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Abstract

The prediction of 1D structural properties of proteins is an important step towards the prediction of protein

structure and function, not only in the ab initio case but also when homology information to known structures is

available. Despite this the vast majority of 1D predictors do not incorporate homology information into the

prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments

of putative remote homologues which we compress into templates of structural frequency profiles. We use these

templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of

query sequences which show only remote homology to any PDB structure. We predict four 1D structural

properties – secondary structure, relative solvent accessibility, backbone structural motifs and contact density.

Secondary structure prediction accuracy, tested by 5-fold cross validation on a large set of proteins allowing less

that 25% sequence identity between training and test set and query sequences and templates, exceeds 82%,

outperforming its ab initio counterpart, other state-of-the-art secondary structure predictors (Jpred 3 and

PSIPRED) and two other systems based on PSI-BLAST and COMPASS templates. We show that structural

information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity,

even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction

of structural information directly from PDB templates suggests that the combination of sequence and template

information is more informative than templates alone.

1 Introduction

The three-dimensional (3D) structure of a protein provides important information about its ligand binding,

catalytic sites and protein-protein interactions. Compared to over 7 million known protein sequences, as of

December 2008 there are only about 50,000 proteins of known structure deposited in the Protein Data

Bank (PDB) 1. As experimental determination of a protein’s structure is difficult, expensive and time

consuming the gap between sequence-known and structure-known proteins is growing.

Structural genomic (SG) projects aim to narrow this gap by obtaining useful 3D models of all protein

families by a combination of experimental structure determination and comparative model building 2 in a

high-throughput manner 3. This makes prediction methods that incorporate structural information

increasingly important. If the SG goal is achieved template structures will be available for most proteins.
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Structure prediction methods can be divided into two groups: those that use similarity to proteins of

known structure to model all or part of the query protein and ab initio prediction methods where no

similarity to a protein of known structure can be found. If a close homologue can be found (e.g. a protein

of known structure with a sequence identity greater than approximately 30% to the query) then a model

can be produced with a high degree of confidence in its accuracy 4. However many proteins share similar

structures even though their sequences may share less than 15% sequence identity 5. Finding these remote

homologues is a much more difficult task with two major issues needing to be addressed: finding the best

true homologue and building the correct alignment. Many methods have been developed to address both

problems, most of which specialise on different degrees of sequence identity between query and template.

Sequence based methods compare a query sequence with a database of target sequences. If there is a close

homologue to the query these methods can generally find it and align it to the query, fast. Two of the most

popular of such methods are FASTA 6 and BLAST 7.

Profile-sequence methods, which use a position-specific scoring matrix (PSSM) or profile hidden Markov

models (HMM) to search a sequence database are more sensitive at detecting remote homology if the

pairwise sequence identity is in the Twilight Zone (between approximately 20% and 30%). Examples of the

more popular profile-sequence methods are PSI-BLAST 7, HMMer 8 and SAM 9. Profile-profile methods

such as prof sim 10, HHSearch 11 and COMPASS 12 use a profile to search a database of profiles, enabling

them to identify even more remote evolutionary relationships.

The combination of sequence and structure has been shown to improve fold recognition and alignment

quality especially in the case where pairwise sequence identity drops below the Twilight Zone but how best

to include this information remains uncertain. Methods that include secondary structure 13,14, solvent

accessibility 15 or both 16 have been developed. The addition of other information has also been shown to

be of benefit, for example more detailed alphabets of local protein structure 17,18. The most successful of

these methods at present are FUGUE 19, GenThreader 20, ORFeus 13, SAM-T02 9, SParks2 and SP3 21.

For a comparison of some of these methods see Livebench 22, EVA 23 and CASP 24 as well as Cheng and

Baldi 25 and Elofsson 26.

