a certain spreading of firm 

capacity throughout the network in the optimal secure 

solution allows the initial assumption that the total wind 

power output at any one time will ‘smoothen’ to an average 

trend. The average system capacity factor, cfavg, will allow 

the determination of an average, or ‘smoothed’, system wind 

name-plate capacity, Cavg, given that the customer yearly 

energy requirement, Eload (in Joules), is known. This 

averaged nameplate capacity is used to scale the average 

normalized 1 MW wind series to generate an appropriate 

representative system wind time series for the unit 

commitment statistical study. This is explained using (1). 

When the initial output of the optimization stage is known, 

the entire unit commitment and optimization process can be 

repeated with the updated wind locations providing the 

system total wind power output time series for better 

accuracy.  
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B.  ‘DC’ Load Flow 

DC load flow is commonly used in transmission system 

planning as an initial tool to study the ‘thermal’ or ‘active’ 

power capabilities of the network. Other important planning 

security criteria such as steady-state voltage values, transient 

voltage stability, short-circuit current ratings etc are typically 

assessed once the grid is known to be thermally secure, [7]. 

DC load flow is a linear algorithm, and thus power flows can 

be solved much more quickly than the full nonlinear AC 

load flow iterative solution. In the context of optimal wind 

capacity allocation, the most advantageous feature of DC 

load flow is the fact that the line power flow solution fj in 

each line j is a linear combination of the power injections, 

Pi, at each bus i, [13], as in (2) below. This allows the DC 

load flow coefficients, αij, to be used for constraint definition 

in a linear programming model. An undesirable trade-off to 

the fast computational speed and linearity advantages is the 

problem of inaccuracy, in comparison to the full nonlinear 
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AC load flow iterative solution.  

 

         i

i
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C.  Multi-dimensional ‘Clustering’ 

 Transmission systems that allocate firm network 

connection permits should be, by definition, secure under all 

possible normal and first contingency operating scenario 

conditions. In the time-series PLF approach proposed in this 

paper, this necessitates the study of power flow in each line, 

in each of the 8760 hourly sample cases. In a reasonably 

sized power system, this could lead to an intolerable number 

of cases required for analysis. During the year, a large 

proportion of the cases tend to have approximately the same 

conditions, therefore an efficient algorithm should seek to 

reduce the study dimensionality by grouping such cases 

together.   

 Note that as the optimal wind farm capacities are still as 

of yet unknown, only the linear impact of the conventional 

plant and the load at each bus can be calculated using (2) as 

a ‘partial’ load flow solution value, fp, on each line. The net 

contributory effect of the dispersed wind power on the 

individual line, as a positive or negative flow, is not yet 

known. However the multidimensional p.d.f. of the ‘partial’ 

line flow solution coincident in time with all of the k 

normalized 1 MW wind farm time series can now be 

estimated. Using the 8760 hourly samples in one network 

scenario (the ‘intact’ network is the only scenario considered 

in this paper as no contingencies apply), this continuous 

p.d.f. can be approximated using a discretisation procedure 

(akin to a histogram in ‘k +1’ dimensions (D), with an 

appropriately chosen ‘bin’ resolution for each dimension). 

This effectively groups all of the similar hours together into 

the relevant ‘bin’ position. This single ‘bin’ position 1x(k+1) 

vector, v, in the (k+1)-D matrix hyperspace can now be used 

to analytically represent all of the cases which were placed 

in it. All empty bins are discarded at this stage. In the 

‘security’ environment that is transmission system planning, 

the frequency of occurrence of cases in each bin is 

irrelevant, only the fact that the bin has more than zero cases 

in it. If it occurs only once, it is still worth investigating. In 

this case the choice of bin ‘resolution’ is the trade-off 

between accuracy and the case dimensionality reduction 

requirement. With a small number of bins, most of the cases 

will fall into bins that are already occupied, but the bin 

vector position used to represent all these cases will be a 

gross approximation to some of its’ inhabitant cases. Choice 

of too high a resolution and no case dimensionality reduction 

will occur.  

