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ABSTRACT: Seven adaptive approaches to post-processing wind speed forecasts are discussed and compared. 
48-hour forecasts are run at horizontal resolutions of 7 km and 3 km for a domain centred over Ireland. Forecast  
wind speeds over a two year period are compared to observed wind speeds at seven synoptic stations around 
Ireland and skill scores calculated. Two automatic methods for combining forecast streams are applied. The  
forecasts produced by the combined methods give bias and root mean squared errors that are better than the  
numerical weather prediction forecasts at all station locations. One of the combined forecast methods results in 
skill scores that are equal to or better than all of its component forecast streams. This method is straightforward  
to apply and should prove beneficial in operational wind forecasting.
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 1 . Introduction

Wind energy is a growing industry, and is supplying electricity to national grids worldwide. Wind 
energy  cannot  be  generated  on  demand,  in  the  manner  of  traditional  electricity  generation. 
Forecasting methods are required for the efficient management of wind energy. Reliable forecasts of 
wind energy production would reduce the costs of running the grid. They could also benefit wind 
farm operators by allowing a higher price to be obtained on the electricity spot market (Barthelmie 
et al. 2008). The purpose of this paper is to reduce the errors in wind speed forecasts. We compare 
adaptive  post-processing  methods  which  can  easily  be  applied  to  wind  forecasts  produced  by 
Numerical Weather Prediction (NWP) models, and investigate the advantage of combining forecast 
streams.

Ireland has a target of 40% renewable electricity generation by 2020. Most of this is expected to 
come from wind power. This will result in the Irish power system having one of the highest levels 
of wind penetration in the world by 2020. The highest penetration on the Irish power system to date 
was achieved on 5th April 2010. During this day, wind generation reached a peak of 1260 MW, 
which was 42% of the system demand at that time (EirGrid 2010). Integrating this level of non-
synchronous generation on the power system will materially affect the way the electricity system is 
operated.  A key factor in  managing this  variability is  the development  of improved forecasting 
methods. 

Reviews of wind power forecasting methods are available from different authors (Lei et al. 2009, 
Costa et al. 2008, Giebel 2003), and only a selection of different methods are considered here. One 
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common  approach  in  wind  speed  forecasting  uses  recent  meteorological  data.  This  is  usually 
available from anemometers on the site of the wind farm. The data may then be analysed with 
different statistical models, such as autoregressive processes (Brown et al. 1984, Torres et al. 2005), 
and artificial intelligence techniques (Sfetsos 2000, Li & Shi 2010, Cadenas & Rivera 2010). These 
techniques are  only of  use for  forecasts  of an hour or  so into the future.  We are interested in 
forecasts over 48 hours, and so it is important to use NWP model data.

All NWP forecasts contain errors, due in part to the quality of the data used to drive the model, and 
in part to computational limitations in solving the governing equations with finite resolution. Some 
NWP errors are systematic, and we can hope to reduce these by applying statistical post-processing 
methods.

Model Output Statistics (MOS) is a commonly used statistical post-processing technique. It uses 
multiple linear regressions with forecast data and observations to attempt to remove forecast errors 
(Glahn & Lowry 1972). However, MOS needs a long record of data for its training. This may cause 
difficulties when changing or updating the NWP model or the observing network.

It may be possible to equal or exceed MOS skill using adaptive short-term post-processing methods. 
Simple short-term bias-correction has been shown to produce ensemble mean forecasts  of 2-m 
temperature, 2-m dewpoint temperature, and 10-m wind speed that are competitive with or better 
than  those  available  from MOS (Stensrud  & Yussouf  2005).  Another  study showed that  MOS 
outperforms post-processing with a Kalman filter or short-term bias-correction when model biases 
change dramatically, performs worse during quiescent cool season patterns, and that all three are 
comparable at other times (Cheng & Steenburgh 2007).

Kalman filtering (Kalman 1960) is also used as a post-processing tool for wind forecasting, and has 
been shown to reduce systematic errors in a consistent manner (Crochet 2004, Louka et al. 2008).  
Artificial Neural Networks (ANN) are another popular method for post-processing wind forecasts. 
They have shown good results when downscaling NWP wind speed, such as at a wind farm in Spain 
(Salcedo-Sanz et al. 2009a).