An alternative approach, based on similarity searching and clustering of homologous sequences, may

provide insights into family relationships and has been studied and implemented in various systems such as

SYSTERS 27, ProtoNet 28, ProtoMap 29.
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Approach

The prediction of 1D structural properties of proteins (i.e. properties which may be represented as a string

of the same length as the amino acid sequence) is an intermediate step towards the prediction of protein

structure and function. The incorporation of such local structural properties can improve the performance

of alignment algorithms, and can lead to the detection of more remote homologues, thus improving the

accuracy of structure prediction methods. Until recently predictors of 1D structural properties have

generally been ab initio. However it is clear that homology information can contribute to more accurate 1D

predictions 30,31.

Previously 31 we have described a system (Distill H) based on bidirectional recursive neural networks

(BRNN) 32, which relies on homologues detected by PSI-BLAST to predict a protein’s secondary structure

(SS) and relative solvent accessibility (RSA). Here we develop a system to deal with situations where no

clear homologue can be found i.e. there is no template exceeding 25% sequence identity to the query

sequence. The system has two stages: one in which four 1D structural properties are predicted ab initio

and the predictions are combined into a profile, which is used to search for remote homologues; the second

stage, in which a specialised machine learning system harnesses information from remote homologues and

the query’s sequence to output a refined prediction for the same four 1D properties. The properties we

predict are: SS; RSA; an alphabet of 14 backbone structural motifs (SM) 33; and contact density (CD) 34.

We first compare three different methods for homology detection: PSI-BLAST, COMPASS (a popular

profile-profile method) 12 and SAMD, the novel algorithm for remote homology detection we present here.

We search for templates by these three methods and investigate the improvements they yield over ab initio

predictions when used as input to Distill H. Next we develop a novel system, Distill RH, trained on SAMD

templates, and compare it to its state-of-the-art ab initio counterpart, Distill 35, and to a baseline which

copies the SS, RSA, SM and CD directly from the best template, for each of the four 1D predictors.

Finally we compare Distill RH SS prediction accuracy with that of PSIPRED 36, Jpred 3 37 and

PROTEUS 30, the only other publicly available SS predictor that we are aware of which exploits similarity

to proteins of known structure during the prediction process.

We show that SAMD templates greatly improve prediction accuracy over ab initio, well beyond the case in

which clear homology is available (essentially, down to any level of sequence identity), and substantially

more than PSI-BLAST and COMPASS templates, whilst significantly improving over the best PDB

template. We demonstrate that Distill RH predictions, incorporating these SAMD templates, are

significantly more accurate than Distill, Distill H, PSIPRED, Jpred 3 and PROTEUS.

4



2 Methods
2.1 Datasets

The data set used to train and test our predictors is extracted from the January 2007 25% pdb select list

38. We assign each residue’s SS, RSA and φ and ψ dihedral angles using DSSP 39. We remove all sequences

for which DSSP does not produce an output. The final set (S3129) contains 3129 proteins and 461,633

amino acids. SS is mapped from the eight DSSP classes into three classes as follows: H, G, I → Helix; E, B

→ Strand; S, T, . → Coil. RSA is mapped into four roughly equal classes: completely buried (0-4%

exposed), partly buried (4-25% exposed), partly exposed (25-50%) and exposed (more than 50%). SM 33

are constructed by mapping tetra-peptides, represented as vectors of φ and ψ angles, into 14

conformational clusters determined by Sims et al 40. CD 34 is defined as the principal eigenvector of a

protein’s residue contact map at 8Å, multiplied by the principal eigenvalue, and is assigned to one of 4

roughly equal classes, corresponding to very low, medium-low, medium-high and very high CD 34. We use

this set to train all systems, in 5-fold cross-validation. A second dataset (for unbiased testing) is extracted

from the October 2007 25% pdb select list. None of the 555 sequences in this dataset have more than 30%

sequence identity to any sequence in S3129. S555 is then processed in the same way as S3129.

Multiple sequence alignments (MSA) for S3129, S555 and every sequence in the October 2007 25%

pdb select list are extracted from a redundancy reduced version of the NR database containing 1.05 million

sequences. The alignments and PSSM are generated by three runs of PSI-BLAST with parameters

b = 3000 (maximum number of hits), e = 10−3 (expectation of a random hit) and h = 10−10 (expectation

of a random hit for sequences used to generate the PSSM). MSA for the October 2007 25% pdb select list

become the target database for COMPASS alignments after pre-processing by that method.