   

D.  Linear Programming Optimisation 

As no transmission system reinforcement is assumed, and 

electrical network losses are neglected, the only economic 

cost to be included in the objective function is the 

infrastructural cost of the wind farm developments 

themselves. It is assumed in this paper, that the cost of each 

development is directly proportional to the capacity of the 

wind farm. Therefore the system wind development 

optimization cost function can be related the total installed 

‘nameplate’ wind turbine capacity. The individual wind farm 

capacities, Ck, are thus the optimization variables. The 

optimisation cost function is linear and therefore linear 

programming (LP) optimisation techniques can be used.  

The wind energy penetration constraint must also be 

satisfied from (1). Each wind farm has a different capacity 

factor. Therefore the total wind energy must equate to that of 

the ‘average’ system wind capacity, as described in Section 

2a. If the network flow constraints were not included, the 

unconstrained optimum solution would be to locate all the 

wind capacity in the wind area with the highest wind 

capacity factor. However the placement of wind capacity is 

bound by transmission system capacity constraints. These m 

constraints, Vmk, for each line j are acquired from the 

‘clustering’ process vector positions as described in Section 

2c above. The net contributory effect of the dispersed wind 

power on the individual line can be equated to the k capacity 

optimization variables scaled by the product of the relevant k 

DC load flow coefficients and the 1xk bin vector positions of 

the normalised 1 MW wind discrete p.d.f. It should not 

cause an overload of line capacity, LCj, in either the forward 

or backward direction when added to the relevant ‘partial’ 

load flow solution. This optimization model is displayed in 

(3), (4), and (5) below.  
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A flow-chart of the complete methodology is illustrated in 

Fig. 1 below. 

 

 
 

Fig.  1. Flow-chart of the optimal location methodology 

 

III.  THE MODIFIED 14-BUS TEST-SYSTEM 

 The test system used for the illustration of this 

methodology was a modified version of the IEEE 14-bus test 

system, [14], as depicted in Fig. 2, with a desired wind 

energy penetration level of 10%. The network topology of 

[14] was combined with load and wind time series data, and 

existing conventional plant data, from the Irish power 

system. Details of the conventional plant characteristics, the 
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maximum load values and the wind farm capacity factors at 

each bus, as well as the assumed line flow capacity limits, 

are contained in the Appendix section. The parameters and 

ratios of the conventional generation plants were chosen in 

order to be representative of the mixture of ‘base-load’, 

‘mid-merit’ and ‘peaking’ plant found on a typical power 

system. Coal, oil, and peat steam turbines, ‘combined-cycle’ 

gas turbines (CCGT), ‘open-cycle’ gas turbines (OCGT), 

and ‘combined heat and power’ (CHP) are the types of plant 

considered. The total generation capacity was 2022 MW. 

Possible wind generation connection to buses 2, 3, 5, 9, 12, 

13, and 14 was assessed. The recorded year-long load time 

series (of hourly resolution) were arbitrarily scaled to suit 

the test system, while preserving the statistical quality of 

typical load patterns. The peak system load for the test 

system was 1861 MW. The average load was 1025 MW. 

The assumed line capacities were chosen based on the zero-

wind penetration scenario PLF results. It was assumed, for 

system inertial and frequency stability reasons, [15], that an 

arbitrary minimum level of 450 MW of load had to be 

served by conventional plant at all times. This lead to the 

occasional curtailment of wind for system security reasons at 

particularly low load levels, however the low frequency of 

occurrence of this event was deemed to have a negligible 

impact on the desired 10% energy penetration level. 

 The recorded wind time series were normalized to 1 MW 

capacity to be scaled by the outputs of the subsequent 

optimal wind allocation process. The recorded wind time 

series were found to have varying capacity factors. High 

capacity factor time series are geographically grouped 

together on buses 9, 12, 13, and 14, in areas of limited 

assumed transmission capacity. Lower capacity factor wind 

farms are placed on buses 2, 3, and 5, in the strongly 

interconnected part of the system. This test system is thus 

generally representative of the Irish power system wind and 

transmission resource situation. Though the paper results are 

based on a small system as an illustrative guide to the power 

of the algorithm, the methodology applied has been 

intentionally designed to be applicable to larger, more 

realistic, power transmission systems. 