Previous studies have shown that wind power forecasts produced by combining individual forecasts 
can perform better than any of the individual forecasts  (Nielsen et  al.  2007).  We compare two 
methods of combining forecast data. One method uses ANNs to combine the forecasts, similar to 
Salcedo-Sanz et al. (2009b). The other method is a simple scheme using weights based on recent 
forecast skill, an updated version of the method used in Sweeney & Lynch (2010). 

In this paper, we apply seven different adaptive post-processing methods to NWP data produced at 
two horizontal resolutions (7 km and 3 km) to produce 48-hour wind speed forecasts. The training 
period  is  limited  to  30 days  to  allow forecast  data  streams to  be  updated  or  replaced without  
requiring a large lead-in period. We then apply two different methods to combine the forecast data. 
All 48-hour wind speed forecasts are compared to the actual wind speeds observed at seven stations 
around Ireland over two years (June 2008 to June 2010). The skill scores considered are the bias 
and the Root Mean Square Error (RMSE).

In Section 2 we discuss the COSMO NWP model, the forecast verification, and the statistical post-
processing  methods,  and  methods  used  to  combine  the  forecasts.  The  results  of  applying  the 
different post-processing and forecast combination methods are given in Section 3. Conclusions are 
presented in Section 4.
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 2 . Methodology

 2.1 The COSMO model

The COSMO-Model Package is a regional numerical weather prediction system. It is based
 on the COSMO-Model (formerly known as LM), a nonhydrostatic limited-area atmospheric
 prediction model. The COSMO interpolation program INT2LM, interpolates data from different 
data sets to the limited-area rotated latitude-longitude grid of the COSMO-Model. Thus it provides 
the initial and boundary data necessary to run the COSMO-Model. The prediction model uses fully 
compressible  hydro-thermodynamical  equations.  A variety  of  different  schemes  are  used  for 
subgrid-scale  processes.  For  more  information  about  COSMO,  refer  to  the  COSMO  web-site 
(COSMO 2010).

The deterministic forecast from the ECMWF, IFS T799L91, supplied the data used to drive the 
COSMO  model.  This  ECMWF  forecast  has  a  horizontal  resolution  equivalent  to  25  km.  We 
retrieved the analysis and forecast data for the 00h run each day for the following 48 hours. The 
boundary data were available at 3 hour intervals.

We used two areas for our forecasts, which are shown in Figure 1. The larger area was used for the  
48-hour forecast with a horizontal resolution of 7 km, and the smaller (nested) area was used for the 
48-hour forecast with a horizontal resolution of 3 km. The 7 km forecast was run first, and data  
saved every forecast hour. The 7 km forecast data were then used to drive the nested 3 km forecast, 
and data were again saved every forecast hour.

Figure 1: Domains used by COSMO. 
7 km (large area) and 3 km (small area)

§    

Figure 2: Synoptic stations used for 
forecast verification.

 2.2 Forecast verification

The forecast models produced wind speed data for every hour over a 48-hour period, on a grid 
covering Ireland.  In order to check these wind speeds,  they were compared to the actual wind 
speeds  observed  at  different  locations  around  Ireland.  Met  Éireann  (the  Irish  National 
Meteorological Service) maintains an observation network covering Ireland, and we obtained wind 
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speed data from them for seven synoptic stations. These stations are in different locations around 
Ireland, as shown in Figure 2. The observed wind speed data are taken at a height of 10 metres. The 
COSMO model has an option to output wind speed data at a height of 10 metres, and this was used.  
Bilinear interpolation was used to calculate the wind speed at the stations from the wind speed on 
the model grid. Bias and RMSE scores could then be calculated from the observed and forecast 
wind speeds.

 2.3 Statistical post-processing methods.

We consider seven different post-processing methods in this paper. All of the methods are adaptive, 
in that they are trained each day on data from previous days. The number of previous days used to 
train the methods (called the width of the sliding window) has been limited to 30,  so that the 
methods  can  be  applied  to  new locations  and/or  NWP models  in  a  relatively  short  time.  The 
methods range from the very simple (bias-correction) to more advanced (Kalman filter and ANN). 
We also include methods that target particular characteristics of wind speed forecast errors:  the 
diurnal cycle, mean and standard deviation of errors, and wind direction.

 2.3.1 Short-term bias-correction forecasts (STB)

Short-term bias-correction forecasts are calculated using a rolling window of 30 days. For each 
station, the mean of all wind speed forecast errors (forecast speed minus observed speed) over the 
previous 30 days is calculated. Note that the 48-hour forecast from yesterday includes wind speeds 
for which there are no observations yet (FC+24 to FC+48), and so these are omitted from this and 
all other post-processing methods.