2.2 Structure Prediction With Templates
Predictive architectures

To learn the mapping between our input space I and output space O we use two-layered architectures

composed of BRNN 32 of the same length N as the amino acid sequence. Similarly to Pollastri and

McLysaght 41 and Vullo et al 34 we use BRNNs with shortcut connections.

These networks take the form:
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j = 1, . . . , N

where ij (resp. oj) is the input (resp. output) of the network in position j, and h(F )
j and h(B)

j are forward

and backward chains of hidden vectors with h(F )
0 = h

(B)
N+1 = 0. We parametrise the output update, forward

update and backward update functions (respectively N (O), N (F ) and N (B)) using three two-layered

feed-forward neural networks.

Input ij associated with the j-th residue contains primary sequence information and evolutionary

information, and direct structural information derived from PDB templates:

ij = (i(E)
j,1 , . . . , i

(E)
j,e , i

(T )
j,1 , . . . , i

(T )
j,t ) (1)

where e units are devoted to sequence and evolutionary information, and t to structural information.

In the case of SS prediction we use t = 10 for representing structural information from the templates. The

first eight structural input units contain the average 8-class (DSSP style) SS composition in the PDB

templates, while the last two encode the average sequence identity of the template column to the query

and average coverage of the query by the templates. The averages are weighed by the cubed sequence

identity of the query and the PDB template, and by the inverse of the quality of the template, measured as

X-ray resolution + R-factor/20, as in Hobohm et al 38.

Template information for RSA, SM and CD is encoded similarly to SS, except that four, fourteen and four

units are adopted respectively to represent average RSA, SM and CD from PDB-derived templates. The

two units encoding the profile quality are the same as in the SS case. When no template is available for a

residue, the template section of the input is left blank.

Each sequence-to-structural feature BRNN is cascaded with a structure-to-structure BRNN 41. Both

BRNNs are trained at the same time, but supervised independently. For each prediction task five two-stage

BRNN models are trained independently and ensemble averaged to build the final predictors. 1000 epochs

of training are performed for each model; the learning rate is halved every time we do not observe a

reduction of the error for more than 50 epochs. The number of free parameters per model ranges between

5,800 and 8,000. Template-based models are only on average 7% larger than the corresponding ab initio

ones.

All 1D predictors are trained and tested using 5-fold cross-validation procedure on S3129. The five folds are

of roughly equal sizes, composed of 625 or 626 proteins and ranging between 91,049 and 93,474 residues.

We train in identical conditions (training/test set splits, training strategy, network architectures) three

different systems: Distill, in which the template-based part of the input is left blank; Distill H, in which
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templates are obtained via PSI-BLAST; Distill RH, in which templates are obtained by a novel remote

homology detection algorithm, SAMD, which we describe below.

2.3 SAMD Template Generation
Building alignments based on structural information

We combine SS (3 classes), RSA (4 classes), SM (14) and CD (4) structural properties into a set of 672

features (3× 4× 14× 4), which we call SAMDs (Secondary Structure, Solvent Accessibility, Structural

Motif and Contact Density). The SAMD are predicted ab initio for the query, and then aligned against

the SAMDs in the target set (the PDB, or part thereof) to detect homologues. We use a basic local

alignment dynamic programming 42 approach to align query and target sequences. Similarly to Gong and

Rose 17 the alignment score between two residues i and j is composed of two parts:

P (i, j) = PSSM(i, j) + SAMD(i, j) (2)

The sequence penalty for aligning amino acid i against amino acid j is obtained from a position-specific

scoring matrix (PSSM) (see Datasets section). The penalty for aligning the structural properties, SAMD i

against SAMD j, is obtained from a Structural (SAMD) substitution matrix. We add SAMD and PSSM

scores without any relative weighing. The gap penalty for the SAMD matrix is fixed at -15 and the penalty

for the PSSM is the minimum penalty value of the matrix. The total gap penalty is the sum of the two.