 
Fig.  2. The modified IEEE 14-bus test system schematic.  

IV.  RESULTS 

A.  Probabilistic Transmission Assessment 

The year-long hourly time series was applied to the unit 

commitment software ‘Plexos’, version 4.903, with the 

‘mixed-integer programming’ (MIP) optimization strategy 

employed (duality gap tolerance of 1%), to determine the 

corresponding system dispatch. This dispatch accounted for 

all of the temporal constraints that are modeled in normal 

optimal least-cost 24-hour ahead conventional plant 

commitment.  

The comprehensive nature of PLF applied to power 

system planning in the identification of the ‘worst-case-

scenario’ can be readily illustrated.  In fact even in the zero-

wind penetration scenario, as illustrated with the line from 

bus 6 to bus 13 in Fig. 3 below, the time series PLF 

approach of this paper shows that the worst case power flow 

in every line of the assumed intact 14-bus test-system did not 

always occur at either of the WDP or SNV deterministic 

snapshots. The power flow on this line at these two 

deterministic ‘snap-shot’ hours was 136.43 MW and 54.12 

MW respectively, while Fig. 3 shows that neither of these 

hours adequately captured the true highest line loading case 

of approximately 185 MW. 
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Fig. 3. PLF histogram of line from bus 6 to bus 13, with zero wind 

energy penetration.  

 

A ‘scatter plot’ of two conventional plant bus power 

injections from the probabilistic dispatch in this paper, 

shown in Fig. 4, illustrates the often complex statistical 

dependency between conventional generation bus power 

injections in a real power system. The well defined, yet 

highly irregularly shaped relationship, illustrates that simple 

statistical assumptions such as independence and/or linearity 

of dependence between bus power injections required for 

analytical PLF methods, in a real power system are 

incorrect. 
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Fig. 4. Scatter plot comparing the dispatch of the oil plant at bus 10 and 

the OCGT gas plant at bus 3. 

 

To study the importance of using time series instead of 

random MCS in preserving the correct temporal behavior of 

the unit commitment process, a comparison of the type of 

PLF output that results from both methods was also carried 

out. A year-long PLF assessment of an equally proportional 

allocation of the required wind capacity (defined in Section 

2a) to each of the 7 wind sites, was obtained in two different 

approaches. In the first, the time series was applied to the 

basic merit-order dispatch strategy – this corresponds to a 

randomly sampled MCS. The second used the time series 

unit commitment approach, consistent with the true temporal 

constraints of the conventional plant. As the same net-load 

time series was employed in both scenarios, no MCS 

sampling error could affect the results, and thus the only 

cause for deviation in the two solutions could be attributed 

to the importance of the temporal unit commitment 

parameter representation. An example of the deviation in 

PLF output p.d.f.’s can be observed in Fig. 5 below. As the 

oil peaking plant at bus 10 is rarely dispatched in the simple-

merit order approach, a significant difference in the PLF of 

the line from bus 9 to bus 10 from the true reality results. 

This highlights the potential fallacy of random MCS 

methods that cannot account for hourly sequential 

dependencies. For this line close to a peaking plant, the error 

is particularly critical as it occurs at the edge of the 

distribution, and thus could represent the worst case scenario 

in some systems. 

In a future system with increased wind power penetration, 

particularly an ‘island’ system such as the Irish power 

system, additional flexible plant may be required, [16]. 

Despite its relative cost compared to base-load plant, such 

plant may be required online for system security reasons 

with high wind penetration to cope with unexpected wind 

forecast error or unusual oscillations in wind output. Thus 

simple merit-order PLF may deviate even further from 

reality. In addition, purely random MCS cannot properly 

model temporally constrained generation resources such as 

hydro-electric power or pumped-storage either. 
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Fig. 5.  Comparison of line from bus 9 to bus 10 power flow p.d.f.’s 

with simple merit-order and unit-commitment model dispatches. 

 

B.  Optimal Locations 

For the multi-dimensional clustering task in this paper, a 

choice of 10 bins was made for each wind farm, and 25 bins 

for the partial load flow solution in each line. This required a 

25 x107 multi-dimensional space for each line, populated by 

8760 cases. Using the binning technique reduced the number 

of cases to be studied for each line by approximately 25%. 