The bias-corrected forecast (STB) for each station is calculated by subtracting the mean error from 
the forecast speed. STB wind speeds are constrained to be greater than or equal to zero by setting 
any negative speeds to zero. This is also done for all other post-processing methods. The process is 
repeated for each station. A test was run to decide on the optimum number of days to use for the 
sliding window. STB forecasts were calculated for window sizes from 2 days to 30 days for one 
year of wind speed data (January to December 2008). The overall root mean square error (RMSE) 
was calculated for each station and window size. The RMSE flattens out for most stations after 10 
days,  and  the  minimum mean  RMSE for  all  stations  occurs  with  a  window size  of  30  days. 
Therefore the window size was set to equal 30 days for all STB forecasts. 
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Figure 3: Hourly wind speed and forecast error for Dublin Airport, averaged over two years.
OBS(-), COSMO 7 km (-x-), COSMO 3 km (-o-).

 2.3.2 Diurnal cycle forecast correction (DRL)

If we plot the average forecast wind speed for each hour, and the corresponding average observed 
wind speed, we can see how the diurnal cycle of the forecast compares to that of the observed 
winds. In our case, all forecasts were started at midnight (00H), and are 48-hour forecasts, so we 
should be able to see two diurnal cycles. Figure 3 shows the observed wind speed at Dublin Airport, 
averaged over two years. Also shown is the average forecast wind speed of the 7 km and 3 km 
forecasts. We can see that there is a bias, where the forecast wind speed is less than the observed 
wind speed at all forecast hours. If we subtract the mean observed speed at each hour from the mean 
forecast speed for that hour we get the mean forecast error for each forecast hour, shown in the 
bottom part of the figure. We can see that there is a pattern to the error, which varies by a factor of 
two over a diurnal cycle. All of the forecast wind speeds are too low, but the error in the forecast 
wind speeds is larger in magnitude during the day than at night. We can attempt to correct this error 
by calculating the average error for each forecast hour over the past 30 days,  errHH,  and applying 
our answer to the present forecast, FCHH, for each forecast hour: DRLHH = FCHH - errHH. This is done 
by the DRL forecast.

 2.3.3 Linear least-square corrected forecast (LLS)

In linear regression,  we want to find the relationship between the forecast  wind speed and the 
observed wind speed. We find the linear expression that minimises the least-square-error of the fit. 
The relationship between forecast wind speed and observed wind speed is different from station to 
station. Figure 4 plots the COSMO 7 km direct model output (DMO) forecast wind speeds (x-axis)  
and the corresponding observed wind speeds (y-axis) for the station at Mullingar over two years. A 
perfect fit (1:1) is shown as a solid line at 450. Most of the points lie below this line showing that, 
for this station, the DMO forecast overpredicts the wind speed.
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Figure 4: Scatterplot showing COSMO 7 km forecast wind speeds and 
corresponding observed wind speeds at Mullingar. Contours show population 
density of points, in levels of 100.

If there is a linear relationship between the forecast and observed wind speeds, we can use this to 
correct  the DMO forecast.  Linear  least-square corrected  forecasts  (LLS)  are  calculated using a 
rolling window of 29 days. For each station, the forecast wind speeds and corresponding observed 
wind speeds over the previous 29 days are used to calculate the slope (m) and intercept (c) of the 
linear least square error fit. The LLS forecast is then given by Equation (1):

( LLS speed ) =m∗( forecast speed ) +c  (1)

A test was run to decide on the best number of days to use for the sliding window. LLS forecasts  
were calculated for window sizes from 2 days to 30 days for one year of wind speed data. The 
RMSE generally flattens out after 12 days, and the minimum mean RMSE for all stations occurs 
with a window size of 28/29 days. Therefore the window size was set to equal 29 days for all LLS 
forecasts. 

 2.3.4 Kalman filter forecasts (KAL) 

The Kalman filter is a popular method for calculating the least-squares fit. It updates the fit as new 
data become available, and uses the variance of recent errors and changes in the state vector in its  
calculations. We use a simple Kalman filter to generate a forecast (KAL). The Kalman filter is  
described in papers such as Crochet (2004), and a description of the Kalman filter used here is given 
in Sweeney & Lynch (2010). 