SAMD substitution matrix

The choice of substitution matrix greatly affects the quality of any pairwise alignment method 43. The

most popular matrices, Pam 44 and BLOSUM 45, have been used successfully to identify homologues when

sequence identity exceeds approximately 30% 7. More specialised matrices have been shown to improve the

rate of detection of more remote homologues, for example the environment specific substitution tables of

Fugue 19, matrices based on backbone dihedral angles 17, matrices for different sequence-structure contexts

46 or matrices created from structurally aligned protein pairs 47–49.

To create a SAMD substitution matrix we use the formalisation of Henikoff and Henikoff 45 and construct

a BLOSUM-style matrix. We start with the structural annotation of the alignments in the BLOCKS

database 50 (version 14.2, March 2006). We label each sequence in a block with its SAMDs, extracted from

the corresponding PDB file. We count all possible pairs of SAMDs in each column of every block. The

result is a frequency table listing the number of times each SAMD pair occurs. This table is used to
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calculate a 672 × 672 matrix which represents the log odds ratio between these observed frequencies and

those expected to occur randomly.

Estimating statistical significance

To determine if a score does in fact suggest that two sequences share a common ancestor it needs to be

compared to a background of random scores and supported by some measure of statistical significance 51.

Much work has been done to develop and improve such methods 52–55. These methods assume that gapped

local alignments scores follow the same extreme value or Gumbel distribution 56 as gap-less local

alignments:

P (S > x) ≈ 1− exp(−Kmne−λx) (3)

In this case, where the substitution matrix is very large (672 × 672), an extreme value distribution is used

to approximate the distribution of alignment scores. The e, or expectation, value is a measure of the

reliability of the alignment score, or how likely it is for a score equal to or greater than the given score to

occur by chance in the database being searched using a given scoring system:

E ≈ Kmne−λx, (4)

where x is the score and m and n are the query and target sequence lengths. K and λ are parameters that

depend on the amino acid compositions of the sequences and on the scoring system, and therefore need to

be re-estimated for every new scoring system used 53,54. The key to using these two equations is the

accurate calculation of K and λ. For this purpose we use the method of Bailey and Gribskov 54 based on

maximum likelihood estimation and the values are recalculated for ever sequence based on the size of the

target database.

3 Results
3.1 Template Comparison

We use S3129 to train Distill H in 5-fold cross-validation. Templates are obtained by running a round of

PSI-BLAST against the PDB (available on March 25th, 2008) using a PSSM generated against the NR

database (see Datasets section) with an expectation cutoff of 10. To train template-based predictions in

marginal similarity conditions we exclude all hits that have a PSI-BLAST hit exceeding 20% sequence
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identity to the query sequence. We compare the performance of PSI-BLAST based templates, COMPASS

based templates and SAMD templates on Distill H for SS prediction.

To obtain unbiased results we use S555 as our test set. S555 is a subset of the October 2007 25%

pdb select list 38 and none of the sequences in S555 share more than 30% sequence identity to any

sequence in S3129. We use this pdb select list as the target template database. Since we exclude a

protein’s own PDB file from its list of templates we do not expect to find any templates showing more than

25% identity to the query, except for short sequences for which the 25% threshold is relaxed.

As the choice of the e value cutoff is critical to the performance of any alignment method we compare the

three methods with seven different values of e and test the effect this has on SS prediction accuracy. We

start with a very low e value cutoff of e = 0.0005. This gives each of the three methods an opportunity to

find good templates first. If at least one template is found we stop searching, otherwise we gradually

increase the e value six further times (e = 0.001, 0.01, 0.1, 1, 10, 50) until at least one template is found or

the e value cutoff reaches 50. After these seven rounds COMPASS finds templates for 554 of the 555

sequences, PSI-BLAST finds templates for 545 sequences and SAMD finds templates for all of the

sequences. This results in 73.28% of the 81,141 residues in S555 being covered by a COMPASS template,