The proportional benefit of this approach would become 

truly apparent only when ‘N-G-1’ contingency scenario 

combinations are all fed into the same space. From initial 

experience with the modified 14-bus test power system, it 

was found that the lines from bus 6 to bus 11, and from bus 

13 to bus 14 were the transmission ‘bottleneck’s for wind 

penetration. Thus in order to reduce the number of 

constraints even further only these lines were selected for the 

multi-dimensional clustering process. The optimization 

software used was the ‘simplex’ method ‘linprog’ function in 

‘MATLAB’, [17]. The complete clustering and optimization 

process required approximately 107 minutes on a 3.6GHz 

Pentium ‘dual-core’ driven, 3.5 GB RAM enabled Dell 

Optiplex GX620 desktop PC. The results are shown in Table 

I below. As expected, wind capacity was allocated to the 

high wind capacity sites until transmission capacity in the 

system ‘bottleneck’s was exhausted.    

Once the complete optimization process was carried out, 

and the individual wind power capacities determined, the 

deviation error of the secure optimal system total wind 

output from the assumed averaged time series input in (1) 

was analysed. Fig. 6 shows the density function of the error 

expected from this assumption. This error corresponds to a 

system power balance deficit or surplus, and could in reality 

result in un-modeled power flow behavior in the real 

transmission system. The error was appreciably large in 

some time instances, as the initial optimal wind allocation is 

clustered at only three of the seven potential sites. To 

counteract this problem, the system dispatch and 

optimization processes were iteratively repeated with the 

new optimal total wind system time series in order to 

converge the methodology to the eventual optimal secure 

solution. The system slack bus balancing requirement from 

the second iteration is less extreme, as is depicted in Fig. 6. 
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The process could be repeated if desired for additional 

iterations to reduce this error even further.  

 
TABLE I 

OPTIMAL WIND CAPACITY ALLOCATION (MW) 

 

Iteration 

Number 

Wind Farm Bus Number 

   2           3           5         9          12             13             14 

2 0 125.4 0 0 82.1 107.9 9.92 

 

The second iteration optimal capacity allocations were 

then fed in to the PLF algorithm, and the yearly power flow 

was carried out, with all bus net power injection time series 

now known. The output p.d.f. of power flow in the 

congested line from bus 6 to bus 11 in Fig. 7 below shows 

that the line capacity rating of 90 MW was obeyed at all 

times.  
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Fig. 6. Histogram of power imbalance of the methodology first and 

second iteration 
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Fig. 7. Optimal wind allocation line from bus 6 to bus 11 PLF result 

 

V.  DISCUSSION 

This methodology outlined in this paper, while 

implemented on a small test system, has been devised with a 

view to application in much larger systems. The importance 

of the use of sequential PLF has been illustrated in this 

modified IEEE 14-bus test system. Whether the importance 

of time-series PLF applies generically to all systems will 

depend on the generation plant portfolio, the transmission 

network design, the load and wind patterns and the unit 

commitment process applied to each individual system. For 

a large system to study more than 7 wind farms together, 

while not significantly increasing the optimization constraint 

dimensionality, each time series as applied here in this 

methodology could possibly represent a wind ‘zone’, with 

many closely dependent wind farms in each zone assumed to 

share the same statistical behavior. This concept is consistent 

with the MCS ‘stochastic clustering methodology’ as 

introduced by Papaefthymiou et al in [12].   

The main argument against the use of time series is that 

often only a limited time length of data has been historically 

recorded, so it is possible that the available data cannot 

characterize all possible behavior that could occur in the 

future. Also, the wind data is sometimes of a sensitive 

commercial nature, so it can be difficult to access for general 

system study. In the discretisation and multi-dimensional 

clustering step of this algorithm as described in Section 2c, it 

was necessary to assume that the generated discrete p.d.f. 

from 1 year’s data was fully representative of its true 

continuous form that would be generated by an infinite 

length time series. This may not be fully representative of 

the envelope of security risk. However it can be concluded 

from Section 4b that the error associated with excluding the 

temporal issues from the unit commitment process would 

most likely be more critical that the error of a slightly 

unrepresentative time series, and thus the sequential 

methodology is to be preferred. Some techniques based on 

‘auto-regressive moving average’ (ARMA) filtering have 

been published, [18], that generate new time series of 

arbitrary length from previous data, and may be applicable 

to this problem. For the time series PLF as outlined in this 

paper, 7 distinct time series preserving not only the auto-

correlative temporal wind characteristics at individual sites, 

but also the geographical cross-correlative interdependence 

known to occur in reality, would be required.  