A test was run to decide on the best number of days to use for the sliding window. KAL forecasts  
were calculated for window sizes from 2 days to 30 days for one year of wind speed data. The 
RMSE reached a minimum for all stations between 5 and 10 days, and then increased again. The 
window size was set to equal 8 days for all KAL forecasts.

 2.3.5 Mean and variance corrected forecast (MAV)

Another method to improve a forecast is to process it so that it has the same mean and standard 
deviation as the observed data. Consider a set of forecast data (fc) which we want to correct so that 
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it has the same mean (μ) and standard deviation (σ) as our observed data (obs). We can first correct 
the standard deviation of fc:

fc2=( σobs

σ fc
) fc  (2)

We next correct the mean:

fc3 =fc2+( μobs−μ fc2
)  (3)

fc3 now has the same mean and standard deviation as  obs. If we calculate the mean and standard 
deviation of the forecast and observed wind speeds over the past 30 days and use these as an 
estimate of the true values, we then correct the forecast as above and produce the MAV forecast. 

 2.3.6 Directional-bias forecast (DIR)

It is possible that some locations will have wind speed errors that are related to the wind direction.  
This may happen, for example,  due to nearby mountains  that are not properly resolved by the 
forecast model, or incorrect model surface roughness for different wind directions.

Figure 5: Mean wind speed error for the COSMO 3 km forecast 
at Belmullet with 30 degree wind direction bins.

To investigate this, we plot the mean wind speed forecast error over two years binned by wind 
direction,  with  30  degree  bin  width,  at  our  different  observation  stations.  Figure  5  shows  the 
resulting plot  for the 3 km COSMO forecast at  Belmullet.  We can see that there is  an overall 
negative bias at this location (represented by the dashed line), but it is also apparent that the bias  
changes for different forecast wind directions, with southerly winds less accurately predicted than 
those from the north.

The DIR forecast uses a sliding window (over the previous 30 days) to bin wind speed errors by 
forecast  wind  direction.  The  present  forecast  wind  direction  is  then  used  to  select  the  error 
correction to apply to the present forecast wind speed, giving the DIR forecast wind speed.
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 2.3.7 Artificial neural network forecast (ANN)

Artificial neural networks are another popular method for producing wind forecasts. In this paper, 
the R Project for Statistical Computing program (R Development Core Team 2010) was used with 
package nnet to generate wind speed forecasts. The nnet package iteratively minimizes the squared 
error criterion, including a penalty term, using a technique similar to, but more sophisticated than, 
standard backpropagation (Venables & Ripley 2002, Ripley 1996).  A schematic  diagram of the 
network is shown in Figure 6. The ANN used was a single-hiddenn-layer neural network. The input 
variables used were the wind speed, direction, and two-metre temperature from the forecast model, 
the forecast hour (HH=01 to 48) and two solar cycle variables, as used in Salcedo-Sanz (2009b):

S1=sin( HH 2π
24 ) S 2=cos( HH 2π

24 )  (4)

Two tests were run using one year of data to decide on the configuration of the ANN. First, the 
number of neurons in the hidden layer (nhn) was varied from 2 to 20, while using a sliding window 
width (WNDW) of 30 days. It was found that the lowest RMSE was produced with 2 nodes in the 
hidden layer, and this layout was used for all forecasts. A test was also run with  nhn=2, varying 
WNDW from 3 to 30. The overall RMSE reduced with increasing WNDW size, and so WNDW=30 
was used for all ANN forecasts. For each ANN forecast, the neural network was trained using inputs 
from the previous 30 days, and then generated the ANN forecast using that day's forecast data.

 2.4 Combining forecasts

Statistical post-processing methods are effective at reducing the bias and RMSE of raw NWP model 
forecasts. However, we also want to investigate if a further improvement in forecast skill can be 
achieved by combining all available forecasts in an automatic and adaptive manner. To this end, we 
consider two different methods of combining forecast streams to produce a new forecast.