51.37% are covered by a PSI-BLAST template and 53.15% by a SAMD template. Table 1 shows the

accuracy of the best template for each template type compared to the accuracy of Distill H when these

templates are used during the prediction process. Although COMPASS covers more than 20% more

residues than PSI-BLAST the template accuracy and Distill H SS prediction accuracy is similar. In

contrast, SAMD templates cover a similar number of residues to PSI-BLAST but the templates are over

10% more accurate and predictions using these templates are more than 4% more accurate than either

COMPASS or PSI-BLAST. Figure 1 shows the distribution of SS prediction accuracy for S555 as a

function of sequence identity to the best COMPASS, PSI-BLAST and SAMD template for each query

sequence. For predictions using COMPASS templates with less than 15% sequence identity between the

query sequence and the template sequence ab initio predictions are more accurate than template-based

predictions. For PSI-BLAST templates ab initio predictions are more accurate at just under 10% sequence

identity. However, for SAMD templates the Distill H predictions are always more accurate demonstrating

that the SAMD templates carry informative structural information which can be exploited by the Distill H

predictive system even with little or no sequence identity between query and template.

In the 0-10% range of sequence identity SAMD finds nearly five times as many templates as either

PSI-BLAST or COMPASS, however these templates are on average less than half of the length of the
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Coverage Baseline Distill H

COMPASS 73.28% 69.12% 81.79%
PSI-BLAST 51.37% 71.33% 82.13%
SAMD 53.15% 82.00% 86.53%

Table 1: Template coverage and accuracy of the best template (Baseline) for each template type compared
to the performances of Distill H SS prediction for residues covered by the best template.

Baseline Distill Distill RH

SS Q3 80.06% 83.73% 87.26%
RSA Q4 45.57% 56.07% 57.04%
SM Q14 63.19% 68.24% 71.63%
CD Q4 51.39% 51.66% 54.49%

Table 2: Performances of the four 1D predictors for Distill (ab initio), and Distill RH (using SAMD tem-
plates) compared with a baseline predictor. Accurcy measured for residues covered by the best template.

COMPASS ones. This suggests that, at least in some cases, we are finding local fragments of templates

that have similar 1D features to the query rather than finding a template that is overall correct. As the

sequence identity of the templates increases so does template length for both SAMD and PSI-BLAST,

however COMPASS remains constant at an average template length of 87.46 residues.

3.2 Distill RH vs. Distill

We have shown that low sequence identity SAMD templates can be used to improve on ab initio SS

prediction accuracy and that these gains in accuracy are greater than either PSI-BLAST or COMPASS

templates under similar conditions. To investigate whether the SAMD templates can yield similar

improvement for other structural property prediction (RSA, SM and CD) as for SS, and to investigate if we

could further increase gains over ab initio SS predictions with additional specialisation of Distill H, we

re-trained Distill H with SAMD templates but with a relaxed sequence identity threshold of 25% and a

reduced expectation cutoff of e = 0.1 as follows.

We re-train Distill H in 5-fold cross-validation on S3129 with SAMD templates and term it Distill RH. The

target database for template searching is the PDB available on March 25th, 2008. To train template-based

predictions in marginal similarity conditions we remove from the PDB all sequences that have a

PSI-BLAST hit exceeding 25% sequence identity to the query, prior to searching for SAMD templates, we

then search the PDB for templates with an expectation cutoff of e = 0.1. We relax the 20% sequence

identity threshold used previously for training Distill H to 25% – given the different way the templates are
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obtained (redundancy reduced beforehand, or after the PSI-BLAST search), this results in very similar

distributions of template identity in the two cases. We test both predictors with identical sequence identity

threshold and expectation cutoff.

We test the performance of Distill RH on S555 and compare the results to ab initio (Distill) predictions.

Templates for S555 are created using three rounds of SAMD template generation with increasing e value

cutoffs (e = 0.00005, 0.1, 50), stopping as soon as we find at least one template using the October 2007 25%

pdb select list as the template database. Figure 2 shows the distribution of the best and the average

sequence identity of the SAMD templates for S555. For over a third of these sequences the average

sequence identity between the query and the template is 5% or less.