This methodology described in this paper is somewhat 

related to the ‘composite’ system planning concepts of the 

traditional vertically integrated utility (VIU), where 

generation and transmission were planned in tandem. Most 

modern power systems now operate based on the ‘de-

regulated’ market-oriented paradigm. This does not make 

the proposed methodology obsolete, however. This paper 

has illustrated a methodology to find the optimal location of 

wind power on a transmission system, while respecting 

normal line-flow security limits, assuming no transmission 

expansion. In reality, at present the wind connection 

‘grouping’ in the ‘pool’-market based Irish system is a 

preliminary attempt at this. With correct market design, in 

particular some form of renewable location incentivisation, 

the benefit of this least cost optimal solution can be achieved 

in modern power system operation, and thus passed on to the 

end customer. The disadvantage of renewable connection in 

areas of less attractive energy resource must be somehow 

compensated in a transparent manner in the market, so that 

the system-wide benefits of secure and cost effective 

transmission system operation accrued by all, are shared 

fairly by all.   

Future work to be carried out subsequent to this paper 
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will integrate the consideration of contingencies and other 

background generation scenarios to the secure planning 

methodology of a larger test system. The optimal firm 

capacity placement algorithm could also be integrated to a 

transmission expansion planning methodology, a tool likely 

required to reach higher wind penetration levels. 

 

VI.  CONCLUSION 

This paper introduced a methodology to find the optimal 

locations on a transmission system to connect wind power 

with respect to the available local wind energy resources and 

transmission line-flow security limits. The methodology 

applied a sequential probabilistic approach to cater for the 

unique characteristics of wind power, with a security 

assessment based on the adversity of each hourly case and 

not on the time of year in which they occur. The PLF results 

also illustrated the importance of correctly modeling the 

temporal constraints of the unit commitment process.  

A small 14-bus test-case network was analysed in this 

paper, though the methodology can be easily applied to 

much larger and more complex systems. As expected, the 

methodology allocated most capacity to regions of high wind 

capacity factor, with transmission system limitations 

requiring some wind allocation to poorer wind resource 

areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.  APPENDIX  

 
TABLE II 

MAXIMUM BUS LOAD VALUES 

 

Bus Number Maximum 

Load (MW) 

2 100 

3 150 

4 200 

6 400 

9 250 

10 250 

11 100 

12 290 

13 250 

14 100 

 

 

TABLE III 

WIND FARM TIME SERIES CAPACITY FACTORS 

 

Wind Farm Bus Number 

    2            3           5            9           12          13        14 

Wind Farm 

Capacity 

Factor 0.24 0.29 0.22 0.25 0.34 0.33 0.31 

 

 

TABLE IV 

CONVENTIONAL PLANT INFORMATION 

 

Plant Description Bus 

Number Capacity (MW) Fuel 

1 2*286 Coal 

2 1*400 Gas (CCGT) 

3 6*90 Gas (OCGT) 

4 1* 90, 1*117.6 Peat 

10 2*109.5 Oil 

13 1*83 CHP 

 

 

TABLE V 

TRANSMISSION LINE ACTIVE POWER CAPACITY LIMITS 

 

From Bus To Bus Capacity (MW) 

1 2 600 

1 5 300 

2 3 250 

2 4 300 

2 5 350 

3 4 300 

4 5 150 

4 7 400 

4 9 250 

5 6 700 

6 11 90 

6 12 250 

6 13 250 

7 8 200 

7 9 200 

9 10 300 

9 14 200 

10 11 200 

12 13 150 

13 14 90 
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