 2.4.1 ANN-combined forecast (ANNCOM)

We use an ANN in a similar manner to that used in Section 2.3.7 to combine all forecast streams. 
NWP model output plus seven post-processed forecasts at two resolutions result in 16 available 
forecasts. All 16 forecasts are used as inputs to the ANN. As before, tests were run using one year of 
data to decide on the optimal configuration for the ANN. The number of hidden neurons was varied  
from 1 to 20. The overall RMSE increased with nhn, and so we use nhn=1. The window width was 
also varied from 2 to 30. The RMSE reduced sharply as WNDW increased from 2 to 14 days. RMSE 
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continued to decrease, at a slower rate, with further increases to the window width. Therefore we 
use  data  from the previous  30 days  when training  the ANN for  each ANN-combined forecast, 
ANNCOM.

 2.4.2 Mean Square Error-combined forecast (MSECOM)

The second method used to combine forecasts is a simple scheme using weights based on recent 
forecast skill. This is done by taking the mean value of the squared wind speed errors over the 
previous two days for each forecast method at each station. This will result in one error value, erri, 
for each of the available forecasts, fci. The forecasts are then assigned weights in proportion to the 
inverse of their error values, as described in Equations (5). When the forecasts are combined using 
these weights, we obtain the mean square error-combined forecast (MSECOM). Were erri = 0 for 
any forecast  fci, then that forecast would be automatically selected, but this was never found to 
happen. The method was tested for different values of window width, from 2 to 30. The overall 
RMSE did not change much as WNDW increased, but the lowest overall value was for WNDW=2, 
and so this was used for all forecasts.

MSECOM=∑
i=1

16

wi fci where w i=
1/err i

∑
j=1

16

(1/err j )
 (5)

These weights are normalized to sum to unity. 

 3 . Results
A simple score often used to test forecast skill is the bias. The overall bias is calculated as the  
forecast wind speed minus the observed wind speed, averaged over all days (1st June 2008 to 31st 

May 2010) and forecast hours (+01 to +48) at each station. Figure 7 shows the wind speed bias of 
the COSMO forecasts  at  the two model  resolutions used.  The higher-resolution (3 km) bias is 
smaller than the 7 km bias at  three stations, larger at  another three stations, and similar at  the 
remaining station.

All seven post-processing methods used in this paper reduce the wind speed bias at all stations and 
both forecast resolutions to under 0.1 m s-1, with the exception of the DIR 7 km forecast, which 
results in a bias of 0.127 m s-1 at Mullingar. Therefore, we consider all methods to be effective at 
reducing overall bias.

To investigate the skill of the forecasts further, Figure 8 shows the average wind speed bias for each 
forecast hour at Dublin Airport. The 7 km COSMO forecast shows an overall negative bias, as well 
as a diurnal signal in the error. The STB forecast applies a single bias-correction to all forecast  
hours for each forecast. We can see that the STB forecast has reduced the overall bias, but still  
contains a diurnal signal. The DRL forecast applies a different correction to each forecast hour, and 
we can see that it does a good job of reducing not only the overall bias, but also the bias at each 
forecast hour. 
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Figure 7: COSMO wind speed bias per station

Figure 8: Wind speed bias by forecast hour at Dublin Airport.
7 km COSMO (-), STB (-o-), DRL 7 km (-x-).

The COSMO forecasts produce average hourly biases ranging from -1.972 m s-1 to 2.656 m s-1 

across all stations. The STB forecasts reduce these hourly biases to between -0.514 m s-1 and 0.620 
m s-1, and the DRL forecasts reduce them further to between -0.041 m s-1 and 0.118 m s-1. The DRL 
forecast reduces the diurnal signal in the wind speed bias, as was hoped. Bias, however, is not a  
reliable measure of forecast skill on its own, as it may be hiding balanced negative and positive 
errors. To get a better idea of forecast skill we calculate the RMSE of the forecast.

Figure 9 shows the RMSE, averaged over two years, for each forecast hour at Dublin Airport for the 
COSMO, STB and DRL forecasts. Although DRL has reduced the diurnal signal in the bias, it has 
not produced any improvement in the RMSE of the forecast compared to the simpler STB forecast. 
This is true for all stations.
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Figure 9: Wind speed RMSE by forecast hour at Dublin Airport
7 km COSMO (-), STB (-o-), DRL (-x-).

The  aim  of  the  LLS  forecast  is  to  exploit  the  quasi-linear  relationship  between  forecast  and 
observed  wind speeds.  Figure  10  shows  the  LLS 7  km forecast  and  observed  wind speeds  at 
Mullingar over the two year period. It can be seen that the LLS forecast has corrected the DMO 
forecast (shown in Figure 4) so that it is in better agreement with the 1:1 line. This does result in an 
improved  RMSE score.  The  RMSE scores  for  the  7  km COSMO,  STB and  LLS forecasts  at  
Mullingar are 2.873 m s-1, 1.389 m s-1 and 0.981 m s-1 respectively.