Figure 3 shows the distribution of SS, RSA, SM and CD prediction accuracy for S555 as a function of the

sequence identity of the query to its best SAMD template, for both Distill H and Distill RH. For SS and

SM Distill RH outperforms Distill even as the sequence identity between the query and the top ranked

template approaches zero. RSA and CD are the least responsive to template input, possibly due to their

less conserved nature. Predictions do improve by 1.35% and 2.91% on average in the 10-30% range, this

represents a real gain in accuracy of 2.42% and 5.29%. If the sequence identity between the query and the

best template is less than 10% the ab initio predictions are marginally more accurate. For SS in the 0-10%

range predictions with SAMD templates exceed ab initio predictions on average by 3.12%, and are nearly

4.54% better in the 10-30% range, representing real gains of 4.04% and 5.67%. SM SAMD predictions

improve on ab initio if the sequence identity between query and template exceeds on average 3%. In the

10-30% range they improve on ab initio predictions by 3.79%, a real gain of 6.41%.

When we consider only the residues that are covered by a template (73.55% of 81,141) the Distill RH

improvement over ab initio Distill predictions is substantial. Here SS predictions are on average over 4.3%

more accurate than ab initio, regardless of the sequence identity between that query and the template.

Note that sequence identity may be as low as zero and the e value as high as 50. SM and CD show gains of

2.48% and 1.32% respectively. Again RSA shows less improvement at just 0.26%.

We also compare Distill RH to a baseline which copies the SS, RSA, SM and CD directly from the best

template (Table 2). In every case Distill RH predictions for these same residues outperform the baseline.

Distill RH is 7.2%, 11.47%, 8.44% and 3.1% more accurate than the baseline for SS, RSA, SM and CD

respectively, a real improvement in accuracy of 8.99%, 25.16%, 13.36% and 6.04%. The largest gain over

the baseline is for RSA - even where the templates are substantially less accurate than the ab initio

prediction Distill RH can harness their information to improve on ab initio prediction accuracy.
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Target Database Distill RH Distill H Distill Jpred 3 PSIPRED PROTEUS

2007 pdb select 82.53% 80.63% 79.52% 78.57% 79.82% 77.01%
2008 PDB 87.60% 86.12% 79.52% 78.57% 79.82% 81.86%

Table 3: Secondary structure prediction accuracy (Q3) for S555 using Distill (ab initio), Distill H (PSI-
BLAST templates) and Distill RH (SAMD templates) compared with Jpred 3, PSIPRED and PROTEUS.
The October 2007 25% pdb select list (3,654 sequences) and the full version of the PDB downloaded with
PROTEUS in April 2008 (16,623 sequences) are used as the target databases for template searching by
Distill H, Distill RH and PROTEUS.

3.3 Comparison to Other Methods

We compare SS predictions by Distill, Distill H and Distill RH with SS predictions by PROTEUS 30,

PSIPRED 36 and Jpred 3 37 using S555 as our test set (Table 3). We create two sets of templates,

PSI-BLAST for Distill H and SAMD for Distill RH, as previously described using the October 2007 25%

pdb select list as the target database for the first set and a full version of the PDB supplied with

PROTEUS as the target database for the second set. Although Distill RH incorporates template

information, only templates showing less than 25% sequence identity to a query are allowed for the first

set. Since this is as strict as the usual separation between training and test set for ab initio predictors, we

consider the results on the first line of Table 3 to be a fair comparison.

PROTEUS is designed to incorporate structural information into SS prediction, but only when a

homologue with more than 25% sequence identity or an e value of e < 10−7 is found, hence, when we use

the pdb select as the target database, its predictions are generally ab initio. Proteus predictions using the

full version of the PDB are more accurate, 81.86%, than our ab initio predictions but still less accurate

than either Distill H (86.12%) or Distill RH (87.60%) when they use this version of the PDB. This again

highlights the fact that a soft combination of sequence profiles and structural templates greatly improves

prediction accuracy compared to directly extracting structural information from PDB templates as in the

3D-to-2D mapping method of PROTEUS.