The LLS forecast only produces an improvement over STB if there is a weak linear relationship to 
start with. The 7 km COSMO forecast for Casement, for example, has a strong linear relationship 
with observed wind speeds, and the LLS forecast does not improve the RMSE of the STB forecast 
for that case.

The KAL forecast, produced using the Kalman filter described in Section, also seeks to find the 
optimal linear relationship to correct forecast data. It does a good job, and produces data that are in 
close agreement with the 1:1 fit, but not quite as close as those of the LLS forecasts. The RMSE 
score of the LLS forecast is always better than that of the KAL forecast, for both resolutions at all 
stations.

The MAV forecast seeks to correct the distribution of forecast wind speeds so that their mean and 
variance agree with those of the observed wind speeds. Figure 11 shows the 3 km COSMO, MAV 
and  observed  wind  speeds  at  Malin  Head.  The  MAV forecast  has  successfully  corrected  the 
COSMO forecast  so  that  it  is  in  better  agreement  with  the  observed  wind  speed  distribution. 
However, the RMSE of the MAV forecast is worse than that of the simple STB forecast at five of  
the seven stations.
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Figure 10: Scatterplot showing 7 km LLS forecast wind speeds and corresponding 
observed wind speeds at Mullingar. Contours show population density of points, in 

levels of 100.

Figure 11: Observed (-), 3 km COSMO (--), MAV (-x-)
 wind speed distributions at Malin Head

The DIR forecast uses the forecast wind direction to apply a correction to the forecast wind speed. 
Figure 12 shows the wind speed error binned by forecast wind speed for the 3 km COSMO and DIR 
forecasts at Belmullet. It is clear that the DIR forecast has substantially reduced the dependence of 
wind speed error on forecast direction. This also results in a lower RMSE. The RMSE for the 3 km 
COSMO,  STB and  DIR  forecasts  at  Belmullet  are  2.199  m  s -1,  2.114  m s-1 and  2.006  m s-1 

respectively. This improvement of DIR RMSE over STB RMSE happens at stations where there is a 
clear dependence of the wind speed forecast error on wind direction. Many wind farms are in hilly 
terrain,  where  the  flow is  strongly  influenced by orography,  and there  is  likely to  be a  strong 
dependence of model forecast error on wind direction.
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The ANN forecasts were effective at reducing the RMSE at all stations to less than the COSMO 
forecasts,  and  improved  on  the  STB  RMSE  for  eight  of  the  14  cases  (seven  stations  at  two 
resolutions). 

Table I shows the overall RMSE of the wind speed forecasts for all post-processing methods, with 
the best RMSE scores in bold. There is no single post-processing method that produces the best 
score at all stations. Indeed, it is often the case that the best method for the 7 km forecast at a station 
is different to the best method for the 3 km forecast at the same station. The direct model output 
(COSMO) never produces the best RMSE. STB is best in one case, ANN is best in four cases, LLS 
is best in four cases, and DIR is best in five cases. The LLS forecast produces the best RMSE 
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Figure 12: COSMO 3 km (-) and DIR 3 km (-x-) forecast wind speed error 
binned by forecast wind direction for Belmullet

Station COSMO STB DRL LLS KAL DST DIR ANN
Belmullet 7 km 1.954 1.953 1.964 1.956 2.005 2.032 1.915 1.947

3 km 2.199 2.114 2.131 2.100 2.156 2.192 2.006 2.043
Valentia 7 km 1.648 1.600 1.622 1.580 1.647 1.645 1.630 1.615

3 km 1.762 1.716 1.738 1.720 1.773 1.788 1.652 1.730
Cork Airport 7 km 1.530 1.483 1.500 1.436 1.503 1.506 1.478 1.480

3 km 1.612 1.560 1.573 1.506 1.566 1.587 1.500 1.480
Dublin Airport 7 km 1.910 1.526 1.533 1.525 1.578 1.599 1.539 1.550

3 km 1.883 1.602 1.605 1.606 1.663 1.683 1.607 1.615
Malin Head 7 km 2.219 2.149 2.164 2.127 2.188 2.231 2.113 2.147