We also show that Distill H and Distill RH perform well when compared to other methods that do not

incorporate structural information, PSIPRED and Jpred 3. PSIPRED is slightly more accurate than the

ab initio Distill but Distill RH is 2.71% more accurate using only remote homologues. This increases to

7.78% when we use the full version of the PDB (we exclude the query sequence from its list of templates).

Jpred 3 is also slightly more accurate than our ab initio Distill (80.12%) using their “easier” DSSP eight to

three class conversion: H → Helix; E, B → Strand; G, I, S, T, . → Coil. Again, both our Distill H and

Distill RH outperform Jpred 3 using either the “easier” or “hard” SS assignment.
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Distill RH Distill H Distill 57 PP SABLE ACCpro JNET PredAcc NETASA

82.28% 81.6% 79.82% 78.1% 78.1% 77.6% 77.2% 75.0% 70.7% 70.3%

Table 4: Performances of the two-class Distill, Distill H and Distill RH for RSA prediction compared with
a number of recent methods on the Manesh dataset 60. Performances of the various methods from 57. The
class threshold is 25% for all methods. Templates up to 90% adopted by Distill H and Distill RH. PP 58,
SABLE 61, ACCpro 62, JNET 63, PredAcc 64 and NETASA 65.

The overall correct prediction of SS for Distill RH is 82.53%, 3.01% more accurate than the ab initio

Distill, an improvement of 3.78%. To estimate the statistical significance of this result, we measure the

standard deviation of the error distribution by sampling with replacement N residues from the S555 set M

times. In our case M = 1000 and N = 81141 (the size of the set). Standard deviation can be estimated

from N samples xi and from their average x̄. We obtain nearly identical standard deviations of 0.14% and

0.13% for Distill and Distill RH respectively for the error of both predictors. Given these deviations the

observed difference of 3.01% is significant at p << 0.01.

In Table 4 we show that Distill H and Distill RH both perform well when compared to other well known

state-of-the-art RSA prediction methods. Our ab initio predictor, Distill, is 1.72% better than the next

best methods 57,58, however this increases to 3.5% and 4.18% for Distill H and Distill RH respectively. The

only RSA prediction method that incorporates structural information from the PDB into the prediction

process that we are aware of is ACCpro 59. In this case BLAST is used to identify homologs with high

sequence identity in the PDB to improve ACCpro predictions. When high sequence identity templates are

used ACCpro prediction accuracy is > 77%.

4 Conclusion and Future Directions

1D structural properties of protein residues are useful intermediate representations between the primary

sequence and the full 3D structure. Traditionally, predictors of 1D structural properties have been ab

initio. However, as the universe of known folds expands, any detectable degree of similarity to proteins of

known structure needs to be fully exploited. In turn, improved predictions may feed into, and help to

further improve, comparative modelling and fold recognition systems.

We have developed a high-throughput system for the prediction of 1D structural properties of proteins

which takes advantage of similarity to proteins of known structure. We retrieve template information by a

novel structure-based algorithm that we have developed in this work, and obtain improved predictions of

1D structural properties well below the Twilight Zone of sequence identity, down to sequence identities of

13



less than 5% in some cases. This suggests that our approach is very robust with respect to template noise,

and may glean information beyond the case where templates represent genuine homologues. Predicted 1D

properties are considerably more accurate than those directly derived from the best template, showing that

sequence and evolutionary information can help correct errors associated with low sequence identity

templates. The methods we presented also deal naturally with predictions in areas not covered by

templates.

We are currently looking into a number of directions of further research, namely: under which conditions

SAMD templates are genuine homologues and when they are fragments of local structure similar to the

query but not from an overall similar fold; whether SAMD-based predictions may be fed back into the loop

to refine SAMD templates; whether SAMD-based predictions may be of help in 3D modelling, i.e. whether

the refinement of local structure they yield is also captured by fold recognition systems or not.

All the systems are automated and are publicly available at http://distill.ucd.ie/. When appropriate

templates are available they are automatically used in the prediction process.
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