3 km 2.709 2.126 2.146 2.106 2.182 2.202 2.149 2.146
Casement 7 km 1.555 1.513 1.524 1.518 1.577 1.579 1.508 1.531

3 km 1.681 1.668 1.651 1.579 1.603 1.660 1.599 1.564
Mullingar 7 km 2.873 1.389 1.398 0.981 0.994 1.019 1.408 0.969

3 km 2.422 1.285 1.287 1.007 1.016 1.048 1.278 0.971
Average 7 km 1.956 1.659 1.672 1.589 1.642 1.659 1.656 1.606

Table I: Wind speed forecast RMSE (m s-1) for seven post-processing methods. The best forecast in 
each row is in bold face.



averaged over all cases.

The fact that no single method is consistently the best provides the motivation for the combined 
forecasts, ANNCOM and MSECOM. The RMSE scores for these forecasts are shown in Table II, 
with  the  best  scores  in  bold.  There  is  a  clear  advantage  in  combining  forecast  streams.  Both 
combined forecasts out-perform the COSMO forecast for all 14 test cases. ANNCOM gives better 
RMSE scores than its constituent forecast streams for 12 of the 14 test cases, but performs slightly 
worse than the Valentia 7 km LLS and the Dublin 7 km LLS forecasts. MSECOM, however, gives 
better RMSE scores than any of its constituent forecast streams for 13 of the 14 test cases and 
equals the RMSE skill in the fourteenth case.

 4 . Conclusions

We have applied seven different post-processing methods to NWP output at seven locations around 
Ireland over a  period of two years.  All  of the post-processing methods reduce the model  bias.  
Average DMO bias  over all  stations  varies from -1.64 m s-1 to  2.47 m s-1.  All  post-processing 
methods reduce this average bias to between -0.08 m s-1 and 0.13 m s-1. We therefore consider all of 
the methods to be effective at reducing model bias.

The adaptive post-processing methods are  effective at  reducing the errors for  which they were 
designed. The STB forecast (and, indeed, every other post-processed forecast) reduces the overall 
model  bias.  The DRL forecast  reduces  the diurnal  signal  in  forecast  error.  The LLS and KAL 
forecasts  correct  the  linear  relationship  between forecast  and observed wind speeds.  The MAV 
forecast improves the match between the forecast and observed wind speed distributions. The DIR 
forecast reduces the dependence of forecast error on wind speed direction.

Bias scores can hide a balance between positive and negative errors, therefore the RMSE must also 
be considered. When comparing post-processing methods, we have found that it is important to 
include a simple method in the comparison, such as the STB forecast used here. It is often difficult 
for other post-processing methods, even comparatively advanced ones, to improve on the RMSE 
scores achieved by the basic STB forecast. Although different methods are effective at reducing 
model RMSE at different locations and model resolutions, there is no single method that produces 
the best RMSE score for all cases. 

Combining forecasts not only allows the performance of the method with the best RMSE to be 
automatically achieved at each station, but can also result in RMSE scores that are better than all of 
the available forecasts. The best overall forecast is produced by the MSECOM combined forecast, 
that gives better RMSE scores than any of its constituent forecast streams for 13 of the 14 test cases  
and  equals  the  RMSE  skill  in  the  fourteenth  case.  The  MSECOM  forecast  gives  a  17% 
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Station COSMO 7 km COSMO 3 km ANNCOM MSECOM
Belmullet 1.954 2.199 1.905 1.890
Valentia 1.648 1.762 1.588 1.554
Cork Airport 1.530 1.612 1.427 1.410
Dublin Airport 1.910 1.883 1.526 1.478
Malin Head 2.219 2.709 2.097 2.029
Casement 1.555 1.681 1.477 1.422
Mullingar 2.873 2.422 0.934 0.969
Average 1.956 2.038 1.565 1.536  
Table II: COSMO and combined wind speed forecast RMSE (m s-1) 



improvement in RMSE over the 7 km COSMO forecast, a 23% improvement in RMSE over the 3 
km COSMO forecast, and keeps average bias below 0.1 m s-1 in all cases.

We note finally that the programming effort to implement the post-processing schemes is very small 
compared to that required to develop an NWP model. Moreover, the computational overhead is 
negligible compared to the computation required for the model integration. Therefore, the methods 
described in this study can yield substantial improvements in forecast accuracy at relatively small 
cost.
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